Overview

Paviaw Parametric approaches		Classification II	August 22, 2017	1 / 38	Classif	cation II	August 22, 2017	2 / 38
Teview l'arametric approaches l'étation parametric approaches	Review Parametric approaches			Review	Non-parametric a	pproaches		

Bayesian Classifiers

- Use a *probabilistic* discriminant function $g_i(\mathbf{x})$
- Usually we can have

•
$$g_i(\mathbf{x}) = P(\omega_i | \mathbf{x})$$
, or

•
$$g_i(\mathbf{x}) = \ln p(\mathbf{x}|\omega_i) + \ln P(\omega_i)$$

- For $p(\mathbf{x}|\omega_i)$ of Gaussian (normal) density: $g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mu_i)^T \Sigma_i^{-1}(\mathbf{x} - \mu_i) - \frac{1}{2} \ln|\Sigma_i| + \ln P(\omega_i)$
- Mixture of Gaussians: apply maximum-likelihood estimation of the Gaussian distribution for each class/each "mode"
- Conduct classification by assigning class labels according to the biggest discriminant function value

K-Nearest Neighbour (k-NN) Estimation

- \bullet Non-parametric: no need to estimate probability density \odot
- $\bullet\,$ We have shown that $k\text{-}\mathrm{NN}$ classifier approximates the Bayes Classifier.
- Suppose we now place a cell of volume V around ${\bf x}$
- $\bullet\,$ There are n labelled samples, of c classes
- The cell captures k samples, of which k_i belong to class i
- Then the estimate for the joint probability is

$$p(\mathbf{x},\omega_i) = \frac{k_i/n}{V}.$$

 $\bullet\,$ And a reasonable estimate for $a\ posteriori$ probability is

$$P(\omega_i | \mathbf{x}) = \frac{p(\mathbf{x} | \omega_i) P(\omega_i)}{\sum_{j=1}^{c} p(\mathbf{x}, \omega_j)} = \frac{k_i}{k_i}$$

i.e., $k\mbox{-}NN$ is a an approximation to the Bayes Classifier.

Neural Networks

• K-means, SOM etc. can all be augmented with a supervisory layer

• Adding another layer and taking gradient descent on the weights.

that tries to match to the class label of the training samples.

Extending the clustering algorithms

▶ Linking prototypes with class labels:

► Adopting supervised learning; or

Learning Vector Quantization (LVQ)

- Kohonen (1989)
- Similar to the idea of competitive learning and vector quantization
- However, since prototypes are labelled, we can make use of the supervisory learning

Algorithm

• Initialize the prototype set $D^n = {\mathbf{m}_1, \mathbf{m}_2, \cdots, \mathbf{m}_n}.$

Neural Networks

- **2** Given an input pattern \mathbf{x} , find the best matching prototype \mathbf{m}_c .
- **③** Update the winning prototype
 - $\Delta \mathbf{m}_c = \gamma(t)(\mathbf{x} \mathbf{m}_c)$ if Class $(\mathbf{x}) ==$ Class $(\mathbf{m}m_c)$;
 - $\Delta \mathbf{m}_c = -\gamma(t)(\mathbf{x} \mathbf{m}_c)$, otherwise.
- Go back to Step 2 until convergence.

Classification II	August 22, 2017	7 / 38	Classification II	August 22, 2017	8 / 38
Neural Networks			Neural Networks		

Radial Basis Functions

• For instance:

- Cluster data points around a few prototypes of Gaussian distribution $p_h^t = \exp\left[-\frac{\|\mathbf{x}^t - \mathbf{m}_h\|^2}{2s_h^2}\right]$
- Output is generated with a layer of "perceptron"

$$y^t = \sum_{h=1}^H w_h p_h^t + w_0$$

• Use linear regression on the membership to clusters to predict the desired output r_i^t

$$\Delta w_{ih} = \eta \sum_{t} (r_i^t - y_i^t) p_h^t$$

Multi-Layer Perceptron and Back Propagation

• Hidden layer employing "sigmoid" function to its weighted sum:

