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Overview Overview

The Problem Approaches

e Parametric: uses Bayesian theory and probability
estimation techniques to model the data

e Instances with class labels are given > Bayes classifier
» “Training data” e Non-parametric: no modeling needed

» Supervised learning Nearest neighbour

>
e Task: predict the class label of a new instance > Linear discriminant analysis
» Learning vector quantization

e How? }
Support vector machine

e Ref.: Alpaydin, Chapters 5,8,10

v

@ Non-metric: handles nominal data that have no natural
notion of similarity

» Decision tree
» Random forest
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Review - Probability Theory

e Independent events P(A, B) = P(A)P(B)
e Joint probability and conditional P(A, B) = P(A)|P(B|A)
e The Law of Total Probability (B; mutually exclusive)

P(A) = ZP(A|BZ-)P(B¢)

e Bayes’ Theorem (named after Rev Thomas Bayes, later
developed by Laplace)

A|B;)P(B;)
P(A)

P(Ba) =2

e “Is to the theory of probability what Pythagoras’s theorem is
to geometry”
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Example 1: A Scary Test

e A patient is tested positive for a rare disease D.
e Panic?
e What is known:
» Test is quite accurate: P(TT|D) = 0.95, P(T*|'D) = 0.02
» Priors. P(D) = 0.001 (being ill), so P(!D) = 0.999 (being
ok).
o Test positive, how likely is the patient ill?

o Let’s try with Bayes Law:
P(T*|D)P(D)
P(T)

P(T+) = P(T*|D)P(D) + P(T*|!D)P(ID)

P(D|T+) =
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Bayes’ Rule - Interpretation

@ Another form

_ P(A|By)P(By)
P(Bi|A) = >, P(A|B;)P(B))

Suppose A is our data instance, {B;} are the classes.

P(B;): priors

P(A|B;): conditional

P(B;|A): posterior.

From conditional prob. and priors, we get to know posterior
likelihood X prior

Or in plain English: posterior= :
evidence

i.e., classification done!
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A Famous Example: OJ Simpson Case

o In the Simpson case, defendant attorney Alan Dershowitz
repeatedly declared that fewer than 1 in 1,000 women who
are abused by their mates go on to be killed by them.

e What’s the chance that Simpson is guilty of murder?
@ Denote:
» Sample space S - married couples in which the husband beat
his wife
» Event H - cases in S in which the husband has since
murdered his wife; |H - wife in S not murdered by husband
» Event M - all cases in S in which the wife has been murdered

o We have P(H) = 0.001, P(M|H) = 1, P(M|!H) = 0.0001 at

most in US.
_ P(M|H)P(H) _ 0.001 _
o P(H|M) = P(M[H)P(H)+P(M[\H)P('"H) —_ 0.001+0.0001x0.999 0.91
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Bayesian Decision Theory

e Foundation for statistical pattern recognition
e Assume

A set of classes {w1,wa, ...,we}

Prior prob. known: P(w;)

Conditionals known: p(z|w;)
Posterior prob. ?

p(a|w;)P(w;)

Plw;lx) = ——————=

(wilz) (@)
@ Define the classification error:

Ri(x) =) P(wjlz) = 1 - P(wilz)
J#i

e To minimize classification error, we should assign x to the

class that maximize the posterior prob.

vV Yy V VY
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A Simple Case

e Two classes:
Same prior, same covariance: ¥; = ol, P(wy) = P(w2).
@ Discrimination function
_ 1 t ]' t
9i(%) = —SHiX = o5 il
@ Reduced to a linear machine.

e Classification boundary at
<=M + 2

2
|M
By | Ha X
X0
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Bayesian Classifier

Define and use a “discriminant function” g;(x)

Principle:
Assign x to class w; , if g;(x) > g;(x) for all j # 7.

Usually we can have
» gi(x) = P(w;|x) , or
» gi(x) = Inp(x|w;) + InP(w;).
Find decision region boundaries:
let g;(x) = g;(x)
For p(x|w;) of Gaussian (normal) density:
gi(%) = =5 (x — ) "7 (x — ) — 31n[S5] + InP(w;)

Y;: covariance matrix of class w;

Classification I

16 / 27

ISV EIRR IR o) INoEYs-EM  Bayesian Classifier

Complex Decision Boundaries

@ Decision boundary in
quadrature form for
arbitrary Gaussian
distributions.

@ Question: how do we get
the Gaussian distributions?

from DHS, 2nd Ed.
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Bayesian Classifier
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How Does It Work - actually

@ Collect data items and their class
“labels”

e Apply maximum-likelihood
estimation of the Gaussian
distribution for each class

@ Derive the discriminant functions
out of the distribution functions

e Conduct classification by assigning =+ &+ 1 -
class labels according to the
biggest discriminant function value

Classification I
k-NN: The Idea

Non-parametric approaches

K-Nearest Neighbour (k-NN) Estimation

e We usually need to estimate the a posteriori probability
Suppose we now place a cell of volume V' around x
There are n labelled samples, of ¢ classes

°
°
@ The cell captures k£ samples, of which k; belong to class ¢
°

Then the estimate for the joint probability is
And a reasonable estimate for a posteriori probability is

Pl — POk

Z;:l p(X7 U.)j) k
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There may be a different way?

e Can we bypass probability estimation?
e Can we work on the discriminant function directly?
@ Or, just work with exemplars?

— Non-parametric methods
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Non-parametric approaches

k-NN Classification Rules

e 1I-NN
» Given a test point/pattern x, its nearest prototype is x'.
Classify x by assigning it to the label associated with x’.
Decision boundary piecewise-linear.
Asymptotic error rate no worse than twice of the Bayesian
classifier.
e k-NN
» Labelled prototype set D,,.
» Given a test pattern x, find the k nearest samples in D,,.
» Classify by assigning it to the label most frequently
represented in the k-nearest neighbours (i.e., by voting)
» Smoother decision boundary compared with 1-NN
e Drawbacks
» Large time complexity in classification
» There may be ties between classes.
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k-NN classifier: boost up the efficiency k-NN Classifier Tie-Breaking

o Use partial distance

e Calculate the distances using only a subset of the full data o Use odd k

dimensions o Weighted k-NN
o Construct a search tree » Contribution by the nearest neighbours weighted by their
e Use indexed tree structure to guide the search / distance distances from the input

calculation process so that only nearby prototypes are » E.g., using distance reciprocal as weights -

involved Generate scores for all classes: s(x,¢c) =), ;,

.- . s . d(X, nj) te

e Prototype editing (condensing). Here’s a simple approach: with class(n;) = ¢

» Initialize D with the entire data set.

» Iterate through D: if sample x’s neighbours are NOT all of
the same class as that of x, mark x.

» Remove all samples that are NOT marked from D.

Assign x to the class with the biggest score.
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Non-parametric approaches

Recap What'’s Next?

Revise probability theory ® _ '
, e Extending unsupervised methods?
Bayes’ Law ) o _ )

e Working on discriminant functions directly?

@ Support vector machines

Bayes classifiers

°
°
e Prior, Likelihood, Posterior
°
. @ Decision trees

k-NN
° ...
e Alpaydin, Ch. 3, 4, 8 o “Mixture of Experts”
e DHS, Ch. 2 & 4
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