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Lecture Outline

▶ Why is it important?
▶ Some basic evaluation metrics
▶ Shortcomings of the basic evaluation metrics
▶ Receiver Operating Characteristics (ROC) curve
▶ ROC Space and related concepts
▶ Constructing ROC
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Why Is It Important?

▶ Imagine we have 2 different classification models:
▶ e.g. Support Vector Machine vs. Decision Tree

▶ How do we know which one is better?
▶ Can we provide quantitative evidence beyond a subjective

interpretation?
▶ Error on training data is not a good indicator of

performance on future data
▶ It is important to evaluate classifier’s generalisation

performance in order to:
▶ Determine whether to employ the classifier or
▶ Optimise the classifier

05-Sep, 2017 Info 411, Machine Learning and Data Mining 3 / 39

Algorithm Preference

▶ Criteria (Application-dependent):
▶ Training time/space complexity
▶ Testing time/space complexity
▶ Scalability
▶ Easy programmability

05-Sep, 2017 Info 411, Machine Learning and Data Mining 4 / 39

Info 411: Machine Learning and Data Mining, Semester 2, 2017

Lecture 8: Performance Evaluation of Classifiers Lecture Slides 1



Methods for Performance Evaluation

▶ How to obtain a reliable estimate of performance?
▶ Performance of a model may depend on other factors

besides the learning algorithm:
▶ Class distribution
▶ Size of training and test sets
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Learning Curve

▶ Learning curve shows
how accuracy changes
with varying sample size

▶ Effect of small sample
size:

▶ Bias in the estimate
▶ Variance of estimate

05-Sep, 2017 Info 411, Machine Learning and Data Mining 6 / 39

Testing and Training Data Distribution

▶ Holdout:
▶ E.g. , reserve 2/3 for training and 1/3 for testing

▶ Random sub-sampling:
▶ Repeated holdout

▶ Cross Validation (CV):
▶ Partition data into k disjoint subsets
▶ k-fold: train on k-1 partitions, test on the remaining one
▶ Leave-one-out: k = n

05-Sep, 2017 Info 411, Machine Learning and Data Mining 7 / 39

Confusion Matrix (Contingencies Table)

Classifier Output

Yes No

Actual
Output

Yes

True 
Positives

(TP)

False 
Negative 

(FN)

No

False 
Positives

(FP)

True 
Negative
(TN)
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Performance Evaluation Metrics (continued)

▶ Error rate = (FN + FP)/N
▶ Recall = sensitivity = True

Positive Rate (TPR) =
TP/(TP + FN)

▶ Precision = TP/(TP + FP)
▶ Specificity = TN/(TN + FP)
▶ False Positive Rate (FPR) =

FP/(FP + TN) =
1 - Specificity

Classifier Output

Yes No

Actual
Output

Yes

True 
Positives

(TP)

False 
Negative 

(FN)

No

False 
Positives

(FP)

True 
Negative
(TN)
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Performance Evaluation Metrics (continued)

▶ Confusion Matrix Interpretation
▶ Accuracy (AC) = (TP+TN)

(TP+TN+FP+FN)

▶ F-measure = 2
(1/precision)+(1/recall)

▶ Are these good measures?
▶ Sensitive to class skew…

Classifier Output

Yes No

Actual
Output

Yes

True 
Positives

(TP)

False 
Negative 

(FN)

No

False 
Positives

(FP)

True 
Negative
(TN)
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K-Fold CV Paired t-Test

▶ Use K-fold CV to get K training/validation folds
▶ p1

i , p2
i : Errors of classifiers 1 and 2 on fold i

▶ pi = p1
i − p2

i : Paired difference on fold i
▶ t-test: Null hypothesis is whether pi has mean 0

H0 ∶ 𝜇 = 0 vs. H1 ∶ 𝜇 ≠ 0

m =
∑K

i=1 pi

K s2 =
∑k

i=1 (pi − m)2

K − 1
√K ⋅ m

s ∼ tK−1 Accept H0 if in (−t𝛼/2,K−1, t𝛼/2,K−1)
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Comparing More Than Two Classifiers

