Outline



Introduction	Introduction
Distance and Similarity	Metric

- Many data mining techniques are based on similarity measures between data points
 - ▶ Classification: nearest-neighbor, linear discriminant analysis
 - ▶ Clustering: k-means, density
 - \blacktriangleright Visualization: multi-dimensional scaling
- Proximity is a general term to indicate (dis)similarity
- Distance is also used to indicate dissimilarity.
- In mathematics, a distance means a metric.

• A metric or distance function is a function that defines a distance between each pair of elements of a set (X):

$$d: X \times X \to [0, +\infty)$$

- Distance *d* satisfies the following:
 - $\ \, \bullet \ \, d(x,y)\geq 0$
 - $\textcircled{2} \ d(x,y) = 0 \Leftrightarrow x = y$
 - $\textcircled{0} \ d(x,y) = d(y,x)$
 - $\textcircled{0} \quad d(x,z) \leq d(x,y) + d(y,z)$

Euclidean and further	Euclidean and further
Euclidean distance is a metric	Euclidean Distance in Clustering

- Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- Euclidean distance

$$L_2 = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

- L_2 is a metric.
- Originates from \mathbb{R}^2 and \mathbb{R}^3 ; but scales to \mathbb{R}^n .

- How to partition a data set X into k clusters?
- The goal is to optimize a score function that links to the compactness of each cluster.
- The most commonly used is the square error criterion: $T = \sum_{k}^{k} \sum_{k} ||\mathbf{x} - \mathbf{x}||^{2}$

$$\mathcal{F} = \sum_{i=1}^{N} \sum_{\mathbf{x} \in C_i} \|\mathbf{x} - \mathbf{m}_i\|^2$$

- Finding the best \mathbf{m}_i : $\frac{\delta \mathcal{F}}{\delta \mathbf{m}_i} = 0.$
- Given all **x** within a cluster, the centroid gives the minimum: $\mathbf{m}_i = E_{\mathbf{x} \in C_i}(\mathbf{x}).$
- This gives the *k*-means algorithm.

	Lecture 1: Data and Similarity an and further Minkowski	11 July, 2017	7 / 26		Lecture 1: Data and Similarity an and further Minkowski	11 July, 2017	8 / 26
Minkowski Metrics			Is Euclidean Alwa				

- Euclidean distance: $L_2 = (\sum_{i=1}^n |x_i y_i|^2)^{1/2}$
- $\rightarrow\,$ Minkowski distance

$$L_p = (\sum_{i=1}^n |x_i - y_i|^p)^{1/p}, p \ge 0$$

- L_1 : Metropolitan (city-block): $L_1 = \sum_{i=1}^n |x_i y_i|$
- L_{∞} : $\max_i |x_i y_i|$
- $L_{-\infty}$: $\min_i |x_i y_i|$
- What about L_0 ?

- For a high-dimensional space (e.g. $n \ge 10$), data points are more likely lying on hypercubes rather than within hyper spheres.
- So Euclidean distance may easily fail to represent similarity between data points.
 - See P Domingos, "A few useful things to know about machine learning", CACM 55:78-87, 2012
 - C Aggarwal et al., "On the surprising behavior of distance metrics in high dimensional space", LNCS 1973:420-434, 2001.
- This does not *always* happens.
 - See A Zimek et al. (2012), "A survey on unsupervised outlier detection in high-dimensional numerical data", Statistical Analy Data Mining, 5: 363–387

Euclidean and further	Beyond Hypersphere	Into the Probability Space	K-L Divergence

More generalizations

- Mahalanobis distance: ellipsoids.
 - Given data vectors $\{\mathbf{x}\}$, calculate the mean $\boldsymbol{\mu}$ and the covariance matrix Σ . The distance between \mathbf{x} and $\boldsymbol{\mu}$ is $D_M(\mathbf{x}) = \sqrt{(\mathbf{x} \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} \boldsymbol{\mu})}$
 - Between two data vectors of the same distribution: $d_M(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})^T \Sigma^{-1} (\mathbf{x} - \mathbf{y})}$
- Distance metric learning (Xing et al., NIPS'02)
 - If $\mathbf{x}, \mathbf{y} \in S$, can we learn an optimal metric?

$$d_A(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})^T \mathbf{A}(\mathbf{x} - \mathbf{y})}$$

Matrix \mathbf{A} is positive semi-definite.

