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Lecture Outline

▶ Introduction
▶ Regression
▶ Bias-Variance Dilemma
▶ Model Selection
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Introduction

▶ We have studied quite a few classifiers:
▶ k-NN, Bayes, SVM, Decision Tree, LVQ, RBF, LDA, …

▶ Questions remain:
▶ How to assess their performance and make a choice?
▶ There are many possible parameter settings too…
▶ From another perspective, data samples are usually limited

(and expensive to collect). How do we make good use of
the limited resource for both training and model
validation?

▶ The same issue applies to clustering and regression
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Regression

▶ Example applications:
▶ Prediction of time series (e.g. stock indicies, telco traffic,

power consumption, …)
▶ Line / curve fitting of a function
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Regression (continued)

▶ Assume data is r = f(x) + 𝜖 where:
▶ 𝜖 is zero mean Gaussian with constant variance 𝜍

▶ Function f(x) however is unknown
▶ We have observations {rt} over X = {xt}, t = 1,⋯ ,N
▶ We can construct an estimator g(x|𝜃), 𝜃 being a parameter

set
▶ If we assume the error 𝜖 ∼ 𝒩(0, 𝜎2)
▶ The p.d.f p(r|x) ∼ 𝒩(g(x|𝜃), 𝜎2)
▶ Then we can use maximum likelihood to learn 𝜃:

ℒ(𝜃|X) = log
N
∏
t=1

p(xt, rt)

= log
N
∏
t=1

p(rt|xt) + log
N
∏
t=1

p(xt)
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From LogL to Error

▶ Using p(r|x) ∼ 𝒩(g(x|𝜃), 𝜎2), we have

ℒ(𝜃|X) = log
N
∏
t=1

1
√2𝜋𝜎

exp (−[rt − g(xt|𝜃)]2
2𝜎2 )

= −Nlog√2𝜋𝜎 − 1
2𝜎2

N
∑
t=1

[rt − g(xt|𝜃)]2

▶ Hence, maximising ℒ(𝜃|X) is equivalent to minimising the
error:

E(𝜃|X) = 1
2

N
∑
t=1

[rt − g(xt|𝜃)]2
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Regression Models

▶ There are a number of ways to construct the estimator
g(x|𝜃) and estimate 𝜃

▶ From simple to more complex models: linear regression,
polynomial regression, kernel methods, …

▶ Question: How do we know what level of complexity is the
right one for our given data?
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Linear Regression

▶ Assume g(xt|w1,w0) = w1xt + w0.
▶ Minimising E(𝜃|X) leads to

∑
t

rt = Nw0 + w1 ∑
t

xt

and
∑

t
rtxt = w0 ∑

t
xt + w1 ∑

t
(xt)2

▶ The above two equations can be expressed in a matrix
form: y = Aw, where

A = [ N ∑t xt

∑t xt ∑t(xt)2 ] ,w = [ w0
w1

] ,y = [ ∑t rt

∑t rtxt ] .

▶ And w can be worked out as w = A−1y.
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Polynomial Regression
▶ Or, we can employ polynomials for the estimator:

g(xt|wk,⋯ ,w2,w1,w0) = wk(xt)k +⋯+ w2(xt)2 + w1xt + w0

▶ Let

w =
⎛
⎜
⎜
⎜
⎝

w0,
w1,
w2,
⋮
wk

⎞
⎟
⎟
⎟
⎠

,D =
⎛
⎜
⎜
⎝

1 x1 (x1)2 ⋯ (x1)k
1 x2 (x2)2 ⋯ (x2)k
⋮ ⋮
1 xN (xN)2 ⋯ (xN)k

⎞
⎟
⎟
⎠

, r =
⎛
⎜
⎜
⎝

r1,
r2,
⋮
rN

⎞
⎟
⎟
⎠

,

then we have r = Dw, and w can be solved by getting the
pseudo-inverse of D, i.e.,

w = (DTD)−1DTr
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Bias and Variance

▶ Given a sample of X and r, we construct the estimate g(.).
The estimated squared error can be split into two parts:

E[(r − g(x))2|x] = E[(r − E[r|x])2|x] + (E[r|x] − g(x))2
noise squared error

▶ Ignore the noise, and examine the average error across all
samples:

EX[(E[r|x] − g(x))2|x] = (E[r|x] − EX[g(x)])2 (bias)
+ EX[(g(x) − EX[g(x)])2] (variance)

▶ Challenge: both need to be kept small –
▶ Bias: how good g(x) is on average regardless of samples
▶ Variance: how much fluctuation g(x) fluctuates with each

sample, around the expected value E[g(x)]
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Estimating Bias and Variance

Given M samples Xi = {xt
i, rt

i}, i = 1, … ,M, each used to fit gi(x),

Bias2(g) = 1
N ∑

t
[ ̄g(xt) − f(xt)]2

Var(g) = 1
NM ∑

t
∑

i
[gi(xt) − ̄g(xt)]2

with
̄g(x) = 1

M ∑
i

gi(x)
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Bias/Variance Dilemma

▶ [Geman et al.;1992] “A neural network that fits closely the
provided training examples has a low bias but a high
variance. If we reduce the network variance this will lead
to a decrease in the level of fitting the data.”

