

Lecture 11: Swarm Intelligence

Lizhi Peng Email: <u>penglizhi.jn@gmail.com</u> 26 Sep, 2017

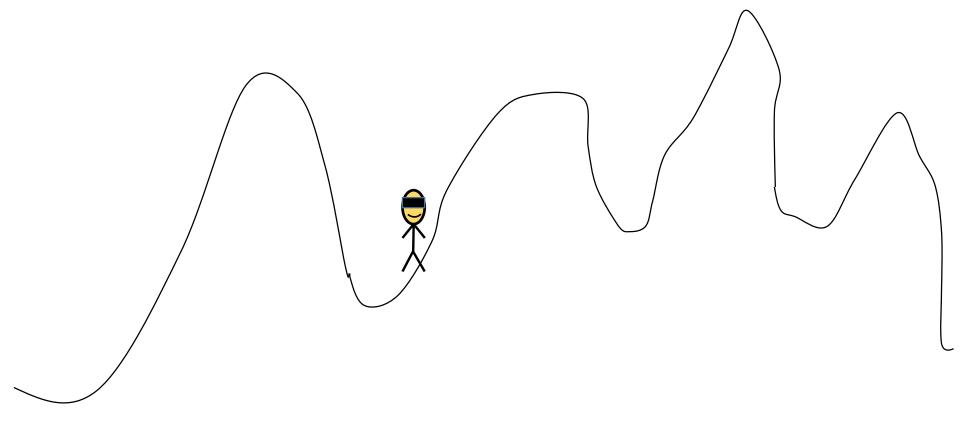
Outline

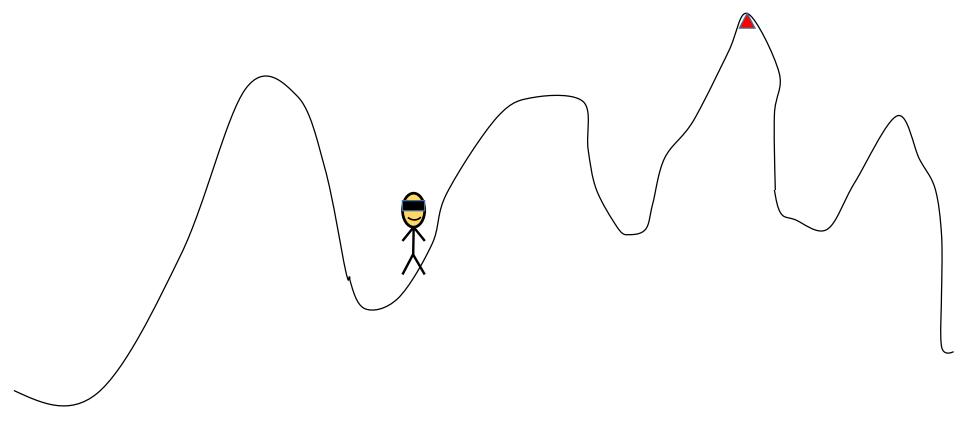
• **Optimization problem**

• Stochastic algorithms

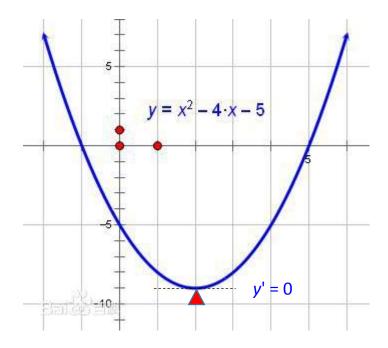
• Particle Swarm Optimization

• Other swarm intelligence algorithms





- Optimization problem
 - Search (find) the minimum (maximum) value of a function
 - ➤Many real problems
- Simple differentiable functions
 - ➤Use the derivatives

