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Introduction

Motivations & Benefits

Reduce the dimension of the data in a linear or non-linear
fashion
U Remove redundancy and noisy information
U Improve algorithm efficiency and learning outcome
Identify abstract variables which have generated the
inter-instance similarity
U Better understanding of the data
Reproduce non-linear higher-dimensional structures on a
lower-dimensional display for visualization
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Introduction

Related Topics

Clustering
Classification
Regression
Data compression
Feature extraction
Data visualization
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Introduction

Maths warm-up

Matrix multiplication XNM ×YMK = ZNK

Zij =
∑

m
XimYmk

AB 6= BA
(AT )T = A
(AB)T = BTAT

(AB)C = A(BC)
(A + B)C = AC + BC
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MDS The Principle

Multidimensional Scaling

Data are usually of high-dimensional space.
Data points are similar or dissimilar to each other.
We assess closeness mainly on a 2-D or 3-D “mental” space.
MDS: produce projection into lower display space while
keeping similar/distance between data points.
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MDS The Principle

Metric MDS

Projection: X → X ′

Distances between data items are given, a configuration of
points which gives rise to those distances is sought
Can be used for non-linear projection
Tries to maintain dissimilarities (distances) between data
points

I Original distance: d(k, l)
I In projected space: d ′(k, l)

Objective function to minimize: e.g.

EM =
∑

k 6=l
[d(k, l)− d ′(k, l)]2
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MDS Sammon’s mapping & SOM

Sammon’s Mapping

Closely related to metric MDS
Tries to preserve pairwise distances in the projected space
Errors in distance preservation are normalized

Objective function (aka ‘stress’): EM =
∑

k 6=l

[d(k, l)− d ′(k, l)]2
d(k, l)

Minimization can be done by gradient descent.
Implications?

Local minima!
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MDS Sammon’s mapping & SOM

Self-Organizing Maps

An algorithm that performs clustering and non-linear
projection onto lower dimension at the same time
Finds and orders a set of reference vectors located on a
discrete lattice
Learning rule:

mi(t + 1) = mi(t) + γ(t)hci(t)(x−mi)
hci(): neighbour function centred at BMU c

Nice properties:
I Low-dimensional grids ready for display
I Topology preservation
I Probability density matching
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MDS Sammon’s mapping & SOM

SOM with Sammon’s projection

doi: 10.1074/jbc.M513609200
doi: 10.1074/mcp.M800252-MCP200

Lecture 4 1/8/2017 10 / 38
Linear transforms PCA

Principal Component Analysis

A standard statistical method.
Applied in data compression, feature extraction &
visualization.
Also known as Karhunen-Loeve transform in signal
processing, or the Hotelling transform in image processing.
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Linear transforms PCA

PCA explained - a 2-D example

Given a set of points {x} on a 2-D plane.
Assume it’s zero-meaned.
Use orthogonal transform so reconstruction is easy.
Goal: Find an optimal projection y = wTx, subject to
‖w‖ = 1.
Reconstruction: x′ = yw
Criterion: For best reconstruction with minimum
reconstruction error
Solution: y should take on variance as large as possible.
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Linear transforms PCA

Best Representation in Reduced Form

A set of zero-centered data
points
With a vector w, 1-D
projection of data points in
{x}: y = wTx
Use y to represent x
Question: What is the best
projection vector, subject to
‖w‖ = 1: best keeping
variation, with least
distortion?

yw

x
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Linear transforms PCA

The Optimization Process

Our goal is to minimize the reconstruction error:

J = E{‖x− yw‖2} = E{(x− yw)T (x− yw)}
= E{xTx} − E{ywTx} − E{yxTw}+ E{y2wTw}
= E{‖x‖2} − E(y2).

