
INFO411 Lecture - Classification II

Jeremiah Deng

InfoSci, University of Otago

August 22, 2017

Classification II August 22, 2017 1 / 38

Overview

1 Review
Parametric approaches
Non-parametric approaches

2 Neural Networks

3 Support Vector Machine

4 Kernel Tricks

5 Decision Trees

Classification II August 22, 2017 2 / 38

Review Parametric approaches

Bayesian Classifiers

Use a probabilistic discriminant function
gi(x)

Usually we can have
I gi(x) = P (ωi|x) , or
I gi(x) = lnp(x|ωi) + lnP (ωi).

For p(x|ωi) of Gaussian (normal) density:

gi(x) =
− 1

2 (x− µi)
T Σ−1

i (x− µi)− 1
2 ln|Σi|+ lnP (ωi)

Mixture of Gaussians: apply
maximum-likelihood estimation of the
Gaussian distribution for each class/each
“mode”

Conduct classification by assigning class
labels according to the biggest discriminant
function value

Classification II August 22, 2017 4 / 38

Review Non-parametric approaches

K-Nearest Neighbour (k-NN) Estimation

Non-parametric: no need to estimate probability density ,
We have shown that k-NN classifier approximates the Bayes
Classifier.

Suppose we now place a cell of volume V around x

There are n labelled samples, of c classes

The cell captures k samples, of which ki belong to class i

Then the estimate for the joint probability is

p(x, ωi) =
ki/n

V
.

And a reasonable estimate for a posteriori probability is

P (ωi|x) =
p(x|ωi)P (ωi)∑c

j=1 p(x, ωj)
=
ki
k

i.e., k-NN is a an approximation to the Bayes Classifier.

Classification II August 22, 2017 5 / 38

Neural Networks

Extending the clustering algorithms

K-means, SOM etc. can all be augmented with a supervisory layer
that tries to match to the class label of the training samples.

For instance:
I Linking prototypes with class labels;
I Adopting supervised learning; or
I Adding another layer and taking gradient descent on the weights.

Classification II August 22, 2017 7 / 38

Neural Networks

Learning Vector Quantization (LVQ)

Kohonen (1989)

Similar to the idea of competitive
learning and vector quantization

However, since prototypes are labelled,
we can make use of the supervisory
learning

Algorithm

1 Initialize the prototype set Dn = {m1,m2, · · · ,mn}.
2 Given an input pattern x, find the best matching prototype mc.
3 Update the winning prototype

I ∆mc = γ(t)(x−mc) if Class(x)==Class(mmc);
I ∆mc = −γ(t)(x−mc), otherwise.

4 Go back to Step 2 until convergence.

Classification II August 22, 2017 8 / 38

Neural Networks

Radial Basis Functions

Cluster data points around a few
prototypes of Gaussian distribution

pth = exp

[
−‖x

t −mh‖2
2s2h

]

Output is generated with a layer of
“perceptron”

yt =

H∑

h=1

whp
t
h + w0

Use linear regression on the membership
to clusters to predict the desired output
rti

∆wih = η
∑

t

(rti − yti)pth

Classification II August 22, 2017 9 / 38

Neural Networks

Multi-Layer Perceptron and Back Propagation

Hidden layer employing “sigmoid”
function to its weighted sum:

zh =
1

1 + exp[−(
∑d

j=1whjxj + wh0)]

Output yi =
∑H

h=1 vihzh + vi0

Least-squares rule to update the 2nd
layer weights: ∆vh = η

∑
t(r

t − yt)zth
Back-Propagation rule for hidden layer:

∆whj = −η δE

δwhj

= −η∑t

δE

δyt
δyt

δzth

δzth
δwhj

= η
∑

t(r
t − yt)vhzth(1− zth)xtj

Classification II August 22, 2017 10 / 38

Neural Networks

A Shallow View on Deep Learning

Convolutional neural networks (CNN) are MLP-extensions
inspired by biological vision.

Dated back to Fukushima (1980), LeCun & Bengio (1998?) ...

Multiple layers of nonlinear mechanisms: convolution,
subsampling, sparsity

Outcome: so far the best object recogniser

Classification II August 22, 2017 11 / 38

Neural Networks

You see monkeys?

CNNs remain largely unexplainable.

Nguyen et al. (2014), Szegedy et al. (2014), Goodfellow et al.
(2015)

Or ostrich?

