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SN  Parametric approaches

Bayesian Classifiers

e Use a probabilistic discriminant function
9i(x)
e Usually we can have
» gi(x) = P(wi|x) , or
» gi(x) = lnp(x|w;) + InP(w;).
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e For p(x|w;) of Gaussian (normal) density:
gi (X) = 0
~ = )T = ) — S0l + InP(wy)

e Mixture of Gaussians: apply '

maximum-likelihood estimation of the

Gaussian distribution for each class/each
“mode”

e Conduct classification by assigning class
labels according to the biggest discriminant
function value
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Overview

© Review
e Parametric approaches
e Non-parametric approaches

© Neural Networks
© Support Vector Machine
@ Kernel Tricks

@ Decision Trees
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STV Non-parametric approaches

K-Nearest Neighbour (k-NN) Estimation

e Non-parametric: no need to estimate probability density ©

We have shown that k-NN classifier approximates the Bayes
Classifier.

@ Suppose we now place a cell of volume V' around x

There are n labelled samples, of ¢ classes

The cell captures k samples, of which k; belong to class @

Then the estimate for the joint probability is
v
e And a reasonable estimate for a posteriori probability is
Plarfx) p(flwz‘)P(wz‘) _ ki
> j=1P (3, wj) k

i.e., k-NN is a an approximation to the Bayes Classifier.

p(x, wi) =
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Neural Networks

Extending the clustering algorithms

o K-means, SOM etc. can all be augmented with a supervisory layer
that tries to match to the class label of the training samples.
e For instance:

» Linking prototypes with class labels;
» Adopting supervised learning; or
» Adding another layer and taking gradient descent on the weights.
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Neural Networks

Radial Basis Functions

e Cluster data points around a few
prototypes of Gaussian distribution

pt = exp | — ||Xt - mh”2
h 25,21

e Output is generated with a layer of
“perceptron”

H

y' = wapj, +wo
h=1

@ Use linear regression on the membership

to clusters to predict the desired output

t
r;

Awip =n Y (rf — yi)p},
t
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Neural Networks

Learning Vector Quantization (LVQ)

prototypes

e Kohonen (1989)

e Similar to the idea of competitive
learning and vector quantization
e However, since prototypes are labelled,
we can make use of the supervisory
learning
Algorithm

@ Initialize the prototype set D" = {mj, mg,--- ,m,}.

© Given an input pattern x, find the best matching prototype m..

@ Update the winning prototype
» Am, = v(t)(x — m,) if Class(x)==Class(mm.);
» Am, = —(t)(x — m,), otherwise.

@ Go back to Step 2 until convergence.
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Neural Networks
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Multi-Layer Perceptron and Back Propagation

Hidden layer employing “sigmoid”
function to its weighted sum:

1+ exp[—(D 51 whjzj + who)]
Output y; = Zthl VinZh + Vio

Least-squares rule to update the 2nd
layer weights: Av, =Y, (rt — y')z},

Back-Propagation rule for hidden layer:

Awpj =-n——

Syt 6z}, Swp;
=02 (r" = y")onzp, (1 — 2,)7)
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Neural Networks

A Shallow View on Deep Learning

Inpuc layer (51) 4 feature maps

sub-sampling layer |

l convolutien layer | convolution layer sub-sampling layer | fully cennecced MLPl

e Convolutional neural networks (CNN) are MLP-extensions
inspired by biological vision.

e Dated back to Fukushima (1980), LeCun & Bengio (19987) ...

e Multiple layers of nonlinear mechanisms: convolution,
subsampling, sparsity

@ Outcome: so far the best object recogniser
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Support Vector Machine
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The Separation Hyperplane

Consider a two-class problem, with sample X = {x,r}, where r =1
when x € (1, and r = —1 if x € Cs.
We would like to find a hyperplane g(x) = w’x + wp such that
g(x) > +1,for r = +1
g(x) < —1,for r=—1
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Neural Networks

You see monkeys?

e CNNs remain largely unexplainable.

e Nguyen et al. (2014), Szegedy et al. (2014), Goodfellow et al.
(2015)

+.007 x

“nematode”
8.2% confidence

“gibbon”
99.3 % confidence

- ET

“panda”
57.7% confidence
= G T

Or ostrich?
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Support Vector Machine

Focusing on the margins

Note there exists a margin on either side of
the hyperplane, of which we wish to maximize
for better generalization. The above two lines
are equivalent to rg(x) = r(wlx +wp) > 1.
To maximize the margin, we also need to add
the constraint of minimizing ||w||. So our
optimisation goal is

1
min§||w||2 subject to 7(w’x 4+ wp) > 1,Vx
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Support Vector Machine Kernel Tricks

Solving SVM Challenge: Linear non-separability

e Not all classification problems can be solved using linear

Using Lagrange multipliers a4, the optimisation criterion becomes R .
discriminant functions.

