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Introduction

Distance and Similarity

Many data mining techniques are based on similarity measures
between data points

I Classification: nearest-neighbor, linear discriminant analysis
I Clustering: k-means, density
I Visualization: multi-dimensional scaling

Proximity is a general term to indicate (dis)similarity

Distance is also used to indicate dissimilarity.

In mathematics, a distance means a metric.
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Introduction

Metric

A metric or distance function is a function that defines a distance
between each pair of elements of a set (X):

d : X ×X → [0,+∞)

Distance d satisfies the following:
1 d(x, y) ≥ 0
2 d(x, y) = 0⇔ x = y
3 d(x, y) = d(y, x)
4 d(x, z) ≤ d(x, y) + d(y, z)
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Euclidean and further ...

Euclidean distance is a metric

Two vectors x,y ∈ Rn

Euclidean distance

L2 =

√√√√
n∑

i=1

(xi − yi)2

L2 is a metric.

Originates from R2 and R3; but scales to Rn.
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Euclidean and further ...

Euclidean Distance in Clustering

How to partition a data set X into k clusters?

The goal is to optimize a score function that links to the
compactness of each cluster.

The most commonly used is the square error criterion:

F =

k∑

i=1

∑

x∈Ci

‖x−mi‖2

Finding the best mi:
δF
δmi

= 0.

Given all x within a cluster, the centroid gives the minimum:
mi = Ex∈Ci(x).

This gives the k-means algorithm.
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Euclidean and further ... Minkowski

Minkowski Metrics

Euclidean distance: L2 = (
∑n

i=1 |xi − yi|2)1/2

→ Minkowski distance

Lp = (
n∑

i=1

|xi − yi|p)1/p, p ≥ 0

L1: Metropolitan (city-block): L1 =
∑n

i=1 |xi − yi|
L∞: maxi|xi − yi|
L−∞: mini|xi − yi|
What about L0?
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Euclidean and further ... Minkowski

Is Euclidean Always Good?

For a high-dimensional space (e.g. n ≥ 10), data points are more
likely lying on hypercubes rather than within hyper spheres.

So Euclidean distance may easily fail to represent similarity
between data points.

I See P Domingos, “A few useful things to know about machine
learning”, CACM 55:78-87, 2012

I C Aggarwal et al., “On the surprising behavior of distance metrics
in high dimensional space”, LNCS 1973:420-434, 2001.

This does not always happens.
I See A Zimek et al. (2012), “A survey on unsupervised outlier

detection in high-dimensional numerical data”, Statistical Analy
Data Mining, 5: 363–387
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Euclidean and further ... Beyond Hypersphere

More generalizations

Mahalanobis distance: ellipsoids.
I Given data vectors {x}, calculate the mean µ and the covariance

matrix Σ. The distance between x and µ is
DM (x) =

√
(x− µ)T Σ−1(x− µ)

I Between two data vectors of the same distribution:
dM (x,y) =

√
(x− y)T Σ−1(x− y)

Distance metric learning (Xing et al., NIPS’02)
I If x,y ∈ S, can we learn an optimal metric?

dA(x,y) =
√

(x− y)TA(x− y)

Matrix A is positive semi-definite.
I The best A for clustering can be solved for

min
A

∑
(xi,xj)∈S ‖xi − xj‖2A

s.t.
∑

(xi,xj)/∈S ‖xi − xj‖A ≥ 1
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Into the Probability Space K-L Divergence

How to compare histograms?

Sometimes, data vectors are actually
histograms – discrete probability
models.

The difference on bin values matters;
the distance between bins also
matters.

Euclidean distance is not a good
representation any more!
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Into the Probability Space K-L Divergence

Divergence Between Two Probability Distributions

Kullback-Leibler divergence between p(x) and q(x):

KLD(p, q) =
∑

i

pi log
pi
qi

Assume that the N dimensions of the data are independent and
Gaussian distributed, a simplified Kullback-Leiberler divergence
can be worked out in close form (Mathiassen 2002) for two models
p and q:

KL(q; p) =
1

2

N∑

j=1


log


σ

(p)
j

σ
(q)
j




2

+


µ

(q)
j − µ(p)j

σ
(p)
j




2

+


σ

(q)
j

σ
(p)
j




2

− 1




J Deng (Univ. of Otago) Lecture 1: Data and Similarity 11 July, 2017 14 / 26

Into the Probability Space Other Distances

Variation: Earth moving distance (EMD)