Classification II August 22, 2017 12 / 38

Support Vector Machine

The Separation Hyperplane

Consider a two-class problem, with sample X = {x, r}, where r = 1
when x ∈ C1, and r = −1 if x ∈ C2.
We would like to find a hyperplane g(x) = wTx + w0 such that

g(x) ≥ +1, for r = +1

g(x) ≤ −1, for r = −1

Classification II August 22, 2017 15 / 38

Support Vector Machine

Focusing on the margins

Note there exists a margin on either side of
the hyperplane, of which we wish to maximize
for better generalization. The above two lines
are equivalent to rg(x) = r(wTx + w0) ≥ 1.
To maximize the margin, we also need to add
the constraint of minimizing ‖w‖. So our
optimisation goal is

min
1

2
‖w‖2 subject to r(wTx + w0) ≥ 1, ∀x

y1

y2

optimal hyperplane

Classification II August 22, 2017 16 / 38

Support Vector Machine

Solving SVM

Using Lagrange multipliers αt, the optimisation criterion becomes

L =
1

2
‖w‖2 −

N∑

t=1

αt[rt(w
Txt + w0)− 1],

where xt and rt denote the t-th data point and its class label
respectively.
By solving this quadratic optimization problem, it is found that most
αt are zero. Those xt with αt > 0 satisfy

rt(w
Txt + w0) = 1

lie on the margin. These are called ‘support vectors’. One can easily
worked out w0 = rt −wTxt using these support vectors.

Classification II August 22, 2017 17 / 38

Kernel Tricks

Challenge: Linear non-separability

Not all classification problems can be solved using linear
discriminant functions.

Solutions:
I Use multiple linear discriminant functions (divide-and-conquer)
I Conduct nonlinear transformation using kernel methods, projecting

data into higher dimensional kernel space with linear separability

Classification II August 22, 2017 19 / 38

Kernel Tricks

SVM as a kernel machine

First, use a nonlinear function to map the input data to a
high-dimensional space.

yk = Φ(xk)

Kernel function Φ(.) e.g. can be polynomials or Gaussians

Defines a linear discriminant function in the augmented y space,
hence the problem becomes more linearly separable.

Note because of the kernel trick Φ(xt)
TΦ(xs) = K(xt,xs), we

don’t need to conduct dot product in the high-dimension space.

Classification II August 22, 2017 20 / 38

Kernel Tricks

Kernel Trick: Example

Suppose we have 2-D data points and we project it to 3-D using Φ(x)

x =

[
x1
x2

]
, Φ(x) =



x21√

2x1x2
x22




We can easily verify that

〈Φ(xi),Φ(xj)〉 = 〈xi,xj〉2

i.e., dot product can be done in 2-D instead of 3-D.

Classification II August 22, 2017 21 / 38

Kernel Tricks

Popular kernel functions

Polynomials of degree q: K(xt,x) = (xTxt + 1)q

Radial-basis functions define a spherical kernel as in Parzen
windows with a radius s:

K(xt,x) = exp[−‖xt − x‖2
2s2

]

This can be extended to other definition of distance D between x
and xt (e.g., the geodesic distance used in Isomap):

K(xt,x) = exp[−‖D(xt,x)‖2
2s2

]

Sigmoidal functions: K(xt,x) = tanh(2xTxt + 1)

, Design your own?

Classification II August 22, 2017 22 / 38

Kernel Tricks

Complications

Often two classes are not perfectly linearly separable, and we have
a soft margin instead:

rt(w
Txt + w0) ≥ 1− ξt, ξt ≥ 0

and we penalise the ξt terms by modifying the optimisation
function, with C > 0 controlling the extent of penalty:

min[
1

2
‖w‖2 + C

N∑

t=1

ξt]

What about multi-class classification? Suppose k classes.
I one-vs-one: build k × (k − 1)/2 pair-wise classifiers; the class with

the highest vote wins;
I one-vs-rest: build k binary classifiers; the one with the highest score

wins. Faster, and almost as good.

Classification II August 22, 2017 23 / 38

Decision Trees

Non-metric data classification

How can we handle non-numeric data?

There are no distance measures, not even similarity definitions!

Classification II August 22, 2017 25 / 38

Decision Trees

Decision Trees

Similar to the idea of the “20-questions” game

Useful for nonmetric data – all questions can be asked in a
‘yes/no’ or ‘true/false’ or ‘which one’ (from a finite set of values)

The sequence of these questions (and answers) forms a decision
tree, starting from the first question (root node), until it reaches
the terminal or leaf nodes.

Classification of a particular pattern begins at the root node and
follows the appropriate link to a subsequent or descendent node.

Famous algorithms: CART, C4.5 etc.
I Can handle numeric data as well!

Classification II August 22, 2017 26 / 38

Decision Trees

A ‘fruits’ decision tree

Classification II August 22, 2017 27 / 38

Decision Trees

Tree Uses Nodes, and Leaves

Classification II August 22, 2017 28 / 38

Decision Trees

Where to make the cut: minimize impurity

Consider a node m

Suppose it contains Nm training samples

Of these, N i
m instances belong to Class Ci

Prob. for Class Ci is

pim =
N i

m

Nm

Measure the ‘impurity’ of node m using entropy:

Hm = −
∑

i

pimlog2p
i
m

For a 2-class problem
I Entropy: H = −plog2p− (1− p)log2(1− p)
I Or, using the Gini index: 2p(1− p)

Classification II August 22, 2017 29 / 38

Decision Trees

A bit of DIY

demo : f i nd in g where to make the 1 s t cut
data=np . array ([[9 . 0 , 5 8 . 0] ,

