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Overview

What is Clustering?

‘Labeling of data clouds’ based on similarity
Partitioning of a data set into subsets (clusters).
Clusters are unknown a priori (i.e. unsupervised learning).
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Overview

Main Approaches of Clustering

Partitioning algorithms: Construct various partitions and
then evaluate them by some criterion
Density-based algorithms: based on connectivity and density
functions
Model-based: A model is hypothesized for each of the
clusters and the idea is to find the best fit of that model
Hierarchical algorithms: Create a hierarchical decomposition
of the set of data (or objects) using some criterion
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Partitioning methods Basics

Partitioning Methods

The idea: Construct a partition of a dataset of data entities
into a set of k clusters
Given a k, find a partition of k clusters that optimizes the
chosen partitioning criterion
Global optimal: exhaustively enumerate all partitions
Heuristic methods: using a few rules

I k-means (MacQueen’67): Each cluster is represented by the
centre of the cluster

I k-medoids or PAM (Partition around medoids): Each cluster
is represented by one of the data items in the cluster
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Partitioning methods k-means

Clustering as Optimization

How to partition data points X into k clouds?
The goal is to optimize a score function that links to the
compactness of each cloud.
The most commonly used is the square error criterion:

F =
k∑

i=1

∑

x∈Ci

‖x−mi‖2

Finding the best mi: set δF
δmi

= 0.
Easy: given all x within a cloud, the centroid gives the
minimal F : mi = Ex∈Ci

(x).
I We proved this in Lecture 1, but is the problem solved?
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Partitioning methods k-means

A Deadlock?

How do you know about the right number of clusters?
I k is often unknown
I Let’s just assume a value for k

However, where shall we start?
I We need to know the membership of each data point so as to

find the centroids.
I But don’t we need to know the centroids to find the right

membership for each data point?

Deadlock?
⇒ A random start will always converge!

However, convergence is only to a local minimum. /
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Partitioning methods k-means

The k-means algorithm

Given k, the k-means algorithm is implemented in the
following steps:

1 Partition data items into k non-empty subsets.
2 Obtain the centroids as the centers (mean points) of the

partitions.
3 Obtain new partitions: assign each data item to the cluster of

the nearest centroid.
4 Stop when no more new assignment is found; otherwise go

back to Step 2.

The algorithm may need to go through many iterations
before it terminates or converges.
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Partitioning methods k-means

Initialization

We can randomly pick a few samples from the dataset as
initial centroids (Forgy).
We can randomly set the membership of all the samples, and
compute the centroids thereafter (Random partition).
We can initialize centroids with (small) random values.
Multiple runs are expected.
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Partitioning methods k-means

Things may go wrong!
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Partitioning methods k-means

k-means++

David Arthur & Sergei Vassilvitskii, 2007: “k-means++: the
advantages of careful seeding”
A random initialization algorithm that improves both the
speed and quality of k-means

1 Take one centre c1, chosen uniformly at random from X :
C = {c1}.

2 ∀x ∈ X , calculate D(x) = minc∈C ‖x− c‖: the shortest
distance from a data point x to the closest centre.

3 Take a new center, choosing x ∈ X with probability
D(x)2∑

x∈X D(x)2
: C ← C ∪ x

4 Repeat Steps 2 & 3 until k cluster centres have been taken.
5 Return: the initialized cluster centres C
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Partitioning methods k-means

k-means: Pros and Cons

Strength
I Simple to implement.
I Quite efficient. ...

Weakness
I Often terminates at a local optimum.
I Applicable only when ‘means’ are defined. What about

categorical data?
I Need to specify k, the number of clusters, in advance
I Unable to handle noisy data and outliers
I Not suitable to discover clusters with non-convex shapes
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Partitioning methods Variations

A Little Variation

What if we use the city-block distance for cluster centroids to
search for members?
A different optimization objective using L1:

F =
∑k

i=1

∑
x∈Ci
‖mi − x‖1

To optimize F , we have δF
δmk

= 0:
I

∑
x∈Ck

sign(x−mk) = 0
I i.e., mk = median{x ∈ Ck}.

The median/medoid of a group of points is straightforward to
calculate and less prone to be affected by outliers.
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Partitioning methods Variations

Choosing k

Largely heuristic
Could depend on the application
Visual assessment: plot data (e.g. using principal component
analysis) and check for groups
Incremental evaluation: Add one at a time until reaching an
“elbow" (reconstruction error/log likelihood/intergroup
distances)
The Linde-Buzo-Gray algorithm (LBG): progressively splits
existing clusters into two

ER: Hamerly & Elkan, “Learning the k in k-means”, 2003
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Partitioning methods Variations

Fuzzy c-means

Uses soft membership: 0 ≤ µij ≤ 1

Modified optimization criterion:
F =

∑k
i=1

∑N
j=1 µij‖xj − ci‖2.