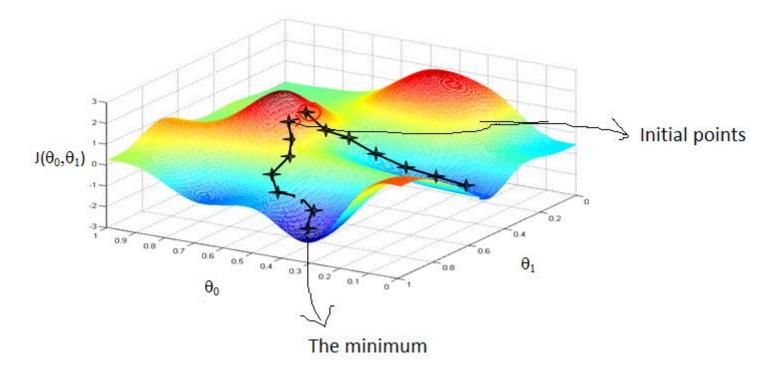


- O High-dimensional problems: gradient descent
 ➢Gradient
 - for a 2-D function *f*(*x*, *y*), its gradient vector on (*x*0, *y*0) is

 $grad(f) = (\partial f / \partial x, \partial f / \partial y)$

- The gradient direction is the "steepest" direction of the function
- ➢Go down inverse to the gradient direction to find the minimum/maximum value, until the gradient becomes a zero vector

The main problem: be trapped into local minima (stagnation points)



Picture from website http://www.cnblogs.com/pinard/p/5970503.html

Outline

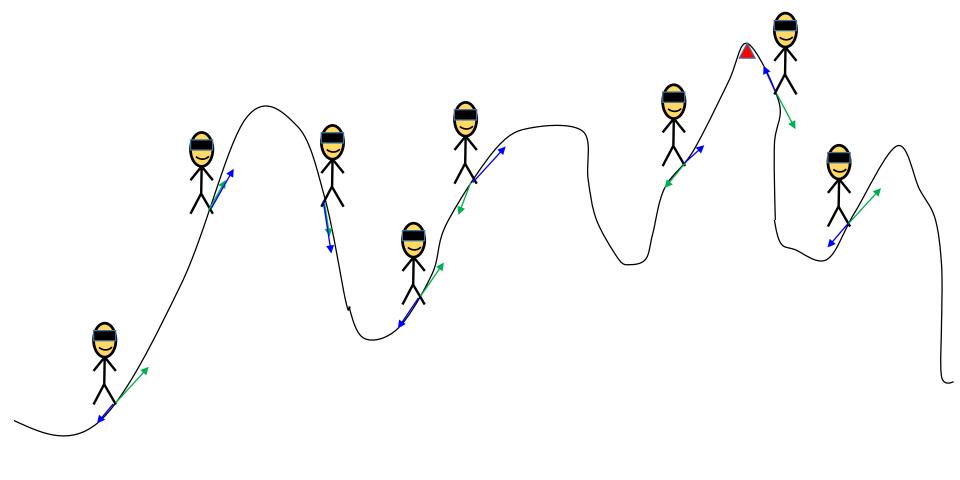
• Optimization problem

O Stochastic algorithms

• Particle Swarm Optimization

• Other swarm intelligence algorithms

Stochastic algorithm



Stochastic algorithm

Stochastic algorithm

A group of candidate solutions (individuals), form so called population

- The population is generated and updated using random operators (learning rules)
- The population is updated **iteratively**, until the

termination condition is satisfied

Stochastic algorithm

• Features

➤Global search abilities

Nature inspired: simulating bio-evolutionary procedure, birds foraging, ...

