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References The k-Means Algorithm

e Given k, the k-means algorithm is implemented in the following
steps:

o Alpaydin, Chapter 12 (2nd / 3rd Ed.) @ Partition data items into k& non-empty subsets
@ Obtain the centroids as the centers (mean points) of the partitions.

e Hertz, Krc?gh & Palmer, Introduction to the Theory of Neural @ Obtain new partitions: assign each data item to the cluster of the
Computation, Chapter 9 nearest centroid.

e Duda, Hart & Stork, Pattern Classification, Section 10.11 @ Stop when no more new assignment is found; otherwise go back to
Step 2.

@ The algorithm may need to go through many iterations before it
terminates or converges.
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The Problem

Online Learning: Challenges

e In traditional clustering,
» Cluster structure can be sensitive to small changes or noises in data.
» Clustering is mostly done in batch mode.

e In online learning:

Data may arrive incrementally but constantly
Limited memory: data need to go through single-pass
Limited processing time

Evolving data: concept drifts may exist

e What’s required:

v vy

v

» Incremental learning ability: learning data piece-by-piece.
» Stability: cluster structure not easily drifted
» Plasticity: being adaptive and possibly allowing new clusters
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Online Averaging

Optimization in Online k-Means

Another take on the reconstruction error for k-means clustering:

E({mi}in [X) =303 billx" — mq]”

b?:{

In online learning, we approximate gradient descent with stochastic
gradient descent (SGD), doing a small update on clusters at each step.
The criterion function at step ¢ is

B ({mg}iy|x") =Y > bjllx’ — myl?
t i

By SGD (see e.g. (Bottou & Benjio, 1995)), we have

t
Ami = —ngE

where
L if x! — my|2 = min; [x* - my|
0 otherwise

- = nbf(xt —m;)

1
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Online Averaging

Online averaging: a bit of DIY

n < 0,avgy < 0

while true do
z, + random()
avg, < avg,_1 + Yn(Tn — avg,_1)
n<n+1

end while

Good experimental results can be obtained with very small v values, or
Yo =1/nP p > 1.

In real-world scenarios with dynamic data environments does this
work? Let’s find out...
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Competitive Learning

e Competitive learning is a methodology based on neuroscience
research.
e CL schemes
» Basic competitive learning

o Fixed number of clusters
o “Winner-takes-all”

» Soft competitive learning
o Allows multiple winning neurons
» Leader-Follower clustering

o Allows a variable number of neurons
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Basic C.L. algorithm

o a.k.a. ‘local k-means’

Pseudocode
Q Initialize weights {w;},7i=1,2,.... k
© Randomly select a pattern x
@ Find the winner neuron:
b = argmin||x — wy]|
@ Update the winner neuron
Awp = y(x — wp)

@ Goto step 2 until no significant change in weights.
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CL: How to improve?

e Instead of tuning the winning neuron alone, other neurons also

involved in adapting?
» More robustness in the ‘codebook’.
» Can introduce relationship between prototypes.
» However more time-consuming

@ Dealing with uneven winning frequencies: frequency-sensitive

FSCL, rival penalty RPCL
e More adaptability? E.g.,
» growing and pruning,
» merging and splitting etc.

e Can the learnt prototypes be useful for classification?

e Parallel implementation?

Competitive Learning BESEYSTENSatleal I

CL Characteristics

I's Localized learning - good for online implementation

e Local minimum problem

I'2 Fixed number of neurons
I'2 Slow adaptability to novelty
» Can you tell why?
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Competitive Learning
Self-Organizing Maps
e Kohonen (1982)
e aka Self-organizing feature map (SOFM) or Kohonen map
e Found thousands of applications, including:
» Speech recognition
» Image compression
» Bankruptcy prediction
» Telecommunication traffic monitoring
» Process control
» Web document indexing
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SOM
The SOM Model

e Introduces a topology for
prototype nodes (ordering,
neighbourhood)

@ Define a neighbourhood
function Q(y;, yp) for
prototype indeces {y;}:

» Bubble: Q(y;,y5) =1o0r0

» Gaussian: centered at the
winner

> “Mexican hat”: lateral
inhibition

e Nodes within the
neighbourhood of the winner
also get updated.
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Example 1: Packet monitoring

SOM
The SOM algorithm

. e Each adaptation tunes the winner (or “best matching unit” /
Neurons a BMU) and its neighbours:

wi(t+1) = w;(t) + () 2ys, yp) (x — wy)
@ During the iterations

» Neighbourhood Q(y;, yp) shrinks over time
» Learning rate 7(t) reduces over time

e Can operate either incrementally, or in batch mode

The ‘Mexican hat’ neighbourhood
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Example 2: Microarray data classification

Mapping multi-dimensional packet data, one can use SOM to analyze

network traffic, monitor online traffic, or even visualize intrusions.

17

Luc Girardin, USENIX’99 workshop
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Covet et al., Molecular Classification of Cancer: Unsupervised Self-Organizing Map Analysis of Gene
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SOM

Competitive Learning

Example 3: EMU macroeconomics analysis
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e Kasabov et al. (2001)

@ Macroeconomic data collected
for then EMU countries and
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Neural Gas

Martinetz (1993)
Topology constraint in SOM removed ©

Prototypes organised in the original space

Weight updating rule: Aw; = yh(k;)(x — w;)
> k;: neighbour rank of the prototypes

» E.g. for winner, k; = 1; second winner k; = 2 etc.