1 ) N . e Solutions:
L= §||W|| - Z ay[re(w” x¢ + wo) — 1], » Use multiple linear discriminant functions (divide-and-conquer)
t=1 » Conduct nonlinear transformation using kernel methods, projecting

where x; and r; denote the -th data point and its class label data into higher dimensional kernel space with linear separability

respectively. .
By solving this quadratic optimization problem, it is found that most
oy are zero. Those x; with oy > 0 satisfy 05|

Tt(WTXt +wy) =1

lie on the margin. These are called ‘support vectors’. One can easily
worked out wg = r; — w!x; using these support vectors. Al
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Kernel Tricks

SVM as a kernel machine Kernel Trick: Example

First li function t the i t data t . . . .
° 1 et gse N .non pneat THHEton o tap The input data 1o a Suppose we have 2-D data points and we project it to 3-D using ®(z)
high-dimensional space. 9

1
_ | —
Yk = P(xk) X = { 2 } ) O(x) = \/25901902

D)

e Kernel function ®(.) e.g. can be polynomials or Gaussians We can easily verify that

@ Defines a linear discriminant function in the augmented y space,

. s yop (®(xi), D(x5)) = (xi,%;)*
hence the problem becomes more linearly separable.
o Note because of the kernel trick ®(x;)7®(x,) = K(x¢,X), we i.e., dot product can be done in 2-D instead of 3-D.

don’t need to conduct dot product in the high-dimension space.
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Kernel Tricks

Popular kernel functions

o Polynomials of degree ¢: K (x;,x) = (x7x; + 1)9

e Radial-basis functions define a spherical kernel as in Parzen

windows with a radius s:

Ix¢ — x|
252

]

K(x¢,x) = exp[—

This can be extended to other definition of distance D between x

and x; (e.g., the geodesic distance used in Isomap):

||D(Xt,X)|I2]

K(x¢,x) = exp|— 52

o Sigmoidal functions: K(x;,x) = tanh(2x”x; + 1)

© Design your own?

Classification IT
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Decision Trees

Non-metric data classification

e How can we handle non-numeric data?

@ There are no distance measures, not even similarity definitions!
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Kernel Tricks

Complications

e Often two classes are not perfectly linearly separable, and we have
a soft margin instead:

re(wWlx; +wp) >1—&,6>0

and we penalise the & terms by modifying the optimisation
function, with C' > 0 controlling the extent of penalty:

N
1
mm[§||w||2 +C th]
t=1

e What about multi-class classification? Suppose k classes.
» one-vs-one: build k x (k — 1)/2 pair-wise classifiers; the class with
the highest vote wins;
» one-vs-rest: build k£ binary classifiers; the one with the highest score
wins. Faster, and almost as good.
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Decision Trees

Decision Trees

e Similar to the idea of the “20-questions” game

e Useful for nonmetric data — all questions can be asked in a
‘yves/no’ or ‘true/false’ or ‘which one’ (from a finite set of values)

e The sequence of these questions (and answers) forms a decision
tree, starting from the first question (root node), until it reaches
the terminal or leaf nodes.

e Classification of a particular pattern begins at the root node and
follows the appropriate link to a subsequent or descendent node.

e Famous algorithms: CART, C4.5 etc.

» Can handle numeric data as well!
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Decision Trees

A ‘fruits’ decision tree

green [yellow T red

round “~_thin medlum -« small

medlum " small

.
big | small sweet - |sour
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Decision Trees

Where to make the cut: minimize impurity
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Decision Trees

Tree Uses Nodes, and Leaves

A
o I oD
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Decision Trees

A bit of DIY

### demo: finding where to make the 1st cut

e Consider a node m data=np.array ([[ 9.0, 58.0],
) ) . [15, 51],
@ Suppose it contains N, training samples (25, 42],
o Of these, N}, instances belong to Class C; Hé gg} ’
@ Prob. for Class C; is [24, 26],
N [19, 12],
i [47, 25],
Np, 57, 12],
@ Measure the ‘impurity’ of node m using entropy: { ig ; gg% ;
Hy == pl,logoph, 49, 50],
- [50, 58],

e For a 2-class problem (57, 49]])

Classification II

> Entropy: H = —plogyp — (1 — p)log,(1 — p)
» Or, using the Gini index: 2p(1 — p)

August 22, 2017

cla=np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2])

data=np. hstack ((data,cla.reshape((—1,1))))
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Decision Trees
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Decision Trees
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Impurity from cuts

