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Introduction

» We have studied quite a few classifiers:
» kNN, Bayes, SVM, Decision Tree, LVQ, RBF, LDA, ...
» Questions remain:
» How to assess their performance and make a choice?
» There are many possible parameter settings too...
» From another perspective, data samples are usually limited
(and expensive to collect). How do we make good use of
the limited resource for both training and model
validation?

» The same issue applies to clustering and regression
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Regression

» Example applications:
» Prediction of time series (e.g. stock indicies, telco traffic,
power consumption, ...)
» Line / curve fitting of a function
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Regression (continued) From LogL to Error

» Assume data is r = f(z) + € where:
» € is zero mean Gaussian with constant variance o

» Function f{z) however is unknown

P Using p(r]z) ~ N(g(2]0),o2), we have

i frd el e —_— 2
» We have observations {r.t} over X = {z,}, t_. 1,---,N £@1%) =log ] 1 exp (_[rt g(fgtle)] )
» We can construct an estimator ¢(z|6), 6 being a parameter t=11/27o 20
set 1 &
_ - _ 2
» If we assume the error € ~ N(0,c2) = —Nogy2ro 202 ;[rt 9z|O)]
» The p.df p(r|z) ~ N(g(2]6),02) o _ ' S
b Then we can use maximum likelihood to learn é: » Hence, maximising £(8]X) is equivalent to minimising the
error:
N
N
= 1
L(6|X) log ,1;[1 p(@, 1) E@|X) = 3 Z[Tt — o(z,]0)]?
N N t=1
= log I T p(ri|z) + log I | p(=)
t=1 t=1
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Regression Models Linear Regression

P Assume g(z!|w;, wy) = wy b + w.
» Minimising E(6|X) leads to

t — t
» There are a number of ways to construct the estimator Zt: r= Nug +wy Zt; v
¢(x/6) and estimate 6
» From simple to more complex models: linear regression, and » t .
polynomial regression, kernel methods, ... Dot =wy Yol 4w Y ()
» Question: How do we know what level of complexity is the ' ‘ t ' . .
right one for our given data? P The above two equations can be expressed in a matrix

form: y = Aw, where

SIS A R

» And w can be worked out as w = A™ly.
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Polynomial Regression

» Or, we can employ polynomials for the estimator:

gl wy, -+ 5wy, wy, wy) = wi(@H + -+ + wy(2?)? + wya’ + wy
p Let
ANIEE S AWE
w=[ w, [[D=]| . , T = :’ )
u;k 12y @2 . @ N

then we have r = Dw, and w can be solved by getting the
pseudo-inverse of D, i.e.,

w=D™D)"'D™r
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Bias and Variance

» Given a sample of X and r, we construct the estimate g(.).
The estimated squared error can be split into two parts:

El(r—g@)|z] = El(r— Elrfa])’|z] + (Elrlz] - g(2))®

noise squared error

» Ignore the noise, and examine the average error across all
samples:

Ex[(Elr|z] — g(2))*|z] = (Elr|z] — Ex[g(@®)])*  (bias)
+  Ex[(g(x) — Ex[g()])*] (variance)

» Challenge: both need to be kept small -
» Bias: how good ¢(z) is on average regardless of samples
» Variance: how much fluctuation ¢(z) fluctuates with each
sample, around the expected value E[g(z)]
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Estimating Bias and Variance

Given M samples X, = {z, 7}, i=1,..., M, each used to fit g,(x),

Bias’(9) = M3 — e
t

Var(g) = > 2 , 2 ;[gi(fft) — g(aM)]?
NM
T 4

with )
9(2) = J‘_/[Zi; e
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Bias/Variance Dilemma

» [Geman et al.;1992] “A neural network that fits closely the
provided training examples has a low bias but a high
variance. If we reduce the network variance this will lead
to a decrease in the level of fitting the data.”

P As we increase complexity,

» bias decreases (a better fit to data) and
» variance increases (fit varies more with data)

» If variance is kept low, we may not be able to make a good

fit to the data (bias increases).

» underfitting versus overfitting

» The optimal model has the best trade-off between bias
and variance
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An Example: Polynomial Regression' Bias-Variance versus Order?

