## Outline

#### 1 Overview INFO411 Lecture - Classification I 2 Parametric approaches • Bayes Theorem Jeremiah Deng • Bayesian Classifier University of Otago 3 Non-parametric approaches 15 August 2017 • k-NN: The Idea • k-NN Rules • Improving k-NN

| Classification I |  | 1 / 27 | 1 / 27     |  | ication I | 2 / 27 |
|------------------|--|--------|------------|--|-----------|--------|
| The Problem      |  |        | Approaches |  |           |        |

- Instances with class labels are given
  - "Training data"
  - Supervised learning
- Task: predict the class label of a new instance
- How?
- Ref.: Alpaydin, Chapters 5,8,10

# 1 $\gamma$

- **Parametric:** uses Bayesian theory and probability estimation techniques to model the data
  - ► Bayes classifier
- Non-parametric: no modeling needed
  - ► Nearest neighbour
  - ► Linear discriminant analysis
  - ► Learning vector quantization
  - ► Support vector machine
- Non-metric: handles nominal data that have no natural notion of similarity
  - Decision tree
  - ▶ Random forest

#### Parametric approaches Bayes Theorem

#### Review - Probability Theory

- Independent events P(A, B) = P(A)P(B)
- Joint probability and conditional P(A, B) = P(A)|P(B|A)
- The Law of Total Probability  $(B_i \text{ mutually exclusive})$

$$P(A) = \sum_{i=1}^{N} P(A|B_i)P(B_i)$$

• Bayes' Theorem (named after Rev Thomas Bayes, later developed by Laplace)

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{P(A)}$$

• "Is to the theory of probability what Pythagoras's theorem is to geometry"

#### Bayes' Rule - Interpretation

• Another form

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_j P(A|B_j)P(B_j)}$$

- Suppose A is our data instance,  $\{B_i\}$  are the classes.
- $P(B_i)$ : priors
- $P(A|B_i)$ : conditional
- $P(B_i|A)$ : posterior.
- From conditional prob. and priors, we get to know posterior
- Or in plain English: posterior= $\frac{\text{likelihood} \times \text{prior}}{1}$

evidence

• i.e., classification done!

| Classification I                    | 7 / 27 | Classification I                    | 8 / 27 |  |
|-------------------------------------|--------|-------------------------------------|--------|--|
| Parametric approaches Bayes Theorem |        | Parametric approaches Bayes Theorem |        |  |
|                                     |        |                                     |        |  |

# Example 1: A Scary Test

- A patient is tested positive for a rare disease D.
- Panic?
- What is known:
  - ▶ Test is quite accurate:  $P(T^+|D) = 0.95$ ,  $P(T^+|!D) = 0.02$
  - ▶ Priors. P(D) = 0.001 (being ill), so P(!D) = 0.999 (being ok).
- Test positive, how *likely* is the patient ill?
- Let's try with Bayes Law:

$$\begin{split} P(D|T^+) &= \frac{P(T^+|D)P(D)}{P(T^+)} \\ P(T^+) &= P(T^+|D)P(D) + P(T^+|!D)P(!D) \end{split}$$

#### A Famous Example: OJ Simpson Case

- In the Simpson case, defendant attorney Alan Dershowitz repeatedly declared that fewer than 1 in 1,000 women who are abused by their mates go on to be killed by them.
- What's the chance that Simpson is guilty of murder?
- Denote:
  - $\blacktriangleright$  Sample space S married couples in which the husband beat his wife
  - Event H cases in S in which the husband has since murdered his wife; !H - wife in S not murdered by husband
  - $\blacktriangleright$  Event M all cases in S in which the wife has been murdered
- We have P(H) = 0.001, P(M|H) = 1, P(M|!H) = 0.0001 at most in US.
- $P(H|M) = \frac{P(M|H)P(H)}{P(M|H)P(H) + P(M|H)P(H)} = \frac{0.001}{0.001 + 0.0001 \times 0.999} = 0.91$

Classification I

#### Bayesian Decision Theory

• Foundation for statistical pattern recognition

Parametric approaches Bayesian Classifier

- Assume
  - A set of classes  $\{\omega_1, \omega_2, ..., \omega_c\}$
  - Prior prob. known:  $P(\omega_i)$
  - Conditionals known:  $p(x|\omega_i)$
  - ▶ Posterior prob. ?

$$P(\omega_i|x) = \frac{p(x|\omega_i)P(\omega_i)}{p(x)}$$

• Define the classification error:

$$R_i(x) = \sum_{j \neq i} P(\omega_j | x) = 1 - P(\omega_i | x)$$

• To minimize classification error, we should assign x to the class that maximize the posterior prob.

## Bayesian Classifier

- Define and use a "discriminant function"  $g_i(\mathbf{x})$
- Principle:

Assign  $\mathbf{x}$  to class  $\omega_i$ , if  $g_i(\mathbf{x}) > g_j(\mathbf{x})$  for all  $j \neq i$ .