• Categories

➤Genetic algorithm

➤Swarm intelligence algorithm

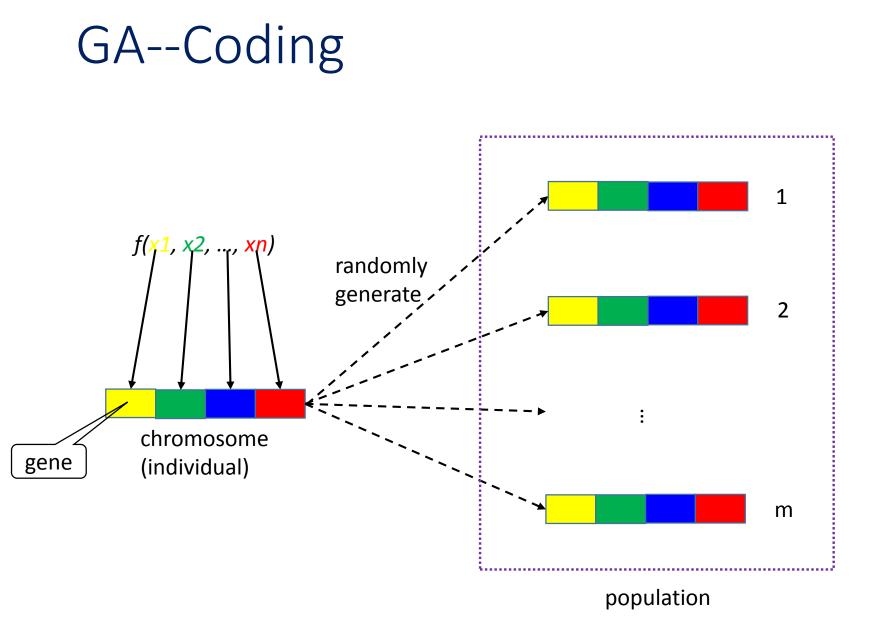
Genetic algorithm (GA)

Basic Ideas

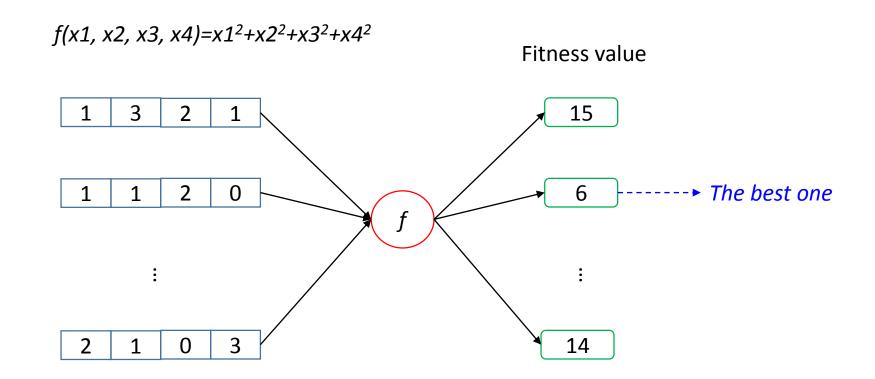
Simulating bio-evolutionary procedures

- Chromosome: candidate solution
- Selection operator
- Crossover (combination) operator
- Mutation operator

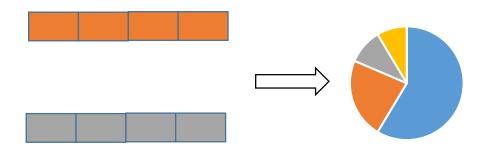
Operations are randomly executed according to some probabilities