▶ Analysis of Variance (ANOVA)
▶ Errors of L algorithms on K folds:

Xij ∼ 𝜘 (𝜇j, 𝜎2) , j = 1, … ,L i = 1, … ,K

▶ H0 ∶ 𝜇1 = 𝜇2 = ⋯ = 𝜇L the variances (𝜇1…L) are the same
▶ H1 ∶ 𝜇r ≠ 𝜇s for at least one pair (r, s)

05-Sep, 2017 Info 411, Machine Learning and Data Mining 12 / 39

Info 411: Machine Learning and Data Mining, Semester 2, 2017

Lecture 8: Performance Evaluation of Classifiers Lecture Slides 3



Limitation of Accuracy

▶ Classes have often unequal frequency:
▶ Medical diagnosis: 95% healthy, 5% disease.
▶ e-Commerce: 99% do not buy, 1% buy.
▶ Security: 99.999% of citizens are not terrorists.

▶ Consider a 2-class problem:
▶ Number of Class 0 examples = 9990
▶ Number of Class 1 examples = 10

▶ If model predicts everything to be class 0, accuracy is
9990/10000 = 99.9%

▶ Accuracy is misleading!
▶ Minor classes may be more costly.
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Limitation of Other Scalar metrics

▶ Precision = TP/(TP + FP)
▶ Recall = TP/(TP + FN)
▶ F-measure = 2

(1/precision)+(1/recall)
▶ Precision is biased towards (Yes|Yes) & C(Yes|No)
▶ Recall is biased towards (Yes|Yes) & C(No|Yes)
▶ F-measure is biased towards all except C(No|No)
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Scalar Characteristics Are Not Good For
Evaluating Performance

▶ Scalar characteristics such as the Accuracy, F-measure,
Precision and Recall do not provide enough information

▶ E.g., they don’t tell you:
▶ How are errors distributed across the classes?
▶ How will each classifier perform in different testing

conditions?
▶ Two numbers – True Positive Rate (TPR) and False Positive

Rate (FPR) are much more informative than a single
number

▶ And these two scalar values can make a curve!
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Receiver Operating Characteristic (ROC) Curve1

▶ Developed in 1950s for signal
detection theory to analyse noisy
signals

▶ Plots TPR against FPR
▶ Performance of each classifier

represented as a point on the ROC
curve:

▶ changing the threshold of
algorithm, sample distribution or
cost matrix changes the location
of the point

1Parts from http://scikit-learn.org. Accessed 23th August, 2017.
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ROC Curves: Simplest Case

▶ Consider diagnostic test for a disease
▶ Test has 2 possible outcomes:

▶ ‘positive’ = suggesting presence of disease
▶ ‘negative’ = suggesting absence of disease

▶ An individual can test either positive or negative for the
disease
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Specific Example

Test Result

Pts with 

disease

Pts without 

the disease
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Threshold

Test Result

Call these patients “negative” Call these patients “positive”
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Classification Outcome

Test Result

Call these patients “negative”

without the disease

with the disease

True Positives

1
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Classification Outcome (continued)

Test Result

Call these patients “negative”

without the disease

with the disease

False 

Positives
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Classification Outcome (continued)
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Classification Outcome (continued)

Test Result

Call these patients “negative”

without the disease

with the disease

False 
negatives

1
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Moving the Threshold: To Right

Test Result

without the disease

with the disease

‘‘-’’ ‘‘+’’

24
TP: �, FP: �
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Moving the Threshold: To Left

Test Result

without the disease

with the disease

‘‘+’’

25
TP: �, FP: �

‘‘-’’
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ROC Curve
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ROC Curve Comparison
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ROC Curve Extremes
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(d) Worst Test