Bayesian Classifier

- Usually we can have
  - $g_i(\mathbf{x}) = P(\omega_i | \mathbf{x})$ , or
  - $g_i(\mathbf{x}) = \ln p(\mathbf{x}|\omega_i) + \ln P(\omega_i).$
- Find decision region boundaries:

let  $g_i(\mathbf{x}) = g_j(\mathbf{x})$ 

• For  $p(\mathbf{x}|\omega_i)$  of Gaussian (normal) density:  $g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mu_i)^t \Sigma_i^{-1}(\mathbf{x} - \mu_i) - \frac{1}{2} \ln|\Sigma_i| + \ln P(\omega_i)$ 

 $\Sigma_i:$  covariance matrix of class  $\omega_i$ 



# A Simple Case

• Two classes:

Same prior, same covariance:  $\Sigma_i = \sigma I$ ,  $P(\omega_1) = P(\omega_2)$ .

• Discrimination function

$$g_i(\mathbf{x}) = \frac{1}{\sigma^2} \mu_i^t \mathbf{x} - \frac{1}{2\sigma^2} \mu_i^t \mu_i.$$

- Reduced to a linear machine.
- Classification boundary at





# Complex Decision Boundaries

- Decision boundary in quadrature form for arbitrary Gaussian distributions.
- Question: how do we get the Gaussian distributions?



from DHS, 2nd Ed.

17 / 27

| Parametric approaches Bayesian Classifier | Non-parametric approaches     |
|-------------------------------------------|-------------------------------|
| How Does It Work - actually               | There may be a different way? |
|                                           |                               |

- Collect data items and their class "labels"
- Apply maximum-likelihood estimation of the Gaussian distribution for each class
- Derive the discriminant functions out of the distribution functions
- Conduct classification by assigning <sup>a</sup> class labels according to the biggest discriminant function value

Classification I



- Can we bypass probability estimation?
- Can we work on the discriminant function directly?

Classification I

- Or, just work with exemplars?
- $\rightarrow\,$  Non-parametric methods

| Classification I<br>Non-parametric approaches k-NN: The Idea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19 / 27 | Classification I     21 / 27       Non-parametric approaches     k-NN Rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K-Nearest Neighbour $(k$ -NN) Estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | k-NN Classification Rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>We usually need to estimate the a posteriori probability</li> <li>Suppose we now place a cell of volume V around <b>x</b></li> <li>There are n labelled samples, of c classes</li> <li>The cell captures k samples, of which k<sub>i</sub> belong to class i</li> <li>Then the estimate for the joint probability is         p(<b>x</b>, ω<sub>i</sub>) = \frac{k_i/n}{V}. </li> <li>And a reasonable estimate for a posteriori probability is         P(ω<sub>i</sub> <b>x</b>) = \frac{p(<b>x</b>, ω<sub>i</sub>)}{\sum_{j=1}^{c} p(<b>x</b>, ω<sub>j</sub>)} = \frac{k_i}{k} </li> </ul> |         | <ul> <li>1-NN <ul> <li>Given a test point/pattern x, its nearest prototype is x'.</li> <li>Classify x by assigning it to the label associated with x'.</li> <li>Decision boundary piecewise-linear.</li> <li>Asymptotic error rate no worse than twice of the Bayesian classifier.</li> </ul> </li> <li>k-NN <ul> <li>Labelled prototype set D<sub>n</sub>.</li> <li>Given a test pattern x, find the k nearest samples in D<sub>n</sub>.</li> <li>Classify by assigning it to the label most frequently represented in the k-nearest neighbours (i.e., by voting)</li> <li>Smoother decision boundary compared with 1-NN</li> </ul> </li> <li>Drawbacks <ul> <li>Large time complexity in classification</li> <li>There may be ties between classes.</li> </ul> </li> </ul> |

22 / 27

23 / 27

# $k\text{-}\mathrm{NN}$ classifier: boost up the efficiency

#### k-NN Classifier Tie-Breaking

- Use partial distance
- Calculate the distances using only a subset of the full data dimensions
- Construct a search tree
- Use indexed tree structure to guide the search / distance calculation process so that only nearby prototypes are involved
- Prototype editing (condensing). Here's a simple approach:
  - ▶ Initialize D with the entire data set.
  - Iterate through D: if sample x's neighbours are NOT all of the same class as that of x, mark x.
  - ▶ Remove all samples that are NOT marked from D.

- Use odd k
- Weighted k-NN
  - Contribution by the nearest neighbours weighted by their distances from the input
  - E.g., using distance reciprocal as weights -
    - Generate scores for all classes:  $s(\mathbf{x}, c) = \sum_j \frac{1}{d(\mathbf{x}, \mathbf{n}_j) + \epsilon}$ , with  $class(\mathbf{n}_j) = c$

Assign  ${\bf x}$  to the class with the biggest score.

|       |           | Classification I  |                   | 24 / 27 |              | Classifi          | cation I          | 25 / 27 |
|-------|-----------|-------------------|-------------------|---------|--------------|-------------------|-------------------|---------|
|       | Non-parar | netric approaches | Improving $k$ -NN |         | Non-paran    | netric approaches | Improving $k$ -NN |         |
|       |           |                   |                   |         |              |                   |                   |         |
| Recap |           |                   |                   |         | What's Next? |                   |                   |         |

- $\bullet\,$  Revise probability theory  $\odot\,$
- Bayes' Law
- Prior, Likelihood, Posterior
- Bayes classifiers
- k-NN
- Alpaydin, Ch. 3, 4, 8
- $\bullet$  DHS, Ch. 2 & 4

- Extending unsupervised methods?
- Working on discriminant functions directly?
- Support vector machines
- Decision trees
- ...
- "Mixture of Experts"