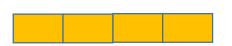


GA—Fitness evaluation



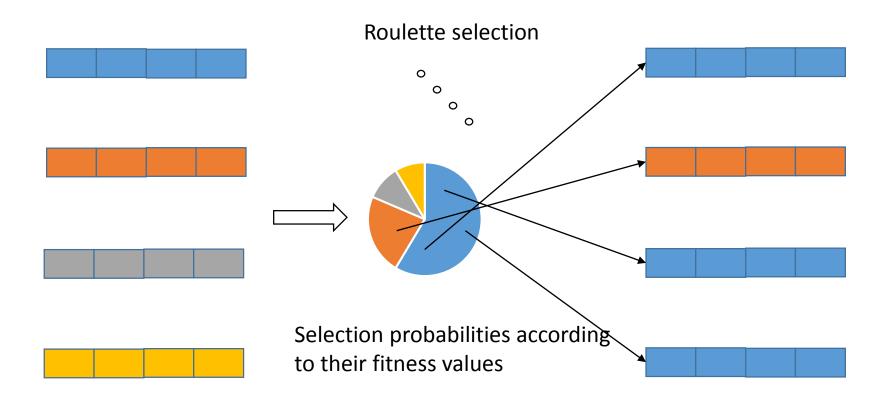
Roulette selection

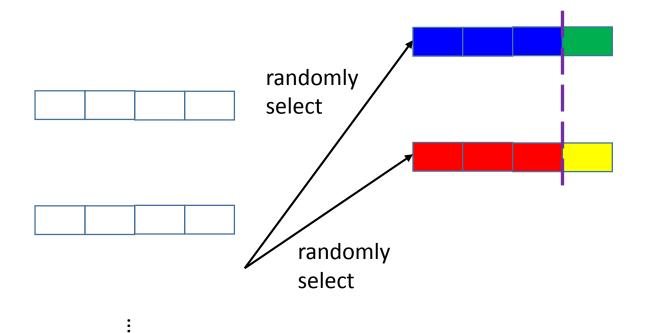


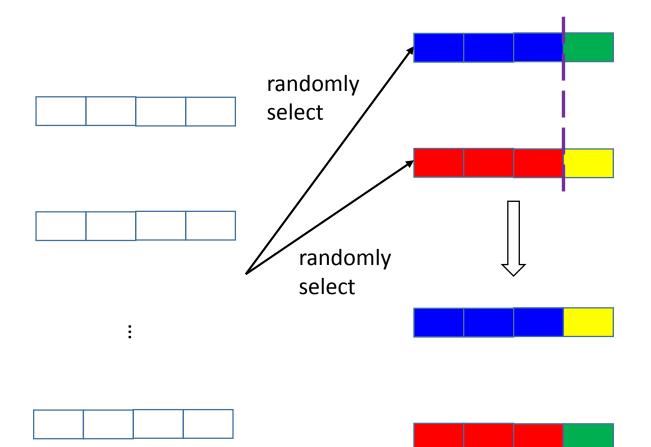


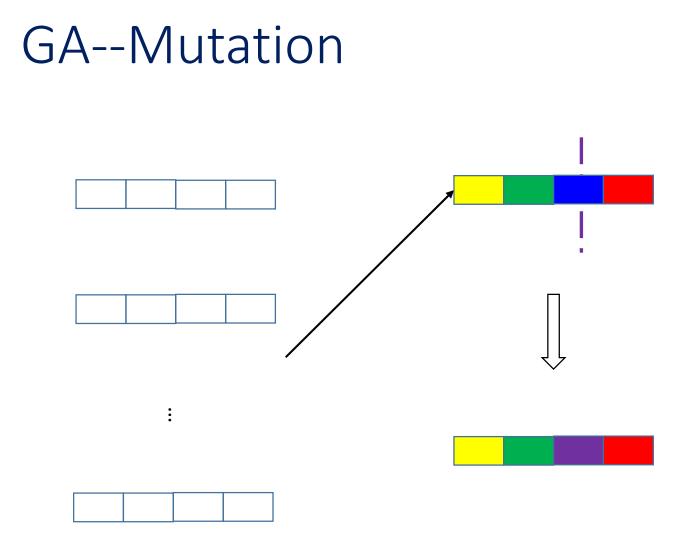
Selection probabilities according to their fitness values