$$z_h = \frac{1}{1 + \exp[-(\sum_{j=1}^d w_{hj} x_j + w_{h0})]}$$

- Output $y_i = \sum_{h=1}^{H} v_{ih} z_h + v_{i0}$
- Least-squares rule to update the 2nd layer weights: $\Delta v_h = \eta \sum_t (r^t y^t) z_h^t$
- Back-Propagation rule for hidden layer: $\Delta w_{hj} = -\eta \frac{\delta E}{\epsilon}$

$$\begin{aligned} j &= -\eta \frac{1}{\delta w_{hj}} \\ &= -\eta \sum_t \frac{\delta E}{\delta y^t} \frac{\delta y^t}{\delta z_h^t} \frac{\delta z_h^t}{\delta w_{hj}} \\ &= \eta \sum_t (r^t - y^t) v_h z_h^t (1 - z_h^t) x_j^t \end{aligned}$$

Classification II

A Shallow View on Deep Learning

- Convolutional neural networks (CNN) are MLP-extensions inspired by biological vision.
- \bullet Dated back to Fukushima (1980), LeCun & Bengio (1998?) \ldots
- Multiple layers of nonlinear mechanisms: convolution, subsampling, sparsity
- Outcome: so far the best object recogniser

You see monkeys?

57.7% confidence

- CNNs remain largely *unexplainable*.
- Nguyen et al. (2014), Szegedy et al. (2014), Goodfellow et al. (2015)

'gibbon'

99.3 % confidence

Neural Networks

Or ostrich?

"nematode"

8.2% confidence

Consider a two-class problem, with sample $X = \{\mathbf{x}, r\}$, where r = 1when $\mathbf{x} \in C_1$, and r = -1 if $\mathbf{x} \in C_2$. We would like to find a hyperplane $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$ such that

$$g(\mathbf{x}) \ge +1$$
, for $r = +1$
 $g(\mathbf{x}) \le -1$, for $r = -1$

Note there exists a margin on either side of the hyperplane, of which we wish to maximize for better generalization. The above two lines are equivalent to $rg(\mathbf{x}) = r(\mathbf{w}^T\mathbf{x} + w_0) \ge 1$. To maximize the margin, we also need to add the constraint of minimizing $\|\mathbf{w}\|$. So our optimisation goal is

$$\min \frac{1}{2} \|\mathbf{w}\|^2 \text{ subject to } r(\mathbf{w}^T \mathbf{x} + w_0) \ge 1, \forall \mathbf{x}$$

Challenge: Linear non-separability

Solving SVM

Using Lagrange multipliers α_t , the optimisation criterion becomes

$$L = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{t=1}^{N} \alpha_t [r_t(\mathbf{w}^T \mathbf{x}_t + w_0) - 1],$$

where \mathbf{x}_t and r_t denote the *t*-th data point and its class label respectively.

Support Vector Machine

By solving this quadratic optimization problem, it is found that most α_t are zero. Those \mathbf{x}_t with $\alpha_t > 0$ satisfy

$$r_t(\mathbf{w}^T \mathbf{x}_t + w_0) = 1$$

lie on the margin. These are called 'support vectors'. One can easily worked out $w_0 = r_t - \mathbf{w}^T \mathbf{x}_t$ using these support vectors.

- Not all classification problems can be solved using linear discriminant functions.
- Solutions:
 - ▶ Use multiple linear discriminant functions (divide-and-conquer)
 - Conduct nonlinear transformation using kernel methods, projecting data into higher dimensional kernel space with linear separability

Classification II Kernel Tricks	August 22, 2017	17 / 38	Classification II Kernel Tricks	August 22, 2017	19 / 38
SVM as a kernel machine			Kernel Trick: Example		

• First, use a nonlinear function to map the input data to a high-dimensional space.

$$y_k = \Phi(\mathbf{x}_k)$$

- Kernel function $\Phi(.)$ e.g. can be polynomials or Gaussians
- Defines a linear discriminant function in the augmented y space, hence the problem becomes more linearly separable.
- Note because of the kernel trick $\Phi(\mathbf{x}_t)^T \Phi(\mathbf{x}_s) = K(\mathbf{x}_t, \mathbf{x}_s)$, we don't need to conduct dot product in the high-dimension space.

Suppose we have 2-D data points and we project it to 3-D using $\Phi(x)$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \qquad \Phi(\mathbf{x}) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix}$$

We can easily verify that

$$\langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$$

i.e., dot product can be done in 2-D instead of 3-D.