> h(ki(x; w)) = e~ hCw/A
e Neighbour ranking is time-consuming ®

e Fixed number of neurons ®
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SOM

Competitive Learning

SOM: Characteristics

IS Positives:

» Multi-dimension scaling (often onto 2-D)
» Probability density approximation: more

f
‘prototypes’ generated for regions of //L\, —
higher probability densities. N\g —
» Topology preserving: any two close ~ ) ——

input patterns should match to the same =
neuron, or two neurons in a
0

neighbourhood on the map.
IL2 Negatives:
» Rigid map topology
» Fixed number of units
» Limited online learning ability

~.

DemoGNG results on “Fovea”

Lecture 3
The Idea
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Leader-Follower

Leader-Follower

e Model itself is incremental; allows adaptive clustering without a
known number of clusters

e Needs a similarity threshold (vigilance) or a distance threshold T

@ This threshold implicitly controls the number of prototypes
generated

@ Procedure:

© Take initial inputs as prototypes (leaders)

@ Modify existing prototypes with new input if they are similar
(followers)

© Otherwise add the new input as a new prototype

© Repeat Steps 2-3 on new arriving data
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Leader-Follower

Leader-Follower Algorithms

Pseudocode

# Assign first input to node 1
Wi < X
# Number of nodes set as 1
K=1
while more data are available
accept new x
b < arg min;||x — wy|| # find best match unit
if ||[x-wy|| < T # if close enough, update BMU
modify w;
else # otherwise insert as new
K+ K+1
Wi < X
endif
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Leader-Follower

Leader-Follower

ART algorithms

e An implementation of L.F. algorithm

e Carpenter & Grossberg (1987). Adaptive resonance theory is to
model how biological neural networks coping with novel patterns.

o Uses a vigilance parameter

e A family

ART1 for binary patterns
ART2/ART3 for analog patterns
ARTMAP as a supervised model
Fuzzy ARTMAP as a fuzzy variation

v

vV Vvyy
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Leader-Follower

Evolving SOM

e Remove rigid ‘grid’ topology for the nodes (borrowing GNG’s
idea).
e Starts from a null network.

@ Nodes establish connections by searching out two nearest
neighbours.

e If input is far away from any nodes (using a distance threshold,
similar to GNG ®), add a node;
e Otherwise, update nodes within the neighbourhood according to
their activation (a;) stimulated by the input:
» Aw; = h(x)(x — wy)

» Weighting, not ranking as in NG: h;(z) = &

Dok W

» The closer x is to w;, the bigger a;
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Example: Image colour quantization

A1

(e)

True-colour images quantized into 256 colours.

(a) Original, (b) Median cut, (c) Octree, (d) Wu’s method, (e) Local K-means, (f) ESOM.
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Leader-Follower

Examples

Example: Online EM for background modeling

e Problem: monitor pixel changes in a video frame and separate
foreground from background

e Solution (Stauffer & Grimson CVPR’99):

Probabilistic model for separating the background and foreground.
Adaptive mixture of multi-modal Gaussians per pixel.

Method for updating the Gaussian parameters.

Heuristic for determining the background.

v

v vyy
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Learning the MoG

Examples

o If Model k matched to the current pixel value at time ¢, update its
weight (« is a learning rate):

Wt = (1 — a)wy 41 +
e Updating the matched model:
pe = (1= p)pe—1 + pXi

o7 =(1—p)oiq+ p(Xe — p)T(Xe — )

where p = an(Xy|pk, ok)
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Leader-Follower

Examples

The Adaptive MoG Model

e Each pixel is modelled by a mixture of K Gaussian distributions:

1

R e DA
b B) =

i = ol
e Look for Gaussians winning the most with the least variance;
order models by w;/o;

e The first B distributions are used as a model of the background
(T is a threshold):

b
B = argminb(z w; > T)
j=1
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Stream Clustering

e Mining massive, unbounded sequences of
data objects of rapid but often

changeable rates.
e Example applications: Sensor networks, @@

smart homes, Internet traffic monitoring, @ @

~
ATM transactions ... ®® ‘E

@ Points of Data Streams
@ Potential Micro Clusters
© Outlier Micro Clusters

e Approaches: partition (ClusStream),
grid-based (DStream), density-based
(DenStream)

e Tools: MOA, RapidMiner etc.
e Challenges: concept drift
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Mini-batch k-means Recap

e Sculley, Web-Scale K-Means Clustering, WWW’10

@ Mini-batches tend to have lower stochastic noise than individual
examples in SGD

The online averaging problem
Algorithm 1 Mini-batch k-Means.

1: Given: k, mini-batch size b, iterations t, data set X

2: Initialize each ¢ € C with an x picked randomly from X
3:v—0

4: fori=1tot do

Competitive learning: online k-means
@ Other online algorithms

o Leader-follower

5 M < b examples picked randomly from X

6: for x € M do o Density-based
7 d[x] < f(C,x) // Cache the center nearest to x

8: end for © Your algorithm?
9: forxe M do

10: c —d[x] // Get cached center for this x

11: v[c] < v[c] +1 // Update per-center counts

12: VRl // Get per-center learning rate

13: c— (1—-n)c+nx // Take gradient step

14:  end for

15: end for
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Further Readings

e ER3: Kaur et al., Stream clustering algorithms: a primer, in Big
Data in Complex Systems, 105-145, 2015.

e ER4: Liithr and Mihai Lazarescu. 2009. Incremental clustering of
dynamic data streams using connectivity based representative
points. Data Knowl. Eng. 68.

e Silva et al., Data stream clustering: A survey, ACM Computing
Surveys, 46:1, DOI: 10.1145/2522968.2522981.

e Cao et al., Density-based clustering over an evolving data stream
with noise, SDM’06, DOI: 10.1137/1.9781611972764.29.

e DemoGNG, URL http://www.demogng.de

T