Original impurity: 0.940285958671

Outcome for Dimension #0 Outcome for Dimension #1
Cut@ 10.0 Impu 0.892576847243 Cut@ 18.5 Impu 0.839887505701
Cut@ 13.0 Impu 0.839887505701 Cut@ 25.5 Impu 0.714285714286
Cut@ 17.0 Impu 0.714285714286 Cut@ 30.5 Impu 0.637120324182
Cut@ 24.5 Impu 0.545390858814 Cut@ 40.5 Impu 0.816561554269
Cut@ 32.0 Impu 0.431560284283 Cut@ 45.5 Impu 0.730930138627
Cut@ 42.0 Impu 0.730930138627 Cut@ 49.5 Impu 0.867577550482
Cut@ 46.0 Impu 0.867577550482 Cut@ 50.5 Impu 0.940645449615
Cut@ 48.0 Impu 0.760220964704 Cut@ 54.5 Impu 0.876613035522
Cut@ 49.5 Impu 0.876613035522

Cut@ 53.5 Impu 0.953311905174
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Decision Trees

Try Out the Cuts

dim=0
d=np.unique (data[: ,dim])
cuts =[]
for i in range(len(d)—1):
cuts.append ((d[i]4+d[i+1])/2) # cut btw two values

def impurity(a):
labels=a[:, —1]
p=(np.sum(labels==1)+0.)/len(a)
if min(p,1—p)>1le—10:
impu=—px*np.log2 (p)—(1—p)*np.log2(1—p)
else:
impu=0.0
return impu

print 'Imp_orig.’, impurity(data)
for th in cuts:
print 'Cut@’ th, 'Imp: "’ ,
left=data[: ,dim]<=th
right=data [: ,dim]>th
pl=np.sum(data[left]==1)/(len(data)+0.)
print impurity (data[left])*pl+impurity (data[right])*(1—pl)

Classification IT
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Decision Trees

Divide and Conquer

@ Internal decision nodes
» Univariate: Uses a single attribute, x;

e Numeric x; : Binary split at w.,, that reduces impurity the most
e Discrete z; : n-way split for n possible values

» Multivariate: Uses all attributes, x

o Leaves
» Classification: Class labels, or proportions
» Regression: Numeric; r average, or local fit

e Learning is greedy; find the best split recursively (Breiman et al,
1984; Quinlan, 1986, 1993)

@ When to stop: use cross-validation, or thresholding on impurity
reduction
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Decision Trees

Rule Extraction from Trees

C4.5 rules (Quinlan 1993)

TUBE: Using Decision-Tree for Histograms

R1:
R2:
R3:
R4:
R5:

Decision Trees

Interpretation of trees

e Every time a split of a node is made on a

X, f;gc . variable results in reduction of the Gini
x, o Years in jo . i
x; : Gender lmpurlty-
: Job l}"[)l: Variable Importance

e Adding up the impurity reduction reveals the

LSTAT

importance of variables. w
DIs
TAX
AGE
TRATIO
CRIM

B

e However, a single tree tends to be highly
sensitive noises in data ®

08 06 0 0 0 o In Pra,ctice, random. for'ests are preferred o
their better generalisation ability. o
age>38.5) AND (years-in-job>2.5) THEN y =0.8 e Adding up the Gini decreases for each s

age>38.5) AND (years-in-job=<2.5) THEN y =0.6
AND (job-type=‘A’) THEN y =0.4
age=38.5) AND (job-type='B’) THEN y =0.3
age=38.5) AND (job-type='C’) THEN y =0.2

IF ( )
IF ( )
IF (age=<38.5)
IF ( )
IF ( )

Decision Trees

Classification IT

0 20 40 60
Relative Importance

individual variable over all trees in the forest
gives the importance measure.

e Variable important can also be found
through permutation.
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Decision Trees
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Recap

Tree-based unsupervised bin estimator (Schmidberger et al., 2005)

Where to cut: maximize the likelihood based on the training data

10-fold cross validation used to decide number of cuts

L =n;log

ny

w; N

0.25

0.2

0.15
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3 4 5 6 7 8 9 10
Attribute

Diensity

+ n, log

0.25

0.2

0.15

0.1

0.05

Ny

N Other classification methods: MLP, LVQ, RBF ...
wy

» Alpaydin Ch.11, “Multilayer Perceptrons”
» Alpaydin Ch.12 “Local Models”

Compare Equal-Width with TUBE (dotted line is true density):

L

1 2 3 4 5 6 7 8 9 10
Attribute
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SVM and kernel method (Alpaydin Ch.13)
Decision Trees (Ch. 9)
Hands-on: Lab 5 (after the break)

August 22, 2017

80 100

36 / 38

38 / 38



