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Introduction Introduction

Motivations & Benefits Related Topics

@ Reduce the dimension of the data in a linear or non-linear

fashion e Clustering
I’5 Remove redundancy and noisy information o (Classification
I's Improve algorithm efficiency and learning outcome .
. . . @ Regression
o Identify abstract variables which have generated the .
. . A e Data compression
inter-instance similarity
I's Better understanding of the data o Feature extraction
e Data visualization

e Reproduce non-linear higher-dimensional structures on a
lower-dimensional display for visualization
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Maths warm-up Multidimensional Scaling

e Matrix multiplication Xyy X Y yx = Zyk

Zy = Z Xim Yok e Data are usually of high-dimensional space.
n e Data points are similar or dissimilar to each other.
e AB # BA @ We assess closeness mainly on a 2-D or 3-D “mental” space.
o (ATYT =A e MDS: produce projection into lower display space while
o (AB)" = BTAT keeping similar/distance between data points.
AB)C = A(BC)
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WiEBISAN The Principle MDS Sammon’s mapping & SOM

Metric MDS Sammon’s Mapping

e Projection: X — X’

e Distances between data items are given, a configuration of
points which gives rise to those distances is sought

Closely related to metric MDS

Tries to preserve pairwise distances in the projected space

e Can be used for non-linear projection

e Errors in distance preservation are normalized
e Tries to maintain dissimilarities (distances) between data [d(k, 1) — d'(k, 1)]?
points o Objective function (aka ‘stress’): Ey =Y : 0D ’
» Original distance: d(k, 1) kL ’

» In projected space: d'(k, ) Minimization can be done by gradient descent.

e Objective function to minimize: e.g. Implications?

Ey = Z[d(k, ) — d'(k, l)]2
kAl

Local minima!
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Sammon's mapping & SOM
Self-Organizing Maps

e An algorithm that performs clustering and non-linear
projection onto lower dimension at the same time

e Finds and orders a set of reference vectors located on a
discrete lattice

e Learning rule:
m;(t 4+ 1) = m;(t) + () hes(t) (x — my)
hei(): neighbour function centred at BMU ¢
@ Nice properties:
» Low-dimensional grids ready for display
» Topology preservation
» Probability density matching
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Linear transforms

Principal Component Analysis

e A standard statistical method.

e Applied in data compression, feature extraction &
visualization.

@ Also known as Karhunen-Loeve transform in signal
processing, or the Hotelling transform in image processing.

1/8/2017
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Sammon’s mapping & SOM
SOM with Sammon’s projection
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Linear transforms

PCA explained - a 2-D example

e Given a set of points {x} on a 2-D plane.

e Assume it’s zero-meaned.

e Use orthogonal transform so reconstruction is easy.

e Goal: Find an optimal projection y = w’x, subject to
[wif = 1.

e Reconstruction: x’ = yw

@ Criterion: For best reconstruction with minimum
reconstruction error

@ Solution: y should take on variance as large as possible.
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Linear transforms @S

Best Representation in Reduced Form

@ A set of zero-centered data
points

e With a vector w, 1-D
projection of data points in

{x}: y=wlx % oy"o ?
e Use y to represent x R
L e
@ Question: What is the best . Y

projection vector, subject to
||w|| = 1: best keeping
variation, with least
distortion?
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Linear transforms

Eigenvectors and eigenvalues

e R = E{xxT} is the covariance matrix of data X € R",

o Rw = \w suggests that the optimal w is the eigenvector of
R, with A\ as the relevant eigenvalue.

e The projection onto the eigenvector, y = w’x, is called the
principal component.

e Preserved variance: E(y?) = )

e Matrix R is positive semi-definite, and there usually exist N
eigenvectors with positive eigenvalues.

e If we pick the first & principal components (with the largest

. . . s A Aot A
eigenvalues), the proportion of variance kept is SV Parm vt

e
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Linear transforms [H{@}.N

The Optimization Process

@ Our goal is to minimize the reconstruction error:

J = E{lx —yw|*} = E{(x — yw)" (x — yw)}
= F{xTx} — E{ywTx} — E{yxTw} + E{y*wTw}
= E{Ix[I"} = E(y*).

Indeed, minimization of reconstruction error is equivalent to
maximization of the projection variance.

e Use a Lagrange to maximize J' = E(y?) — A(||w|]* — 1):
ie., J' = B{wixxTw} — A\(wlw — 1)

e To find the optimal w:

5/
5_J:O$E{XXTW}—)\W:0:>RW:/\W
w
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Linear transforms

An Example - Iris data

IRIS projected to the first two dim of PCA IRIS projected to the last two dim of PCA
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Input 1 Input 3

@ As the principal components y; = WZ.T x (i=1,2,...) preserve

major variances, they can normally ezxplain the data better
than minor components.
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Linear transforms @S

PCA: How To

e Given a data set X, .4, make its columns zero-meaned.
e Compute the covariance matrix - Ryyq

e Conduct eigenanalysis of R and get first m eigenvectors
€1, €, -, ey (with eigenvalues sorted in decreasing order)
as column vectors to form the transform matrix E

e New data becomes y = XE.