Indeed, minimization of reconstruction error is equivalent to
maximization of the projection variance.
Use a Lagrange to maximize J ′ = E(y2)− λ(‖w‖2 − 1):
i.e., J ′ = E{wTxxTw} − λ(wTw− 1)
To find the optimal w:

δJ ′
δw = 0⇒ E{xxTw} − λw = 0⇒ Rw = λw
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Linear transforms PCA

Eigenvectors and eigenvalues

R = E{xxT} is the covariance matrix of data X ∈ RN .
Rw = λw suggests that the optimal w is the eigenvector of
R, with λ as the relevant eigenvalue.
The projection onto the eigenvector, y = wTx, is called the
principal component.
Preserved variance: E(y2) = λ

Matrix R is positive semi-definite, and there usually exist N
eigenvectors with positive eigenvalues.
If we pick the first k principal components (with the largest
eigenvalues), the proportion of variance kept is λ1+λ2+···+λk

λ1+λ2+···+λN
.
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Linear transforms PCA

An Example - Iris data

As the principal components yi = wT
i x (i=1,2,...) preserve

major variances, they can normally explain the data better
than minor components.
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Linear transforms PCA

PCA: How To

Given a data set Xn×d , make its columns zero-meaned.
Compute the covariance matrix - Rd×d

Conduct eigenanalysis of R and get first m eigenvectors
e1, e2, · · · , em (with eigenvalues sorted in decreasing order)
as column vectors to form the transform matrix E
New data becomes y = XE.
Question: How to decide m?

I Look for elbow point on the eigenvalue scree plot
I Or include principal components so a large extent e.g. 95%

of the variance is kept.
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Linear transforms PCA

“Eigenface” for face recognition

MIT photobook experiment
The eigenfaces for this
database were approximated
using a PCA on a
representative sample of 128
faces.
Recognition and matching was
subsequently performed using
the first 20 eigenvectors.
Tests conducted on a database
of 7,562 images of about 3,000
people.

Standard Eigenfaces used in

photobook
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Linear transforms Other PCA algorithms

Power Method

Power Method: multiply a (column) weight vector w with
the covariance matrix (R) until convergence

I w← Rw, w← w
‖w‖

I w converges to the first eigenvector e1
I Other eigenvectors can be obtained progressively by deflating

R:
R ← R − λ1eT

1 e1

R ← R − λ2eT
2 e2

· · ·
, Online implementation of PCA is possible.
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Linear transforms Other PCA algorithms

Neural Networks for PCA

A family of linear neural network models: GHA, APEX etc.
All based on the Oja’s rule using Hebbian learning:
w← w + γy(x− yw), where y = wTx.
Network weights converge to eigenvectors asymptotically.
Enable online eigen-analysis: no need to calculate R or
conduct matrix eigen-analysis
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Linear transforms LDA

There Is A Problem

Maximizing variations on the p.c. does
not necessarily increase the discriminant
between classes!
Some times minor components separate
classes better than principal components!
Example: OCR deskewing vs. line
segmentation
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Linear transforms LDA

Fisher’s Linear Discriminant Analysis

Discriminant analysis seeks directions that are efficient for
discrimination of patterns of different classes
For a data set with two ‘modes’: D = D1 ∪ D2, define
‘scatter’:

I Within Class i: Si = ∑
x∈Di (x−mi)(x−mi)T

I Within class (total): SW = S1 + S2
I Between-class: SB = (m1 −m2)(m1 −m2)T

Linear projection: y = wTx
Forms two projection sets Y1 and Y2

I Goal: maximize new SB and minimize new SW

I Criterion function: J (w) = wT SBw
wT SW w

I Solution: w = S−1
B (m1 −m2)
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Linear transforms LDA

LDA vs PCA

Red line: 1st
eigenvector of
PCA
Cyan line: vector
found by LDA
Dots on the lines:
projections
Which projection
gives a better
classification
potential?
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Other methods KPCA

Kernel Methods

/ Nonlinearity: it is usually quite challenging to work with
data in high-dimensional space.
Kernel tricks: (nonlinearly) project data into a ‘kernel space’,
where a kernel function k can be used to calculate dot
product:

k(x, z) = 〈φ(x), φ(z)〉
The kernel space is usually of high-dimensionality, but linear
relations may exist among data
Kernel transform can be carried out in the original feature
space using the kernel function k(.).

I i.e., we don’t even need to know φ()!
Popular kernels: Gaussian, polynomial, RBF ...
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Other methods KPCA

Kernel PCA

KPCA: a nonlinear PCA that works linearly in the kernel
space.