▶ In Fig. (c) the distributions don’t overlap at all whereas in
Fig. (d) the distributions overlap completely
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ROC Space
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Properties of the ROC Space

▶ Captures all information contained in more than one
confusion matrix

▶ Provides a visual tool for examining the trade-offs
between the ability of a classifier to correctly identify the
number of positive cases and negative cases that are
incorrectly classified
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How to Construct a ROC Curve

Instance P(+|A) True Class

1 0.95 +
2 0.93 +
3 0.87 -
4 0.85 +
5 0.85 -
6 0.95 -
7 0.76 -
8 0.53 +
9 0.43 -
10 0.25 +

1. Use classifier that produces
posterior probability for each
test instance P(+|A)

2. Sort the instances according
to P(+|A) in decreasing order

3. Apply threshold at each
unique value of P(+|A)

4. Count the number of TP, FP,
TN, & FN at each threshold

5. TPR = TP/(TP + FN)
6. FPR = FP/(FP + TN)
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How to Construct a ROC Curve (continued)
Class + - + - - - + - + +  

0.25 0.43 0.53 0.76 0.85 0.85 0.85 0.87 0.93 0.95 1.00 

TP 5 4 4 3 3 3 3 2 2 1 0 

FP 5 5 4 4 3 2 1 1 0 0 0 

TN 0 0 1 1 2 3 4 4 5 5 5 

FN 0 1 1 2 2 2 2 3 3 4 5 

TPR 1 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.2 0 

FPR 1 1 0.8 0.8 0.6 0.4 0.2 0.2 0 0 0 

 

Threshold 

>= 

ROC Curve:

32
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Area Under ROC Curve (AUC)

▶ Overall measure of test performance
▶ Comparisons between two tests based on differences

between (estimated) AUC
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AUC For ROC Curves
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Problems with AUC

▶ No clinically relevant meaning
▶ A lot of the area is coming from the range of large false

positive values, no one cares what’s going on in that
region:

▶ Need to examine restricted regions?
▶ The curves may cross:

▶ There might be a meaningful difference in performance
that is not picked up by AUC
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Using ROC for Model Comparison

▶ No model consistently
outperform the other:

▶ M1 is better for small
FPR

▶ M2 is better for large
FPR
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Dealing with Class Skew2

produced by a manufacturing line to increase or decrease.
In each of these examples the prevalence of a class may
change drastically without altering the fundamental char-
acteristic of the class, i.e., the target concept.

Precision and recall are common in information retrie-
val for evaluating retrieval (classification) performance
(Lewis, 1990, 1991). Precision-recall graphs are commonly
used where static document sets can sometimes be

assumed; however, they are also used in dynamic environ-
ments such as web page retrieval, where the number of
pages irrelevant to a query (N) is many orders of magni-
tude greater than P and probably increases steadily over
time as web pages are created.

To see the effect of class skew, consider the curves in
Fig. 5, which show two classifiers evaluated using ROC
curves and precision-recall curves. In Fig. 5a and b, the test
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Inst            Class Score

no. True Hyp

1 p Y 0.99999

2 p Y 0.99999

3 p Y 0.99993

4 p Y 0.99986

5 p Y 0.99964

6 p Y 0.99955

7 n Y 0.68139

8 n Y 0.50961

9 n N 0.48880

10 n N 0.44951

Fig. 4. Scores and classifications of 10 instances, and the resulting ROC curve.
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Fig. 5. ROC and precision-recall curves under class skew. (a) ROC curves, 1:1; (b) precision-recall curves, 1:1; (c) ROC curves, 1:10 and (d) precision-
recall curves, 1:10.

T. Fawcett / Pattern Recognition Letters 27 (2006) 861–874 865

2Sourced and reproduced from [Fawcett;2006, p. 865].
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Recap

▶ Basic evaluation metrics:
▶ Alpaydin Ch.19 “Design and Analysis of Machine Learning

Experiments”
▶ ROC Curves
▶ ROC space and AUC space
▶ Constructing ROC
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