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Overview

The Problem

Instances with class labels are given
I “Training data”
I Supervised learning

Task: predict the class label of a new instance

How?

Ref.: Alpaydin, Chapters 5,8,10
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Overview

Approaches

Parametric: uses Bayesian theory and probability
estimation techniques to model the data

I Bayes classifier

Non-parametric: no modeling needed
I Nearest neighbour
I Linear discriminant analysis
I Learning vector quantization
I Support vector machine

Non-metric: handles nominal data that have no natural
notion of similarity

I Decision tree
I Random forest
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Parametric approaches Bayes Theorem

Review - Probability Theory

Independent events P (A,B) = P (A)P (B)

Joint probability and conditional P (A,B) = P (A)|P (B|A)

The Law of Total Probability (Bi mutually exclusive)

P (A) =
N∑

i=1

P (A|Bi)P (Bi)

Bayes’ Theorem (named after Rev Thomas Bayes, later
developed by Laplace)

P (Bi|A) =
P (A|Bi)P (Bi)

P (A)

“Is to the theory of probability what Pythagoras’s theorem is
to geometry”
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Parametric approaches Bayes Theorem

Bayes’ Rule - Interpretation

Another form

P (Bi|A) =
P (A|Bi)P (Bi)∑
j P (A|Bj)P (Bj)

Suppose A is our data instance, {Bi} are the classes.

P (Bi): priors

P (A|Bi): conditional

P (Bi|A): posterior.

From conditional prob. and priors, we get to know posterior

Or in plain English: posterior=
likelihood× prior

evidence
i.e., classification done!
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Parametric approaches Bayes Theorem

Example 1: A Scary Test

A patient is tested positive for a rare disease D.

Panic?

What is known:
I Test is quite accurate: P (T+|D) = 0.95, P (T+|!D) = 0.02
I Priors. P (D) = 0.001 (being ill), so P (!D) = 0.999 (being

ok).

Test positive, how likely is the patient ill?

Let’s try with Bayes Law:

P (D|T+) =
P (T+|D)P (D)

P (T+)

P (T+) = P (T+|D)P (D) + P (T+|!D)P (!D)
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Parametric approaches Bayes Theorem

A Famous Example: OJ Simpson Case

In the Simpson case, defendant attorney Alan Dershowitz
repeatedly declared that fewer than 1 in 1,000 women who
are abused by their mates go on to be killed by them.

What’s the chance that Simpson is guilty of murder?

Denote:
I Sample space S - married couples in which the husband beat

his wife
I Event H - cases in S in which the husband has since

murdered his wife; !H - wife in S not murdered by husband
I Event M - all cases in S in which the wife has been murdered

We have P (H) = 0.001, P (M |H) = 1, P (M |!H) = 0.0001 at
most in US.

P (H|M) = P (M |H)P (H)
P (M |H)P (H)+P (M |!H)P (!H)

= 0.001
0.001+0.0001×0.999 = 0.91
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Parametric approaches Bayesian Classifier

Bayesian Decision Theory

Foundation for statistical pattern recognition

Assume
I A set of classes {ω1, ω2, ..., ωc}
I Prior prob. known: P (ωi)
I Conditionals known: p(x|ωi)
I Posterior prob. ?

P (ωi|x) =
p(x|ωi)P (ωi)

p(x)

Define the classification error:

Ri(x) =
∑

j 6=i

P (ωj |x) = 1− P (ωi|x)

To minimize classification error, we should assign x to the
class that maximize the posterior prob.
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Parametric approaches Bayesian Classifier

Bayesian Classifier

Define and use a “discriminant function” gi(x)

Principle:

Assign x to class ωi , if gi(x) > gj(x) for all j 6= i.

Usually we can have
I gi(x) = P (ωi|x) , or
I gi(x) = lnp(x|ωi) + lnP (ωi).

Find decision region boundaries:

let gi(x) = gj(x)

For p(x|ωi) of Gaussian (normal) density:

gi(x) = − 1
2 (x− µi)

tΣ−1i (x− µi)− 1
2 ln|Σi|+ lnP (ωi)

Σi: covariance matrix of class ωi
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Parametric approaches Bayesian Classifier

A Simple Case

Two classes:

Same prior, same covariance: Σi = σI, P (ω1) = P (ω2).

Discrimination function

gi(x) =
1

σ2
µt
ix−

1

2σ2
µt
iµi.

Reduced to a linear machine.

Classification boundary at

x =
µ1 + µ2

2
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Parametric approaches Bayesian Classifier

Complex Decision Boundaries

Decision boundary in
quadrature form for
arbitrary Gaussian
distributions.

Question: how do we get
the Gaussian distributions?

from DHS, 2nd Ed.
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Parametric approaches Bayesian Classifier

How Does It Work - actually

Collect data items and their class
“labels”

Apply maximum-likelihood
estimation of the Gaussian
distribution for each class

Derive the discriminant functions
out of the distribution functions

Conduct classification by assigning
class labels according to the
biggest discriminant function value
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Non-parametric approaches

There may be a different way?

Can we bypass probability estimation?

Can we work on the discriminant function directly?

Or, just work with exemplars?

→ Non-parametric methods
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Non-parametric approaches k-NN: The Idea

K-Nearest Neighbour (k-NN) Estimation

We usually need to estimate the a posteriori probability

Suppose we now place a cell of volume V around x

There are n labelled samples, of c classes

The cell captures k samples, of which ki belong to class i

Then the estimate for the joint probability is

p(x, ωi) =
ki/n

V
.

And a reasonable estimate for a posteriori probability is

P (ωi|x) =
p(x, ωi)∑c
j=1 p(x, ωj)

=
ki
k
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Non-parametric approaches k-NN Rules

k-NN Classification Rules

1-NN
I Given a test point/pattern x, its nearest prototype is x′.
I Classify x by assigning it to the label associated with x′.
I Decision boundary piecewise-linear.
I Asymptotic error rate no worse than twice of the Bayesian

classifier.

k-NN
I Labelled prototype set Dn.
I Given a test pattern x, find the k nearest samples in Dn.
I Classify by assigning it to the label most frequently

represented in the k-nearest neighbours (i.e., by voting)
I Smoother decision boundary compared with 1-NN

Drawbacks
I Large time complexity in classification
I There may be ties between classes.
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Non-parametric approaches Improving k-NN

k-NN classifier: boost up the efficiency

Use partial distance

Calculate the distances using only a subset of the full data
dimensions

Construct a search tree

Use indexed tree structure to guide the search / distance
calculation process so that only nearby prototypes are
involved

Prototype editing (condensing). Here’s a simple approach:
I Initialize D with the entire data set.
I Iterate through D: if sample x’s neighbours are NOT all of

the same class as that of x, mark x.
I Remove all samples that are NOT marked from D.
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Non-parametric approaches Improving k-NN

k-NN Classifier Tie-Breaking

Use odd k

Weighted k-NN
I Contribution by the nearest neighbours weighted by their

distances from the input
I E.g., using distance reciprocal as weights -

Generate scores for all classes: s(x, c) =
∑

j

1

d(x,nj) + ε
,

with class(nj) = c

Assign x to the class with the biggest score.
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Non-parametric approaches Improving k-NN

Recap

Revise probability theory ,
Bayes’ Law

Prior, Likelihood, Posterior

Bayes classifiers

k-NN

Alpaydin, Ch. 3, 4, 8

DHS, Ch. 2 & 4
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Non-parametric approaches Improving k-NN

What’s Next?

Extending unsupervised methods?

Working on discriminant functions directly?

Support vector machines

Decision trees

...

“Mixture of Experts”
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