Kernel Tricks

Popular kernel functions

- Polynomials of degree q: $K(\mathbf{x}_t, \mathbf{x}) = (\mathbf{x}^T \mathbf{x}_t + 1)^q$
- Radial-basis functions define a spherical kernel as in Parzen windows with a radius s:

$$K(\mathbf{x}_t, \mathbf{x}) = \exp\left[-\frac{\|\mathbf{x}_t - \mathbf{x}\|^2}{2s^2}\right]$$

....

This can be extended to other definition of distance D between \mathbf{x} and \mathbf{x}_t (e.g., the geodesic distance used in Isomap):

$$K(\mathbf{x}_t, \mathbf{x}) = \exp\left[-\frac{\|D(\mathbf{x}_t, \mathbf{x})\|^2}{2s^2}\right]$$

- Sigmoidal functions: $K(\mathbf{x}_t, \mathbf{x}) = \tanh(2\mathbf{x}^T\mathbf{x}_t + 1)$
- © Design your own?

Complications

• Often two classes are not perfectly linearly separable, and we have a soft margin instead:

$$r_t(\mathbf{w}^T \mathbf{x}_t + w_0) \ge 1 - \xi_t, \xi_t \ge 0$$

and we penalise the ξ_t terms by modifying the optimisation function, with C > 0 controlling the extent of penalty:

$$\min[\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{t=1}^N \xi_t]$$

- What about multi-class classification? Suppose k classes.
 - one-vs-one: build $k \times (k-1)/2$ pair-wise classifiers; the class with the highest vote wins;
 - one-vs-rest: build k binary classifiers; the one with the highest score wins. Faster, and almost as good.

	Classification II Decision Trees	August 22, 2017	22 / 38		Classification II Decision Trees	August 22, 2017	23 / 38
Non-metric data o	lassification			Decision Trees			

- How can we handle non-numeric data?
- There are no distance measures, not even similarity definitions!

• Similar to the idea of the "20-questions" game

- Useful for nonmetric data all questions can be asked in a 'yes/no' or 'true/false' or 'which one' (from a finite set of values)
- The sequence of these questions (and answers) forms a decision tree, starting from the first question (root node), until it reaches the terminal or leaf nodes.
- Classification of a particular pattern begins at the root node and follows the appropriate link to a subsequent or descendent node.
- Famous algorithms: CART, C4.5 etc.
 - ▶ Can handle numeric data as well!

Classification II

Classification II

August 22, 2017 26 / 38

Decision Trees Decision Trees

A 'fruits' decision tree

Tree Uses Nodes, and Leaves

- \bullet Consider a node m
- Suppose it contains N_m training samples
- Of these, N_m^i instances belong to Class C_i
- Prob. for Class C_i is

$$p_m^i = \frac{N_m^i}{N_m}$$

• Measure the 'impurity' of node *m* using entropy:

$$H_m = -\sum_i p_m^i \log_2 p_m^i$$

- For a 2-class problem
 - Entropy: $H = -p \log_2 p (1-p) \log_2 (1-p)$
 - Or, using the Gini index: 2p(1-p)

 $\frac{\#\#\#}{demo: finding where to make the 1st cut} data=np.array([[9.0, 58.0],$

 $\begin{bmatrix} 15 , 51 \end{bmatrix}, \\ \begin{bmatrix} 25 , 42 \end{bmatrix}, \\ \begin{bmatrix} 11 , 35 \end{bmatrix}, \\ \begin{bmatrix} 15 , 25 \end{bmatrix}, \\ \begin{bmatrix} 24 , 26 \end{bmatrix}, \\ \begin{bmatrix} 19 , 12 \end{bmatrix}, \\ \begin{bmatrix} 47 , 25 \end{bmatrix}, \\ \begin{bmatrix} 57 , 12 \end{bmatrix}, \\ \begin{bmatrix} 39 , 58 \end{bmatrix}, \\ \begin{bmatrix} 45 , 39 \end{bmatrix}, \\ \begin{bmatrix} 49 , 50 \end{bmatrix}, \\ \begin{bmatrix} 50 , 58 \end{bmatrix}, \\ \begin{bmatrix} 57 , 49 \end{bmatrix} \end{bmatrix})$

cla=np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2])

data=np.hstack((data, cla.reshape((-1,1))))