Fuzzy means: mi =

N∑

j=1

xjµij

N∑

j=1

µij

Soft membership update: µij =
‖xj−ci‖−2/(r−1)

∑k
i=1 ‖xj−ci‖−2/(r−1)

, r ≥ 1
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Model-based algorithms

Model-based algorithms

Assume data are generated from k probability distributions.
I Typically, Gaussian

Soft or probabilistic version of k-means clustering
Need to learn the distribution parameters.
Example: the EM Algorithm
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Model-based algorithms E-M

The E-M algorithm

EM stands for Expectation-Maximization.
Each cluster is modelled by a Gaussian probability density
function p(x|ci).
Steps:

1 Initialize each cluster model randomly (e.g. set ‘prior’ P (ci)
and ‘conditional’ p(x|ci) randomly).

2 Expectation, assign points to clusters: compute ‘posterior’
P (ci|x) for each x and ci using Bayes’ rule.

3 Maximization, re-estimate model parameters: re-compute
P (ci) and p(x|ci) based on P (ci|x).

4 Repeat steps 2 and 3 until convergence.
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Model-based algorithms E-M

EM in action: Initialization

Example by A. Moore

Indicators:
Ellipses: Gaussian
models
Pies: data points
with respective
P (ci|x)
p: priors

Source: Andrew Moore’s tutorial

Lecture 2 22 / 41
Model-based algorithms E-M

EM in action: Iteration 1
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Model-based algorithms E-M

EM in action: Iteration 2
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Model-based algorithms E-M

EM in action: Iteration 20
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Other methods

k-Medoids algorithms

Find representative objects, called medoids, in clusters
PAM (Partitioning Around Medoids, 1987) starts from an
initial set of medoids and iteratively replaces one of the
medoids by one of the non-medoids if it improves the total
distance of the resulting clustering

I PAM works effectively for small data sets, but does not scale
well for large data sets

CLARA (Kaufmann & Rousseeuw, 1990)
CLARANS (Ng & Han, 1994): Randomized sampling
focusing + spatial data structure (Ester et al., 1995)
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Other methods

Density-based algorithms

Clustering based on density (local cluster criterion), such as
density-connected points
Major features:

I Discover clusters of arbitrary shape
I Handle noise
I One scan
I Need density parameters as termination condition

Several interesting algorithms: DBSCAN, OPTICS,
DENCLUE, CLIQUE etc.
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Other methods

DBSCAN: the idea
Centre-based density (Ester, et al., KDD’96)
Classify data points into

I Core points: number of points around the point within a
distance threshold Eps exceeds a threshold MinPts.

I Border points: non-core point falling within the
neighbourhood of a core point.

I Noise points: neither a core point nor a border point.
Clusters represented by density-reachable core points.
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Other methods

DBSCAN: the algorithm

1 Classify all points as core (K), border (B), or noise points.
2 Eliminate noise points.
3 ∀(Ki, Kj), i 6= j, d(Ki, Kj) ≤ Eps, put an edge in between.
4 Form clusters as groups of all connected core points.
5 Assign each border point to one of the clusters of its

associated core points.
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Other methods

DBSCAN vs. CLARANS

CLARANS

DBSCAN
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Hierarchical Clustering

Hierarchical clustering

Use distance matrix as clustering
criteria
Adopt either an agglomerative or
divisive approach
Decompose data objects into a
several levels of nested
partitioning, called a ‘dendrogram’
Clustering of the data objects is
obtained by cutting the
dendrogram at the desired level. Example: clustering of gene data.
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Clustering evaluation

The need of clustering validation

How good is the clustering?
The clustering outcome, as a hypothesis, is acceptable?
From multiple runs, which one is the best?
Related: what is the best k?
While cost functions can be useful in comparing results, we
still don’t know how good a clustering outcome is.
When groundtruth is known (“external validation”): a few
metrics can be used: adjusted rand index, average mutual
information etc.
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Clustering evaluation

Silhouette coefficient

Useful when data labels are not available
For data item xi, suppose it belongs to cluster C, let’s
measure the compactness of C:

ai = Exj∈C(d(xi, xj))

And the separation from other clusters:

bi = min
xj /∈C

(d(xi, xj))

Silhouette coefficient is defined as

si =
bi − ai

max(ai, bi)

Average silhouette coefficient reports the quality of clustering.
Lecture 2 37 / 41

Clustering evaluation

S-Dbw

Halkidi & Vazirgiannis, ICDM’01
Scatter: average cluster deviation over overall deviation

Scat(c) =
1

c

∑
i σ(ci)

σ(S)

Inter-cluster density

Dens_bw(c) =
1

c(c− 1)

c∑

i

c∑

j 6=i

density(µij)

max(density(vi), density(vi))

Validity index S_Dbw(c) = Scat(c) + Dens_bw(c)
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Recap

Clustering: recap

Normally iterative
Initialization/parameter setting can be tricky
Approaches: partitioning, model-based, density-based,
hierarchical ...

Unfinished business
I How do we decide k =?
I What if computing has to be done in a distributed manner?
I And, what about efficiency?
I Still more: subspace clustering, biclustering
I What about streaming data? (To be continued)
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Recap

Readings

Alpaydin Chapter 7 (2nd/3rd Edition)
DHS, Chapter 10.
Andrew Moore, Statistical Data Mining Tutorials,
http://www.autonlab.org/tutorials/index.html, esp. on
Gaussian mixture models, k-means and hierarchical
clustering.
Liu et al., “Understanding of internal clustering validation
measures”, ICDM’10
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