@ Question: How to decide m?

» Look for elbow point on the eigenvalue scree plot
» Or include principal components so a large extent e.g. 95%
of the variance is kept.

Lecture 4
Other PCA algorithms

1/8/2017

Linear transforms

Power Method

e Power Method: multiply a (column) weight vector w with
the covariance matrix (R) until convergence

» w converges to the first eigenvector e

» Other eigenvectors can be obtained progressively by deflating
R:
R+ R —\ele

R « R — \ele;

© Online implementation of PCA is possible.

1/8/2017
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Linear transforms @S

“Eigenface” for face recognition

e MIT photobook experiment

@ The eigenfaces for this
database were approximated
using a PCA on a
representative sample of 128
faces.

@ Recognition and matching was
subsequently performed using
the first 20 eigenvectors.

Standard Eigenfaces used in

@ Tests conducted on a database
of 7,562 images of about 3,000
people.

photobook

Lecture 4
Other PCA algorithms

Neural Networks for PCA
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Linear transforms

e A family of linear neural network models: GHA, APEX etc.

e All based on the Oja’s rule using Hebbian learning;:

W+ W+ yy(x — yw), where y = wx.
e Network weights converge to eigenvectors asymptotically.
e Emable online eigen-analysis: no need to calculate R or

conduct matrix eigen-analysis
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Linear transforms LDA Linear transforms LDA

There Is A Problem Fisher’s Linear Discriminant Analysis

Discriminant analysis seeks directions that are efficient for
discrimination of patterns of different classes

For a data set with two ‘modes’: D = Dy U D5, define

e Maximizing variations on the p.c. does

4 7.
not necessarily increase the discriminant scatter
between classes! " » Within Class it S; = Y ,cp. (x — m;)(x —m;) T

€ . .
) ) You y, g » Within class (total): Sy = 51 + S
e Some times minor components separate derecr,-g,”"ocroogf e b, ( ) T
T Feadgpypr O Just gy - OMR_ 2 100 i » Between-class: Sp = (m; — my)(m; — moy)
classes better than principal components! annay S the O T
Ageg o

Linear projection: y = w'x

e Example: OCR deskewing vs. line
segmentation

Forms two projection sets Y; and Y5

» Goal: maximize new Sp and minimize new Sy
T
. . . w SBW
> Criterion function: J(w) = —=—
w!Syw
> Solution: w = S5 (m; — my)
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Other methods [HiG{@F:N

Linear transforms

LDA vs PCA Kernel Methods

® Nonlinearity: it is usually quite challenging to work with

° Red line: Ist data in high-dimensional space.

eigenvector of 25}
PCA 2l e Kernel tricks: (nonlinearly) project data into a ‘kernel space’,
o Cyan line: vector 1? Whege i kernel function & can be used to calculate dot
product:
ound by LDA k(3. 2) = (6(2). 6(2)
° DOt.S o the lines: 08 @ The kernel space is usually of high-dimensionality, but linear
pI"OJ.eCtIOIlS. ‘ 1; relations may exist among data
¢ Whmh projection o e Kernel transform can be carried out in the original feature
gives a be.tter EX P— space using the kernel function k(.).
E)ljtsesﬁiigon » i.e., we don’t even need to know ¢()!

e Popular kernels: Gaussian, polynomial, RBF ...
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Kernel PCA

o KPCA: a nonlinear PCA that works linearly in the kernel
space.

Summary
@ Compute the N x N kernel matrix K: K(x;,x;) = k(x;, X;)

@ Solve the eigenproblem: Ka = A«

1

Ak

@ Compute the projection for test point x:
ar — Zj akJK(Xj, X)

@ Normalize eigenvectors: o oy, =

1/8/2017 25 / 38

Lecture 4
Isomap and LLE

Other methods

[somap

Tenenbaum et al., Science, v290(5500), 2000
A nonlinear MDS
Connect each point to its k nearest neighbors to form a graph

Approximate pairwise geodesic distances using Dijkstra’s
algorithm on this graph

Apply Metric MDS to recover a low dimensional isometric
embedding
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KPCA

Other methods

KPCA - An Example

o Left: original data; note the linear inseparability

e Right: Output after kernel PCA. The three groups are now
distinguishable using just the 1st component.
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Local Linear Embedding (LLE) Random Projection

e Roweis & Saul, Science, v290(5500), 2000.

o Compute the k nearest neighbors; e Use a random linear transform into a space of reduced
@ Solve for the weight matrix W necessary to reconstruct each dimensionality.
point using a linear combination of its neighbors: e In high-dimensional space there exist a much larger number
2 of almost orthogonal than orthogonal directions.
e=> lI1Xi—> WyX|* .
P 7 @ So even random vectors may be sufficiently close to

, _ orthogonal to provide an approximation of a basis.
Wi = 0 if X; and Xj are not neighbours, >, Wy = 1.