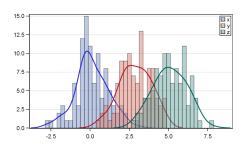
 \blacktriangleright The best A for clustering can be solved for

$$\min_{\substack{A \\ s.t.}} \quad \sum_{(\mathbf{x}_i, \mathbf{x}_j) \in S} \|\mathbf{x}_i - \mathbf{x}_j\|_A^2$$
$$s.t. \quad \sum_{(\mathbf{x}_i, \mathbf{x}_j) \notin S} \|\mathbf{x}_i - \mathbf{x}_j\|_A \ge 1$$

• Sometimes, data vectors are actually histograms – discrete probability models.

How to compare histograms?

- The difference on bin values matters; the distance between bins also matters.
- Euclidean distance is not a good representation any more!



J Deng (Univ. of Otago)	Lecture 1: Data and Similarity	11 July, 2017	11 / 26		Lecture 1: Data and Similarity	11 July, 2017	13 / 26	
Into tl	e Probability Space K-L Divergence			Into the Probability Space Other Distances				
Divergence Betw	een Two Probability Di	stributions		Variation · Earth n	noving distance (EM	(D)		

• Kullback-Leibler divergence between p(x) and q(x):

$$\operatorname{KLD}(p,q) = \sum_{i} p_i \log \frac{p_i}{q_i}$$

• Assume that the N dimensions of the data are independent and Gaussian distributed, a simplified Kullback-Leiberler divergence can be worked out in close form (Mathiassen 2002) for two models p and q:

$$\mathrm{KL}(q;p) = \frac{1}{2} \sum_{j=1}^{N} \left(\log \left(\frac{\sigma_j^{(p)}}{\sigma_j^{(q)}} \right)^2 + \left(\frac{\mu_j^{(q)} - \mu_j^{(p)}}{\sigma_j^{(p)}} \right)^2 + \left(\frac{\sigma_j^{(q)}}{\sigma_j^{(p)}} \right)^2 - 1 \right)$$

EMD (Rrubner, 1998) is defined over weighted point sets. Suppose each point set is configured by a normalized weight set. Denote a point set as $A = \{a_1, a_2, ..., a_m\}$, with $a_i = \{(x_i, w_i)\}$, $x_i \in \mathbb{R}^k$, and $w_i \in \mathbb{R}^+ \cup \{0\}$.

EMD: the minimum amount of work needed to transform one configuration to another by moving weight under constraints. Denote the set of all feasible flows as $F = \{f_{ij}\}$, where *i* is a point label for set *A*, and *j* for *B*. These flows are subject to certain constraints. EMD between the two point sets can then be define as

$$\operatorname{EMD}(A,B) = \min_{f \in F} \sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij} d_{ij}.$$
 (1)

Content-based Image Retrieval

- Traditionally, information retrieval is concept-based problematic for images.
- CBIR aims at retrieve images using low-level feature matching (e.g. search by example, search by sketch etc.)

Into the Probability Space Other Distances

- Skips costly image annotation; circumvents word matching issues (keyword subjective; thesauri needed)
- Hot topic during 1990s/2000s
- © Haunted by the "semantic gap"
- © Leveraged research on image feature extraction, database, and similarity-based pattern recognition
- Key question: how to compare the histograms (colour / shape / texture)?

• Rubner et al., "Empirical evaluation of dissimilarity measures for

- color and texture", CVIU 2001
 Minkowski distance L_p
- Kolmogorov–Smirnov distance distance between two cumulative probability functions F(X) and F(Y):

$$\mathrm{KS}(X,Y) = \max_{i} |F(i;X) - F(i;Y)|$$

- Kullback-Leibler divergence (KLD)
- Jensen-Shannon divergence

More Variations

• Findings: best "distance" is data dependent, but L_2 and L_{∞} consistently inferior (!)