EMD (Rrubner, 1998) is defined over weighted point sets.
Suppose each point set is configured by a normalized weight set.
Denote a point set as A = {a1, a2, ..., am}, with ai = {(xi, wi)},
xi ∈ Rk, and wi ∈ R+ ∪ {0}.
EMD: the minimum amount of work needed to transform one
configuration to another by moving weight under constraints.
Denote the set of all feasible flows as F = {fij}, where i is a point label
for set A, and j for B. These flows are subject to certain constraints.
EMD between the two point sets can then be define as

EMD(A,B) = minf∈F
m∑

i=1

n∑

j=1

fijdij . (1)

J Deng (Univ. of Otago) Lecture 1: Data and Similarity 11 July, 2017 15 / 26



Into the Probability Space Other Distances

Content-based Image Retrieval

Traditionally, information retrieval is concept-based – problematic
for images.

CBIR aims at retrieve images using low-level feature matching
(e.g. search by example, search by sketch etc.)

Skips costly image annotation; circumvents word matching issues
(keyword subjective; thesauri needed)

Hot topic during 1990s/2000s

/ Haunted by the “semantic gap”

, Leveraged research on image feature extraction, database, and
similarity-based pattern recognition

Key question: how to compare the histograms (colour / shape /
texture)?
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Into the Probability Space Other Distances

More Variations

Rubner et al., “Empirical evaluation of dissimilarity measures for
color and texture”, CVIU 2001

Minkowski distance Lp

Kolmogorov–Smirnov distance distance between two cumulative
probability functions F (X) and F (Y ):

KS(X,Y ) = max
i
|F (i;X)− F (i;Y )|

Kullback-Leibler divergence (KLD)

Jensen-Shannon divergence

Findings: best “distance” is data dependent, but L2 and L∞
consistently inferior (!)
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Point-to-Point → Set-to-Set

Set-to-set distances?

Hausdorff distance between two non-empty sets X and Y

dH(X,Y ) = max (sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y))

I HD is a metric.
I Used in computer vision in comparing shapes.

Jaccard index

I Between two sets A and B: J(A,B) =
|A ∩B|
|A ∪B| ,

dJ(A,B) = 1− J(A,B)

I Generalized J(X,Y ) =

∑
i min(xi, yi)∑
i max(xi, yi)

Other ideas?
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More Distances Geodesic Distance in ML

Another case against Euclidean distance

According to Winston Churchill

It is a mistake to look too far ahead. Only one link of the chain of
destiny can be handled at a time.

Sometimes distance between two data points should not be
measured directly but by how many hops they are separate by
neighbours.

A number of algorithms exploit the neighbourhoods and turn a
dataset into a graph.

E.g. Isomap by Tenenbaum et al., Science, v290(5500), 2000,
pp.2319-2323.
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More Distances Geodesic Distance in ML

Isomap

“Swiss roll” expanded by Isomap (Tenenbaum et al., 2000)

Isomap – a nonlinear MDS

Connect each point to its k nearest neighbors to form a graph.

Approximate pairwise geodesic distances using Dijkstra’s
algorithm on this graph.

Apply Metric MDS to recover a low dimensional isometric
embedding.

t.b.c.: manifold learning
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More Distances Between Two Tensors

A Distance metric for covariance matrices

Image segmentation: pixels (→ superpixels) → regions

In addition to pixel color, Gu et al. (2014) proposed to
incorporate covariance matrices for image segments.

Förstner & Moonen metric on two covariance matrices ΣA, ΣB:

d(ΣA,ΣB) =
√∑n

r=1 ln2 λr, where ΣA, ΣB are of dimension n× n,

λr(r = 1, 2, · · · , n) are the eigenvalues from the generalized
eigenvalue problem |λΣA − ΣB| = 0.

Two different similarity matrices, Wc and WΣ, representing color
and color covariance respectively

Spectral clustering based on similarity measures combining Wc

and WΣ
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More Distances Between Two Tensors

Image segmentation

(Gu, Deng, Purvis 2014)

“Top 10% Paper” ICIP’14 Paris
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Conclusion

Recap

Choices on distance metrics / similarity measures can make a
difference.

“Distance” can be measured between data points (vectors),
histograms, covariance matrices, and sets / set profiles.

New metrics / similarity measures in high-dimensional data
spaces, and their combinations, remain interesting research topics.

Notable directions:
I Tensor, manifold learning
I Kullback-Leibler divergence
I Distance metric learning
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