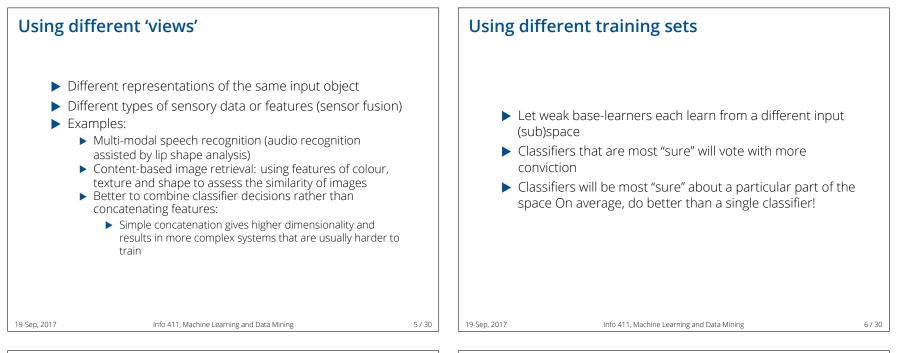
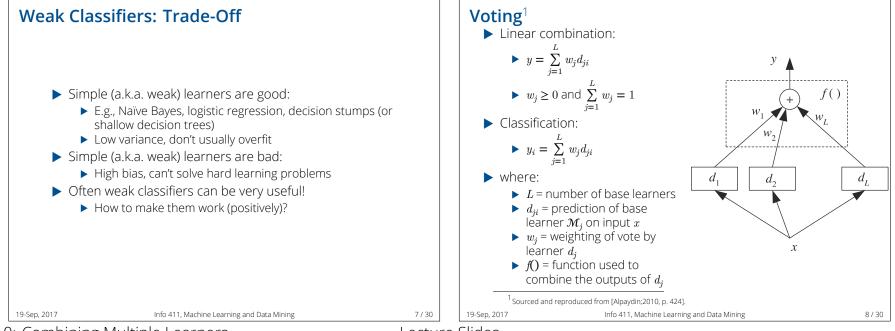


 Different kernels, c values in Support Vector Machine (SVM)

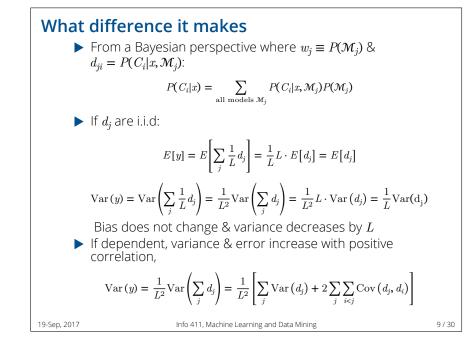
) ...

19-Sep, 2017


Lecture 10: Combining Multiple Learners


Info 411, Machine Learning and Data Mining

19-Sep, 2017


3/30

4/30

Lecture 10: Combining Multiple Learners

Fixed Combination Rules³ (continued)

Table: Example of combination rules on three learners and three classes.

		$\parallel C_1$	C_2	C_3
	d_1	0.2	0.5	0.3
	d_2	0.0	0.6	0.4
	d_3	0.4	0.4	0.2
	Sum	0.2	0.5	0.3
	Median	0.2	0.5	0.4
	Minimum	0.0	0.4	0.2
	Maximum	0.4	0.6	0.4
	Product	0.0	0.12	0.024
30				
Sourced and adap p, 2017	ted from [Alpaydin;2010, Info 411, Mach		ng and Data	Mining

Fixed Combination Rules²

	Rule	Fusion function <i>f</i> ()	
	Sum	$y_i = \frac{1}{L} \sum_{j=1}^{L} d_{ji}$	
	Weighted sum	$y_i = \sum_j w_j d_{ji}, w_j \ge 0, \sum_j w_j = 1$	
	Median	$y_i = \text{median}_j d_{ji}$	
	Minimum	$y_i = \min_j d_{ji}$	
	Maximum	$y_i = \max_j d_{ji}$	
	Product	$y_i = \prod_j d_{ji}$	
² Sou	rced and adapted from [Alpaydin;	2010, p. 425].	
9-Sep, 2017	Info 411	, Machine Learning and Data Mining	10/30

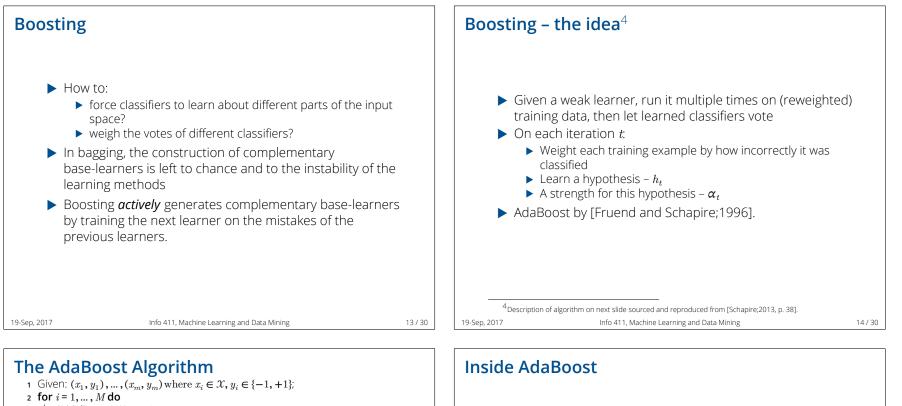
alalas Chanaitti an anna bha aite an sha