U U U U U U U U U U U U U U U U U U U	Lecture 1: Data and Similarity int \rightarrow Set-to-Set	11 July, 2017	16 / 26	J Deng (Univ. of Otago)	Lecture 1: Data and SimilarityMore DistancesGeodesic Distance in M	 17 / 26
Set-to-set distances?				Another case agai	inst Euclidean distance	

 \bullet Hausdorff distance between two non-empty sets X and Y

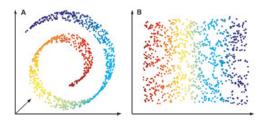
$$d_H(X,Y) = \max\left(\sup_{x \in X} \inf_{y \in Y} d(x,y), \sup_{y \in Y} \inf_{x \in X} d(x,y)\right)$$

- ▶ HD is a metric.
- ▶ Used in computer vision in comparing shapes.
- Jaccard index
 - Between two sets A and B: J(A, B) = |A ∩ B|/|A ∪ B|, d_J(A, B) = 1 − J(A, B)
 Generalized J(X, Y) = ∑_i min(x_i, y_i)/∑_i max(x_i, y_i)
- Other ideas?

According to Winston Churchill

It is a mistake to look too far ahead. Only one link of the chain of destiny can be handled at a time.

- Sometimes distance between two data points should not be measured directly but by how many hops they are separate by neighbours.
- A number of algorithms exploit the neighbourhoods and turn a dataset into a graph.
- E.g. Isomap by Tenenbaum et al., *Science*, v290(5500), 2000, pp.2319-2323.



"Swiss roll" expanded by Isomap (Tenenbaum et al., 2000)

Isomap – a nonlinear MDS

- \bullet Connect each point to its k nearest neighbors to form a graph.
- Approximate pairwise geodesic distances using Dijkstra's algorithm on this graph.
- Apply Metric MDS to recover a low dimensional isometric embedding.
- *t.b.c.*: manifold learning

A Distance metric for covariance matrices

- Image segmentation: pixels (\rightarrow superpixels) \rightarrow regions
- In addition to pixel color, Gu et al. (2014) proposed to incorporate covariance matrices for image segments.
- Förstner & Moonen metric on two covariance matrices Σ_A , Σ_B : $d(\Sigma_A, \Sigma_B) = \sqrt{\sum_{r=1}^n \ln^2 \lambda_r}$, where Σ_A , Σ_B are of dimension $n \times n$, $\lambda_r (r = 1, 2, \dots, n)$ are the eigenvalues from the generalized eigenvalue problem $|\lambda \Sigma_A - \Sigma_B| = 0$.
- Two different similarity matrices, W_c and W_{Σ} , representing color and color covariance respectively
- Spectral clustering based on similarity measures combining W_c and W_Σ

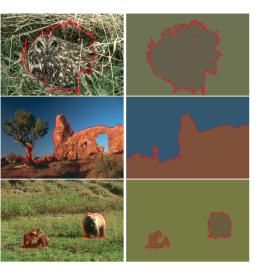
J Deng (Univ. of Otago)	Lecture 1: Data and SimilarityMore DistancesBetween Two Tensors	11 July, 2017	22 / 26	J Deng (Univ. of Otago)	Lecture 1: Data and Similarity Conclusion	11 July, 2017	23 / 26
Image segmentation	on			Recap			

 Table 2. Performance comparison over the BSD database

 with K adjusted manually

Algorithms	PRI	VoI	GCE	BDE
SAS [7]	0.8319	1.6849	0.1779	11.2900
ℓ_0 -sparse-coding [9]	0.8355	1.9935	0.2297	11.1955
Ours (using $W_{\rm HP}$)	0.8495	1.6260	0.1785	12.3034
Ours (using $W_{\rm DP}$)	0.8345	2.1169	0.2341	12.0008
Ours (using W_{AD})	0.8397	2.0359	0.2308	11.8868

(Gu, Deng, Purvis 2014) "Top 10% Paper" ICIP'14 Paris



- Choices on distance metrics / similarity measures can make a difference.
- "Distance" can be measured between data points (vectors), histograms, covariance matrices, and sets / set profiles.
- New metrics / similarity measures in high-dimensional data spaces, and their combinations, remain interesting research topics.
- Notable directions:
 - ▶ Tensor, manifold learning
 - ▶ Kullback-Leibler divergence
 - ▶ Distance metric learning