(a) Function and data (b) Order 1 4r-
5
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"Sourced and reproduced from [Alpaydin;2010, p. 78]. 2Sourced and reproduced from [Alpaydin;2010, p. 79].
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Look for Best Trade-Off® Model Selection: Approaches

(a) Data and fitted polynomials

5

» Cross-validation: Measure generalisation accuracy by
testing on data unused during training

» Regularisation: Penalise complex models E' = Err+ AC,
where Err stands for error on data, and C'is model

- ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ complexity
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5 . . . .
» Bayesian Information Criterion BIC = =2In£ + kNN
(b) Error vs. polynomial order » £: likelihood of the model, k& model's number of
R Training parameters, N: data size.
250 N — — - Validation

» AkaikeOs information criterion AIC = 2k — 2In(£)
» Arguably better than BIC

» Besides BIC & AIC, there are also Minimum Description
Length (MDL) and Structural Risk Minimisation (SRM)

3Sourced and reproduced from [Alpaydin;2010, p. 81].
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Validation Approaches

| P N

X — X —

» How do we validate our models?
» E.g, fitting a “curve”
» Typical approaches:

» Test set
» Leave-one-out
» k-fold cross validation

» Each has its own pros and cons
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Test set

» Randomly choose a
portion (e.g. 30%) of the
data to be in a test set

» Theremainderis a
training set

» Perform the regression
on the training set

» Estimate your future
performance with the

test set

12-Sep, 2017

X —

Mean squared error MSE=2.4
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Leave-One-Out Cross Validation (LOOCV)

» Fork=1to Ndo .

1. Let (@, y;,) be the k-th
record

2. Temporarily remove _| °
(@, yi,) from the *
dataset

3. Train on the
remaining N — 1 data
points Y1 o .

4. Test on (=, y) and
note the error

° o
» Report the mean error
when all points are done X
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k-fold Cross Validation

1. Randomly break the
dataset into k partitions
(e.g. k=3, partitions
coloured)

2. For the red partition:
Train on all the points
not in the red partition.
Find the test-set sum of

errors on the red points

3. Repeat the above
process on the blue and

the green partitions

4. Then report the mean
error
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X —

Linear Regression MSEsrorp = 2.05
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More 3-fold CV Results Pros and Cons
* | Methods || Cons | Pros
Test set Variance, unreliable es- | Cheap
timate of future perf.
LOOCV Expensive; has some | Doesn't waste data.

weird behaviour.
10-fold CV || Waste 10% of the data; | Only wastes 10%. Good
10 times more expen- | statistical characteristics.

sive than test set.
3-fold CV || Wastier than 10-fold. Slightly better than test-

X — set.
Quadratic Regression MSEgporp = 1.11 Join-the-dots MSEsponp = 2.93
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Clustering Revisited X-means: Example*

» How to find the right kin k-means?
» G-means [Hamerly and Elkan;2003]
» X-means [Pelleg and Moore;2000]
» Progressively growing k
» Assessing BIC of clusters; stop at certain complexity level.
= -5 :
> B[C(]V[]) - 10g H'L p(€U1| M]) 2 log N Figure 3: The first step of parallel local  Figure 4: The result after all parallel 2-
k;: number of parameters in M; 2means. The lin

centroid shows where it moves to.

IC(k = 1)=1935
BIC(k = 2)=1784

Figlre 5: The surviving centroids after

ng out of each  means have terminated. all the local model scoring tests

4Sourced and reproduced from [Pelleg and Moore;2000, p. 730]
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G-means vs X-means> Recap

According to Hamerly & Elkan, BIC causes X-means to overfit

the data.
. ) » Bias-Variance dilemma
. S
o " . & 1 5 ++++ i ] » Model Se.leculon. principles and methods
o 1 + ] » Cross validation

p» References:

» A. Moore, Cross validation,
T 1° | http://www.autonlab.org/tutorials/overfit.html

+
o + 2 ¥ » [Alpaydin;2010] Chapter 4 & 19
+ . .
i+ + 1 e 4 ] » Next: Combining Multiple Learners
+
o 2 s 6 g 10 2 % 2 4 G s 0 12
G-means X-means
5Sourced and reproduced from [Hamerly and Elkan;2003, p. 6].
12-Sep, 2017 Info 411, Machine Learning and Data Mining 25/27 12-Sep, 2017 Info 411, Machine Learning and Data Mining 26/27

References

[ E. Alpaydin
Introduction to Machine Learning, 2" Edition
The MIT Press: Cambridge, Massachusetts, 2010

[ S.Geman, E. Bienenstock & R. Doursat
“Neural Networks and the Bias/Variance Dilemma”
Neural Computation, 4: 1-58, 1992

[ G.Hamerly & C. Elkan
“Learning the kin k-means”
Neural Information Processing Systems (NIPS), 2003

[@ D.Pelleg & A. W. Moore
“X-means: Extending K-means with Efficient Estimation of
the Number of Clusters”
International Conference on Machine Learning (ICML),
727-734, 2000

12-Sep, 2017 Info 411, Machine Learning and Data Mining 27127

Lecture 9: Regression and Model Selection Lecture Slides