[1 5 , 5 1] ,
[2 5 , 4 2] ,
[1 1 , 3 5] ,
[1 5 , 2 5] ,
[2 4 , 2 6] ,
[1 9 , 1 2] ,
[4 7 , 2 5] ,
[5 7 , 1 2] ,
[3 9 , 5 8] ,
[4 5 , 3 9] ,
[4 9 , 5 0] ,
[5 0 , 5 8] ,
[5 7 , 4 9]])

c l a=np . array ([1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 2])

data=np . hstack ((data , c l a . reshape ((−1 ,1))))

Classification II August 22, 2017 30 / 38

Decision Trees

Classification II August 22, 2017 31 / 38

Decision Trees

Try Out the Cuts

dim=0
d=np . unique (data [: , dim])
cuts =[]
for i in range (len (d)−1):

cuts . append ((d [i]+d [i +1])/2) # cut btw two va lue s

def impurity (a) :
l a b e l s=a [: , −1]
p=(np .sum(l a b e l s ==1)+0.)/ len (a)
i f min(p,1−p)>1e−10:

impu=−p∗np . log2 (p)−(1−p)∗np . log2 (1−p)
else :

impu=0.0
return impu

print ’ Imp or ig . ’ , impurity (data)
for th in cuts :

print ’Cut@ ’ , th , ’ Imp : ’ ,
l e f t=data [: , dim]<=th
r i gh t=data [: , dim]> th
p1=np .sum(data [l e f t]==1)/(len (data)+0.)
print impurity (data [l e f t]) ∗ p1+impurity (data [r i g h t])∗(1−p1)

Classification II August 22, 2017 32 / 38

Decision Trees

Impurity from cuts

Original impurity: 0.940285958671
Outcome for Dimension #0

Cut@ 10 .0 Impu 0.892576847243
Cut@ 13 .0 Impu 0.839887505701
Cut@ 17 .0 Impu 0.714285714286
Cut@ 21 .5 Impu 0.637120324182
Cut@ 24 .5 Impu 0.545390858814
Cut@ 32 .0 Impu 0.431560284283
Cut@ 42 .0 Impu 0.730930138627
Cut@ 46 .0 Impu 0.867577550482
Cut@ 48 .0 Impu 0.760220964704
Cut@ 49 .5 Impu 0.876613035522
Cut@ 53 .5 Impu 0.953311905174

Outcome for Dimension #1

Cut@ 18 .5 Impu 0.839887505701
Cut@ 25 .5 Impu 0.714285714286
Cut@ 30 .5 Impu 0.637120324182
Cut@ 37 .0 Impu 0.545390858814
Cut@ 40 .5 Impu 0.816561554269
Cut@ 45 .5 Impu 0.730930138627
Cut@ 49 .5 Impu 0.867577550482
Cut@ 50 .5 Impu 0.940645449615
Cut@ 54 .5 Impu 0.876613035522

Classification II August 22, 2017 33 / 38

Decision Trees

Divide and Conquer

Internal decision nodes
I Univariate: Uses a single attribute, xi

Numeric xi : Binary split at wm that reduces impurity the most
Discrete xi : n-way split for n possible values

I Multivariate: Uses all attributes, x

Leaves
I Classification: Class labels, or proportions
I Regression: Numeric; r average, or local fit

Learning is greedy; find the best split recursively (Breiman et al,
1984; Quinlan, 1986, 1993)

When to stop: use cross-validation, or thresholding on impurity
reduction

Classification II August 22, 2017 34 / 38

Decision Trees

Rule Extraction from Trees

C4.5 rules (Quinlan 1993)

Classification II August 22, 2017 35 / 38

Decision Trees

Interpretation of trees

Every time a split of a node is made on a
variable results in reduction of the Gini
impurity.

Adding up the impurity reduction reveals the
importance of variables.

However, a single tree tends to be highly
sensitive noises in data /
In practice, random forests are preferred
their better generalisation ability.

Adding up the Gini decreases for each
individual variable over all trees in the forest
gives the importance measure.

Variable important can also be found
through permutation.

Classification II August 22, 2017 36 / 38

Decision Trees

TUBE: Using Decision-Tree for Histograms

Tree-based unsupervised bin estimator (Schmidberger et al., 2005)

Where to cut: maximize the likelihood based on the training data

L = nl log
nl
wlN

+ nr log
nr
wrN

10-fold cross validation used to decide number of cuts

Compare Equal-Width with TUBE (dotted line is true density):

Classification II August 22, 2017 37 / 38

Decision Trees

Recap

Other classification methods: MLP, LVQ, RBF ...
I Alpaydin Ch.11, “Multilayer Perceptrons”
I Alpaydin Ch.12 “Local Models”

SVM and kernel method (Alpaydin Ch.13)

Decision Trees (Ch. 9)

Hands-on: Lab 5 (after the break)

Classification II August 22, 2017 38 / 38