GA--Selection









GA--Probabilities

 \circ Crossover probability p_c

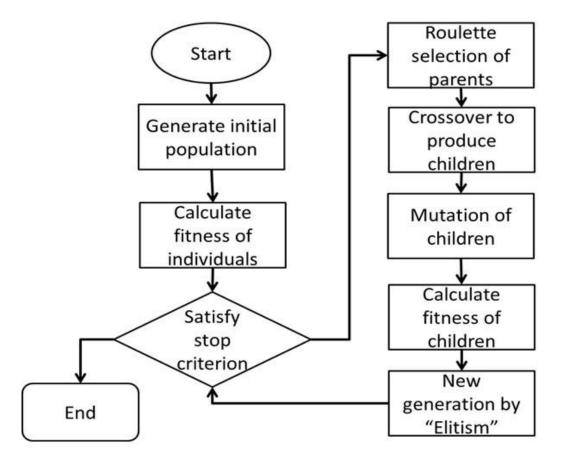
➤Controls the crossover rate

• Mutation probability p_m

➤Controls the mutation rate

► Usually is a small number, e.g. 0.05

GA—Algorithm framework



Other GAs

 \bigcirc

- Gene Programming (GP)
- Gene expression programming (GEP)
- Immune algorithm (IA)
- Differential evolution (DE)
- Population-based incremental learning (PBIL)

Swarm intelligence

- Another large stochastic algorithm family
- Basic idea: simulating the intelligent behaviours of animals, e.g. birds, ants, and bees
- Share some features with GAs
 - Population based
 - Iterative search
- Differences to GAs
 - No crossover and mutation
 - Individuals move in the solution space, just like animals

Outline

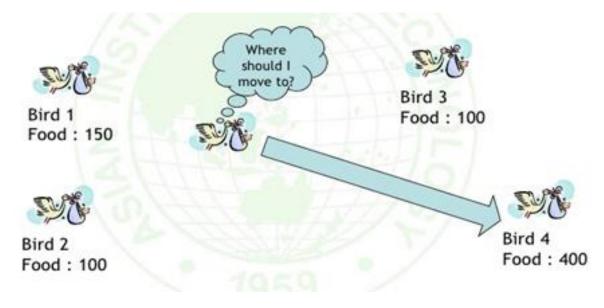
• Optimization problem

• Stochastic algorithms

O Particle Swarm Optimization

• Other swarm intelligence algorithms

- Simulating the behaviours of bird/fish swarm foraging to search the best solution of the target problem
- Introduced by Kennedy and Eberhart in 1995 (Kennedy et al., 1995)



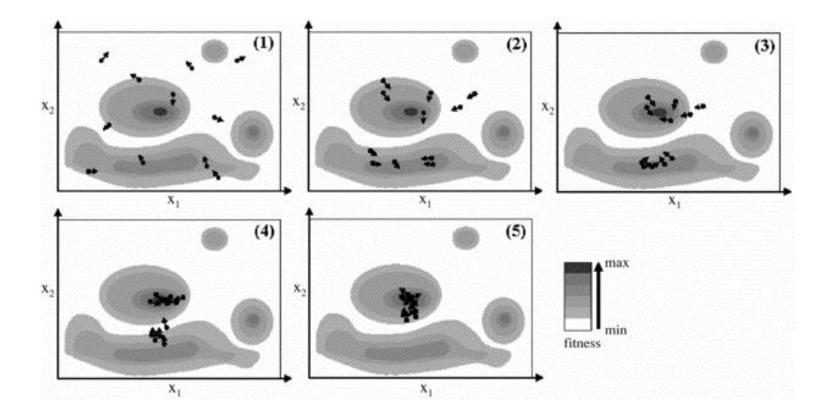
Picture from Open-I https://openi.nlm.nih.gov/

• Particle

 \succ Position (x): a candidate solution

 \succ Velocity (v): let the particle move iteratively

- Population (Swarm)
 - ➤A group of particles
 - ➤Initialized randomly



Picture from article: Li Y, Yao D, Yao J, et al. A particle swarm optimization algorithm for beam angle selection in intensity-modulated radiotherapy planning[J]. Physics in medicine and biology, 2005, 50(15): 3491.