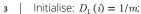
▶ Use *bootstrapping* to generate *L* training sets and train one base-learner with each [Brieman;1996] • Given a training set \mathcal{X} of size *N*, draw *N* instances randomly from \mathcal{X} with replacement into \mathcal{X}_{i} . Use voting (average or median with regression) in testing **Unstable** algorithms profit from bagging \Rightarrow reduced variance: Decision Trees Multi-Layer Perceptron (MLP) Condensed k-NN

Lecture 10: Combining Multiple Learners

19-Sep

19-Sep, 2017


11/30


Bagging

Info 411, Machine Learning and Data Mining

3

12/30

- Train weak learner using distribution D_{t} ; 6
- Get weak hypothesis $h_t : \mathcal{X} \to \{-1, +1\}$ from $\mathcal{H} = \{h(x)\}$; 7
- 8 Aim: select h_t with low weighted error; m

9
$$\varepsilon_t = \sum D_t(i) [h_t(x_i) \neq y_i];$$

10 Choose
$$\alpha_{i} = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_{i}}{\varepsilon_{i}} \right)$$

$$\varepsilon_{t} = \frac{1}{2} \prod_{i=1}^{n} \varepsilon_{t}$$

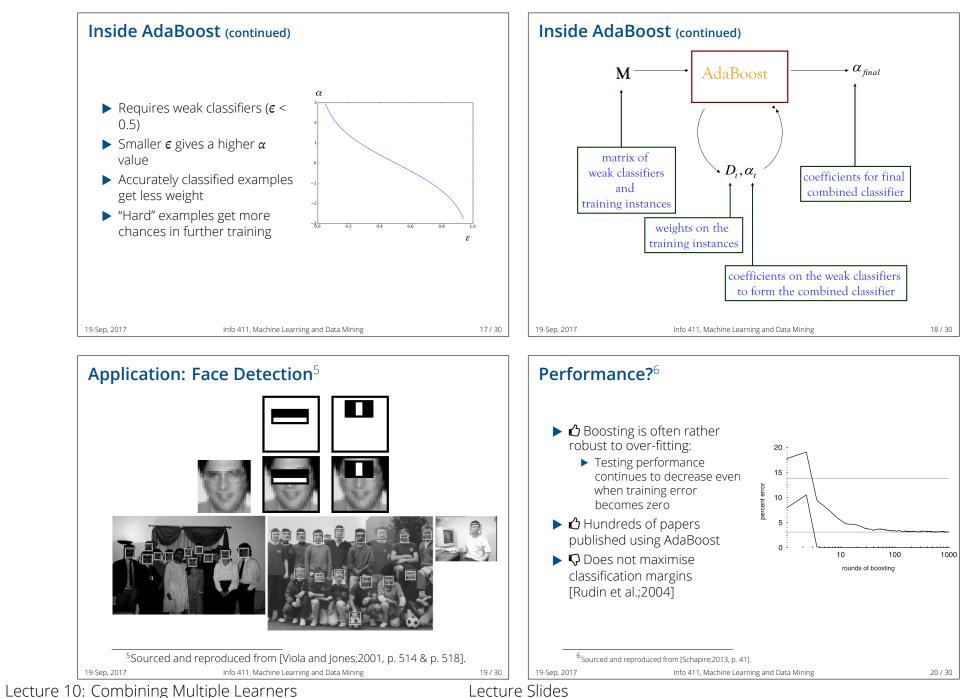
11 For
$$i = 1, ..., m$$
 do
12 Update $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t};$
13 where Z_t is a normalization factor s.t. $\sum_{i=1}^m D_{t+1}(i) = 1;$
14 end

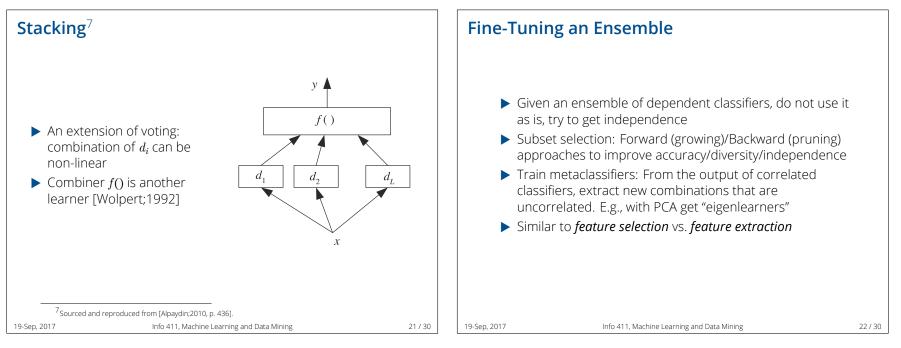
15 end
16 Output the final hypothesis;
17
$$H(x) = \operatorname{sgn}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right);$$