▶ As we increase complexity,
▶ bias decreases (a better fit to data) and
▶ variance increases (fit varies more with data)

▶ If variance is kept low, we may not be able to make a good
fit to the data (bias increases).

▶ underfitting versus overfitting
▶ The optimal model has the best trade-off between bias

and variance

12-Sep, 2017 Info 411, Machine Learning and Data Mining 12 / 27

Info 411: Machine Learning and Data Mining, Semester 2, 2017

Lecture 9: Regression and Model Selection Lecture Slides 3



An Example: Polynomial Regression1

1Sourced and reproduced from [Alpaydin;2010, p. 78].
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Bias-Variance versus Order2

2Sourced and reproduced from [Alpaydin;2010, p. 79].
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Look for Best Trade-Off3

3Sourced and reproduced from [Alpaydin;2010, p. 81].
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Model Selection: Approaches

▶ Cross-validation: Measure generalisation accuracy by
testing on data unused during training

▶ Regularisation: Penalise complex models E′ = Err + 𝜆C,
where Err stands for error on data, and C is model
complexity

▶ Bayesian Information Criterion BIC = −2lnℒ + klnN
▶ ℒ: likelihood of the model, k: model’s number of

parameters, N: data size.
▶ AkaikeÕs information criterion AIC = 2k − 2ln(ℒ)

▶ Arguably better than BIC
▶ Besides BIC & AIC, there are also Minimum Description

Length (MDL) and Structural Risk Minimisation (SRM)
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Validation Approaches

x

y

x

y

x

y

▶ How do we validate our models?
▶ E.g., fitting a “curve”

▶ Typical approaches:
▶ Test set
▶ Leave-one-out
▶ k-fold cross validation

▶ Each has its own pros and cons
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Test set

▶ Randomly choose a
portion (e.g. 30%) of the
data to be in a test set

▶ The remainder is a
training set

▶ Perform the regression
on the training set

▶ Estimate your future
performance with the
test set

x

y

Mean squared error MSE=2.4
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Leave-One-Out Cross Validation (LOOCV)

▶ For k = 1 to N do
1. Let (xk, yk) be the k-th

record
2. Temporarily remove

(xk, yk) from the
dataset

3. Train on the
remaining N − 1 data
points

4. Test on (xk, yk) and
note the error

▶ Report the mean error
when all points are done

x

y
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k-fold Cross Validation

1. Randomly break the
dataset into k partitions
(e.g. k=3, partitions
coloured)

2. For the red partition:
Train on all the points
not in the red partition.
Find the test-set sum of
errors on the red points

3. Repeat the above
process on the blue and
the green partitions

4. Then report the mean
error

Validation

x

y

Linear Regression MSE3FOLD = 2.05
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More 3-fold CV Results

Validation

x

y

Quadratic Regression MSE3FOLD = 1.11

Validation

x

y

Join-the-dots MSE3FOLD = 2.93
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Pros and Cons

Methods Cons Pros

Test set Variance, unreliable es-
timate of future perf.

Cheap

LOOCV Expensive; has some
weird behaviour.

Doesn’t waste data.

10-fold CV Waste 10% of the data;
10 times more expen-
sive than test set.

Only wastes 10%. Good
statistical characteristics.

3-fold CV Wastier than 10-fold. Slightly better than test-
set.
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Clustering Revisited

▶ How to find the right k in k-means?
▶ G-means [Hamerly and Elkan;2003]
▶ X-means [Pelleg and Moore;2000]

▶ Progressively growing k
▶ Assessing BIC of clusters; stop at certain complexity level.
▶ BIC(Mj) = log∏i p(xi|Mj) −

kj

2
log N

kj: number of parameters in Mj
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X-means: Example4

4Sourced and reproduced from [Pelleg and Moore;2000, p. 730].
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G-means vs X-means5

According to Hamerly & Elkan, BIC causes X-means to overfit
the data.
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G-means X-means

5Sourced and reproduced from [Hamerly and Elkan;2003, p. 6].
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Recap

▶ Bias-Variance dilemma
▶ Model selection: principles and methods
▶ Cross validation
▶ References:

▶ A. Moore, Cross validation,
http://www.autonlab.org/tutorials/overfit.html

▶ [Alpaydin;2010] Chapter 4 & 19
▶ Next: Combining Multiple Learners
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