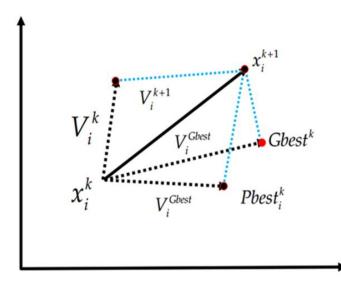
• Learning rule

$$\mathbf{v}_i(t+1) = w\mathbf{v}_i(t) + c_1r_1(\mathbf{p}_i - \mathbf{x}_i(t)) + c_2r_2(\mathbf{g} - \mathbf{x}_i(t))$$
$$\mathbf{x}_i(t+1) = \mathbf{x}_i(t) + \mathbf{v}_i(t+1)$$

- $\succ p_i$ is the personal best position (p-best) the *i*-th particle found so far
- $\succ g$ is the global best position (g-best) all particles found so far
- $\succ w$ is the inertia weight
- $\succ c_1, c_2$ are the acceleration coefficients
- r_1 , r_2 are two random numbers between 0 and 1.

• The velocity includes three components

- ➤ p-best learning
- ➤ g-best learning
- ➤ the last velocity



• **PSO applications**

Shortest path

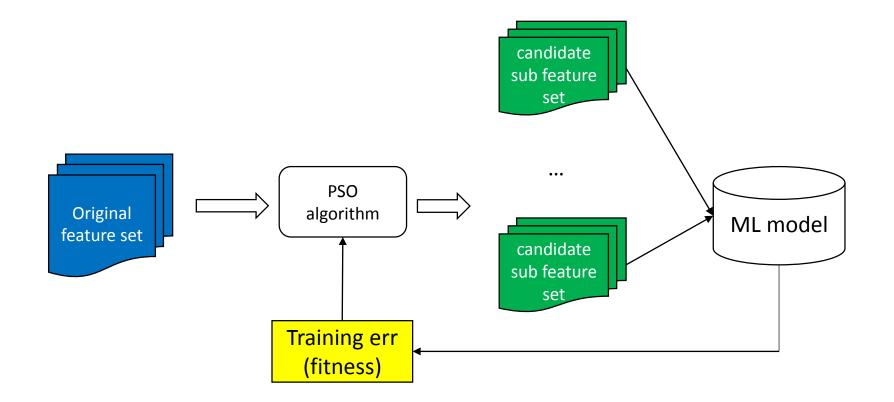
➢Power grid schedule

➢ Resource schedule

➢Industrial design

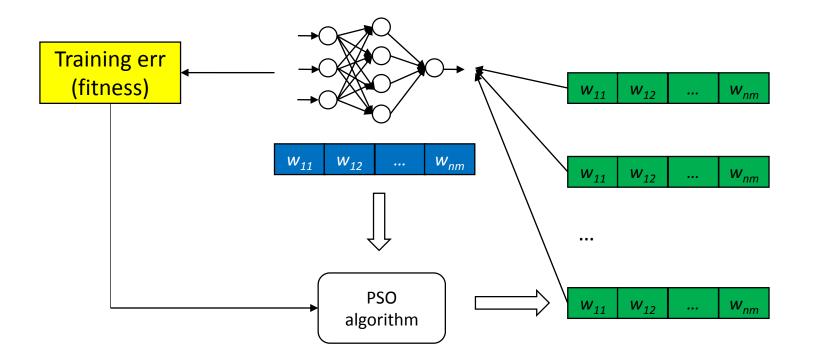
- PSO applications for machine learning
 - Feature selection
 - Chuang L Y, Chang H W, Tu C J, et al. Improved binary PSO for feature selection using gene expression data[J]. Computational Biology and Chemistry, 2008, 32(1): 29-38.
 - Wang X, Yang J, Teng X, et al. Feature selection based on rough sets and particle swarm optimization[J]. Pattern recognition letters, 2007, 28(4): 459-471.
 - Model parameter optimization
 - Mendes R, Cortez P, Rocha M, et al. Particle swarms for feedforward neural network training[C]//Neural Networks, 2002. IJCNN'02. Proceedings of the 2002 International Joint Conference on. IEEE, 2002, 2: 1895-1899.
 - Peng L, Zhang H, Yang B, et al. A new approach for imbalanced data classification based on data gravitation[J]. Information Sciences, 2014, 288: 347-373.