Decision Trees

Try Out the Cuts

	Classification II	August 22, 2017	31 / 38		Classification II	August 22, 2017	32 / 38
	Decision Trees			Decision	Trees		
Impurity from cut	q			Divide and Conquer			

Original impurity: 0.940285958671Outcome for Dimension #0

Cut@	10.0	Impu	0.892576847243
Cut@	13.0	Impu	0.839887505701
Cut@	17.0	Impu	0.714285714286
Cut@	21.5	Impu	0.637120324182
Cut@	24.5	Impu	0.545390858814
Cut@	32.0	Impu	0.431560284283
Cut@	42.0	Impu	0.730930138627
Cut@	46.0	Impu	0.867577550482
Cut@	48.0	Impu	0.760220964704
Cut@	49.5	Impu	0.876613035522
Cut@	53.5	Impu	0.953311905174

Outcome for Dimension #1

Cut@	18.5	Impu	0.839887505701
Cut@	25.5	Impu	0.714285714286
Cut@	30.5	Impu	0.637120324182
Cut@	37.0	Impu	0.545390858814
Cut@	40.5	Impu	0.816561554269
Cut@	45.5	Impu	0.730930138627
Cut@	49.5	Impu	0.867577550482
Cut@	50.5	Impu	0.940645449615
Cut@	54.5	Impu	0.876613035522

- Internal decision nodes
 - Univariate: Uses a single attribute, x_i
 - Numeric x_i : Binary split at w_m that reduces impurity the most
 - Discrete x_i : *n*-way split for n possible values
 - \blacktriangleright Multivariate: Uses all attributes, ${\bf x}$

• Leaves

- ▶ Classification: Class labels, or proportions
- ▶ Regression: Numeric; r average, or local fit
- Learning is greedy; find the best split recursively (Breiman et al, 1984; Quinlan, 1986, 1993)
- When to stop: use cross-validation, or thresholding on impurity reduction

Decision Trees Decision Trees Rule Extraction from Trees Interpretation of trees

 x_i : Age x_i : Years in job

 X_{4}

'Β'

0.3

 x_3 : Gender x_4 : Job type

C'

0.2

• Every time a split of a node is made on a variable results in reduction of the Gini impurity.

- Adding up the impurity reduction reveals the importance of variables.
- However, a single tree tends to be highly sensitive noises in data ©
- In practice, random forests are preferred their better generalisation ability.
- Adding up the Gini decreases for each individual variable over all trees in the forest gives the importance measure.
- Variable important can also be found through permutation.

Classifi	cation II	August 22, 2017	35 / 38		Classification II	August 22, 2017	36 / 38
Decision Trees					Decision Trees		
	C TT.			D			

TUBE: Using Decision-Tree for Histograms

 $x_{1} > 38.5$

'A'

0.4

R1: IF (age>38.5) AND (years-in-job>2.5) THEN y = 0.8

IF (age \leq 38.5) AND (job-type='A') THEN y = 0.4

IF (age \leq 38.5) AND (job-type='B') THEN y = 0.3

IF (age \leq 38.5) AND (job-type='C') THEN $\gamma = 0.2$

IF (age>38.5) AND (years-in-job \leq 2.5) THEN y = 0.6

Yes

No

0.6

 $x_2 > 2.5$

Yes

0.8

R2:

R3:

R4:

R5:

C4.5 rules (Quinlan 1993)

- Tree-based unsupervised bin estimator (Schmidberger et al., 2005)
- Where to cut: maximize the likelihood based on the training data

$$L = n_l \log \frac{n_l}{w_l N} + n_r \log \frac{n_r}{w_r N}$$

- 10-fold cross validation used to decide number of cuts
- Compare Equal-Width with TUBE (dotted line is true density):

- \bullet Other classification methods: MLP, LVQ, RBF \ldots
 - ▶ Alpaydin Ch.11, "Multilayer Perceptrons"
 - ▶ Alpaydin Ch.12 "Local Models"
- SVM and kernel method (Alpaydin Ch.13)
- Decision Trees (Ch. 9)
- Hands-on: Lab 5 (after the break)

Recap