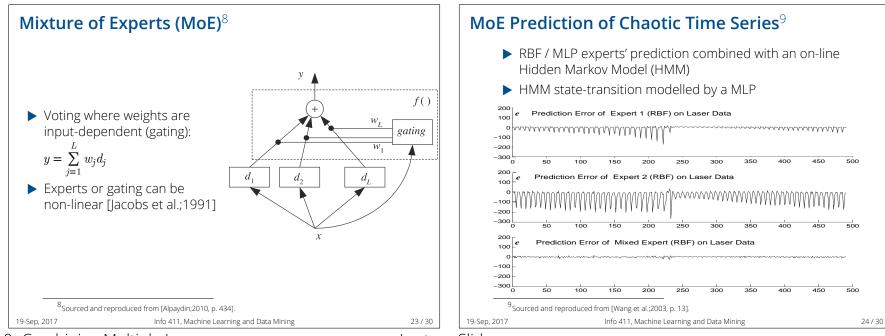
Info 411, Machine Learning and Data Mining

 \blacktriangleright The distribution D_t is updated with the effect of increasing

▶ Thus, the weight tends to concentrate on "hard" examples.

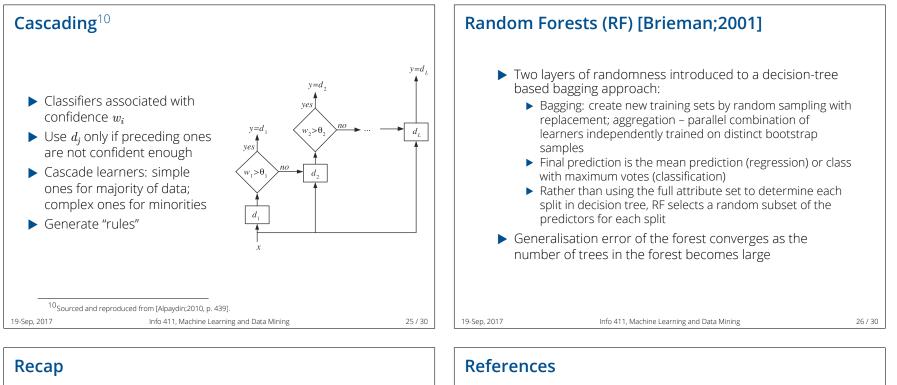

 \blacktriangleright The final hypothesis *H* is a weighted majority vote of the *T*

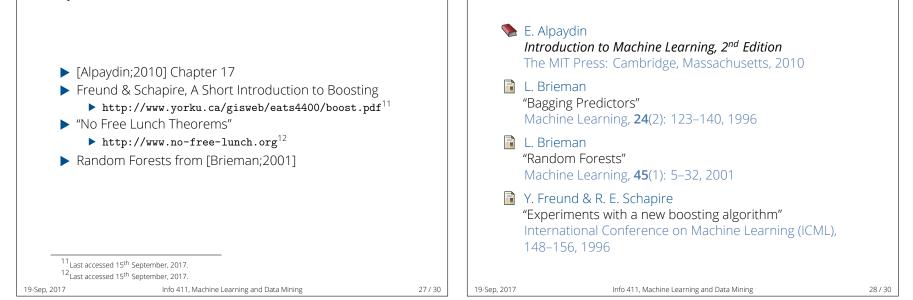

weak hypotheses where α_t is the weight assigned to h_t .


the weight of correctly classified examples.

the weight of examples misclassified by h_{t_i} and decreasing

16/30





Lecture 10: Combining Multiple Learners

Lecture Slides

Lecture Slides

7

References (continued)	References (continued)			
 R. A. Jacobs, M. I. Jordan, S. J. Nowlan, & G. E. Hinton "Adaptive Mixtures of Local Experts" Neural Computation, 3: 79–87, 1991 	 P. Viola & M. Jones "Rapid Object Detection Using a Boosted Cascade of Simple Features" IEEE Computer Society Conference on Computer Vision 			
 C. Rudin, I. Daubechies, & R. E. Schapire "The Dynamics of AdaBoost: Cyclic Behavior and Convergence of Margins" Journal of Machine Learning Research, 5: 1557–1595, 2004 	and Pattern Recognition (CVPR), 511–518, 2001 X. Wang, P. Whigham, & D. Deng "Time-line Hidden Markov Experts and its Application in Time Series Prediction"			
 R. E. Schapire "Explaining AdaBoost" In <i>Empirical Inference</i>, B. Schölkopf et al. (eds.), 37–51 Springer-Verlag Berlin Heidelberg, 2013 	 Technical Report 2003/03, University of Otago, New Zealand D. H. Wolpert "Stacked Generalization" Neural Networks, 5(2): 241–259, 1992 			
9-Sep, 2017 Info 411, Machine Learning and Data Mining 29 / 30	19-Sep, 2017 Info 411, Machine Learning and Data Mining 30 /			