. : . . . o e Very attractive with low computing complexity.
e Find a low dimensional embedding which minimizes Y P & P y
reconstruction loss: Y, |Y; — X5 Wy V3| e Scales well to high dimensional data.
» Equivalent to find d + 1 eigenvector of matrix o Applied e.g. in document clustering with thousands of
(I — W)T(I — W) with the smallest eigenvalues; dimensionality.
» Discard the unit vector with zero eigenvalue and fetch d
eigenvectors.
Lecture 4 1/8/2017 29/ 38 1/8/2017 30/ 38
(OIS G efs il  Isomap and LLE Isomap and LLE
Random Projection - how to Manifolds of handwritten digits
Isomap projectjon of the digits (time 1.50s)
e Construct a random matrix Ry T2 i35 01134508
9r $i150522001314431314
3 o . g 3 4057454422255¢4001
e Data pl"OJeCtIOIl. = 68 - 45042345042345055°¢
/ & o- 053110043142 43887144
kxN:kaddeNa k<< N g o7 . OFTAS44LLT554400123%
£ 66-¢ / Random mapping 1607120425353¢¢e140
e Elements r;; of R are often E e 150012387 ¢408031383
. - . 8 ) 134504134505550443
Gaussian distributed z ™ 110013144313 ¢2344083
. 5 8- $80111650505041 a0
o Eg, ACthptaS (2001) § 62 - t&g}}i igg: - g }% Locally Linear fipp.of the digits (time 0.575)
& . . , , . ) ) . . 2215500023450 0123
o1 0 C'\[] lqﬂ 1\_5[] 200 250 300 3_5[] 400
_|_1 PTOb. — 1/6 Dimensionality d after the mapping htt )
Ty = V3 x 0  Prob.=2/3 Kaski (1998) P: )
//scikit-learn.org/dev/
—1 Prob.=1/6 .
auto_examples/manifold/ 4
plot_1lle digits.html
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Isomap and LLE

Other methods

Auto-encoder

e Auto-encoder, aka auto-associator,
is a 3-layer NN \\

e Attempts to learn a function \W&V4
hw s(z) =~ y through error A\’/i@
back-propagation. : 0

7/

e Usually with a small hidden-layer,
similar to PCA; other constraints
e.g. sparsity

Layer L, Layer L,

e Can be extended to deep
structures, e.g. Hinton’s restricted
Boltzmann machines (RBM)

Wang, Yao, & Zhao (2016)

hy ()

Related topics

Independent Components Analysis

Signals/data we have usually come from a number of sources
as a mixture

How to separate them - blind source separation
Seek components that are most independent from each other
The algorithm: independent component analysis (ICA)

Extremely useful in audio signal processing and medical
applications (e.g., EEG)
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Sparse Coding
S(a;) = log(1 + a?) Ly vs. Iy
@ Reconsider the linear approximation problem x = le a;Oq,

x € R".
e Rather than having k£ < n, assume k£ > n (overcomplete);
however, most of a; coefficients are zero, hence with sparsity

e Optimization goal is to find

minz ||X(j) _ Z al(.j)qsi“Q + )\Z S(agj))

ai, @i F

e Usual setting is to use L; norm: S(a;) = |a;|x

e Or use a penalty function: S(a;) = log(1 + a?)

1/8/2017
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Related topics Related topics

References Recap

Alpavdin. Chapter 6 Review Questions
e e @ SOM already maps high-dimensional data onto

o Hertz et a}., Introduction to the Theory of Neural low-dimensional grids. Why do we still use MDS on the
Computation, 1991. Chapter 8. maps?

e Haykin, Neural Networks: A Comprehensive Foundation, 2nd o What is the goal PCA tries to achieve?
Ed., 1999, Chapter 8.

e UFLDL Tutorial: PCA, Sparse Coding, http:
//ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial

e Can we use PCA to help build classifiers? Why, and why not?

e Give two dimension reduction methods that deal with linear
inseparability of data and explain how they work.
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