Summary
1 Compute the N × N kernel matrix K: K (xi ,xj) = k(xi ,xj)
2 Solve the eigenproblem: Kα = λα

3 Normalize eigenvectors: αT
k αk = 1

λk
4 Compute the projection for test point x:

ak = ∑
j αk,jK (xj ,x)
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Other methods KPCA

KPCA - An Example

Left: original data; note the linear inseparability
Right: Output after kernel PCA. The three groups are now
distinguishable using just the 1st component.

Lecture 4 1/8/2017 26 / 38
Other methods Isomap and LLE

Isomap

Tenenbaum et al., Science, v290(5500), 2000
A nonlinear MDS
Connect each point to its k nearest neighbors to form a graph
Approximate pairwise geodesic distances using Dijkstra’s
algorithm on this graph
Apply Metric MDS to recover a low dimensional isometric
embedding
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Other methods Isomap and LLE

Isomap: An Example
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Other methods Isomap and LLE

Local Linear Embedding (LLE)
Roweis & Saul, Science, v290(5500), 2000.
Compute the k nearest neighbors;
Solve for the weight matrix W necessary to reconstruct each
point using a linear combination of its neighbors:

ε =
∑

i
‖Xi −

∑

j
WijXj‖2,

Wij = 0 if Xi and Xj are not neighbours, ∑
j Wij = 1.

Find a low dimensional embedding which minimizes
reconstruction loss: ∑

i |Yi −
∑

j WijYj |2
I Equivalent to find d + 1 eigenvector of matrix

(I −W )T (I −W ) with the smallest eigenvalues;
I Discard the unit vector with zero eigenvalue and fetch d

eigenvectors.
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Other methods Isomap and LLE

Random Projection

Use a random linear transform into a space of reduced
dimensionality.
In high-dimensional space there exist a much larger number
of almost orthogonal than orthogonal directions.
So even random vectors may be sufficiently close to
orthogonal to provide an approximation of a basis.
Very attractive with low computing complexity.
Scales well to high dimensional data.
Applied e.g. in document clustering with thousands of
dimensionality.
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Other methods Isomap and LLE

Random Projection - how to

Construct a random matrix Rk×d

Data projection:
X′k×N = Rk×dXd×N , k � N

Elements rij of R are often
Gaussian distributed
E.g., Achlioptas (2001):

rij =
√
3×





+1 Prob. = 1/6
0 Prob. = 2/3
−1 Prob. = 1/6

Kaski (1998)
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Other methods Isomap and LLE

Manifolds of handwritten digits

http:
//scikit-learn.org/dev/
auto_examples/manifold/
plot_lle_digits.html
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Other methods Isomap and LLE

Auto-encoder

Auto-encoder, aka auto-associator,
is a 3-layer NN
Attempts to learn a function
hW ,b(x) ≈ y through error
back-propagation.
Usually with a small hidden-layer,
similar to PCA; other constraints
e.g. sparsity
Can be extended to deep
structures, e.g. Hinton’s restricted
Boltzmann machines (RBM)

Wang, Yao, & Zhao (2016)
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Related topics

Independent Components Analysis

Signals/data we have usually come from a number of sources
as a mixture
How to separate them - blind source separation
Seek components that are most independent from each other
The algorithm: independent component analysis (ICA)
Extremely useful in audio signal processing and medical
applications (e.g., EEG)
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Related topics

Sparse Coding

Reconsider the linear approximation problem x = ∑k
i=1 aiφi ,

x ∈ Rn.
Rather than having k ≤ n, assume k > n (overcomplete);
however, most of ai coefficients are zero, hence with sparsity
Optimization goal is to find

min
ai ,φi

∑

j
‖x(j) −

∑

i
a(j)

i φi‖2 + λ
∑

i
S(a(j)

i )

Usual setting is to use L1 norm: S(ai) = |ai |1
Or use a penalty function: S(ai) = log(1 + a2

i )
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Related topics

S(ai) = log(1 + a2
i )
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Related topics
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Related topics

Recap

Review Questions
SOM already maps high-dimensional data onto
low-dimensional grids. Why do we still use MDS on the
maps?
What is the goal PCA tries to achieve?
Can we use PCA to help build classifiers? Why, and why not?
Give two dimension reduction methods that deal with linear
inseparability of data and explain how they work.
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