• Feature selection using PSO



Model parameter optimization

> weight optimization of ANN



• Premature convergence

The most significant problem of basic PSO algorithm

>All particles are trapped into a local minimum

• Solution

Keeping population diversity to enhance the global search (exploration) ability

PSO variants

Cooperative co-evolution

De-compose a high dimensional problem into several subcomponents, which correspond to the same number of sub-populations

➢All sub-populations evolve simultaneously, and the results are then combined

➤ Examples

- CCPSO2 (Li et al., 2012)
- DSPLSO (Yang et al., 2016)

PSO variants

• Hybrid algorithms

➢Use other algorithms' operators, e.g. genetic algorithm,

to enhance the search ability of PSO

➤Examples

- DEPSO (Xu et al., 2010)
- BBPSO (Kennedy, 2003)

PSO variants

• Random exemplar learning

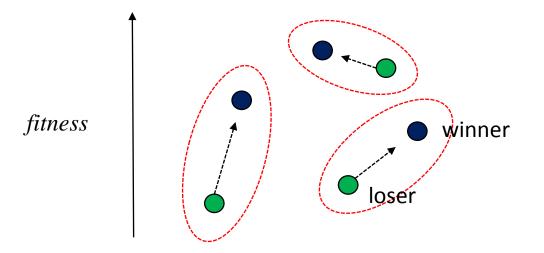
➤CSO (Cheng et al., 2015): particles compete pairwise,

the loser learns from the winner

PLPSO: Probability learning particle swarm optimization

Competitive swarm optimization (CSO)

 Particles compete pairwise, the loser learns from the winner

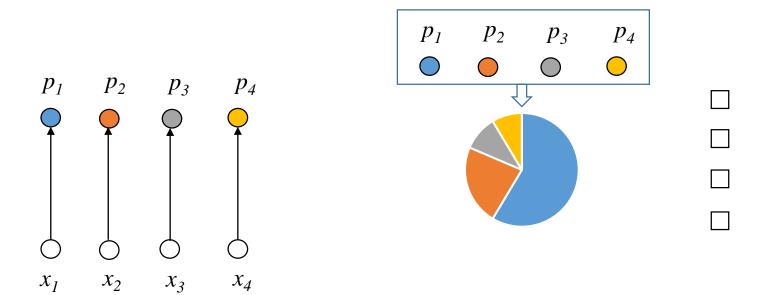


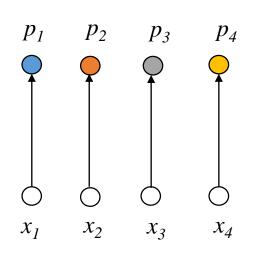
Probability learning particle swarm optimization (PLPSO)

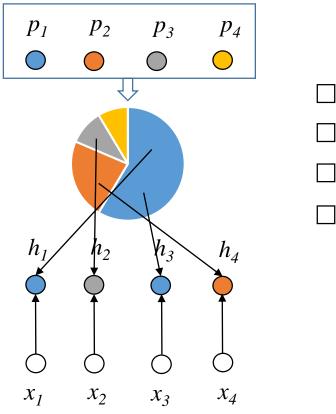
- P-best learning of the standard PSO
 - Is a kind of elitism learning, good for learning efficiency (positive side)
 - Simplex learning target (exemplar) leads to premature convergence (negative side)

o Our Idea

- ➤ A variant of p-best learning
- Let a particle learns from different p-bests according to their probabilities







• Definition of the probability of p_i (the *i*-th p-best)

 \succ Historical merit of p_i

$$\mu_i^h = \max_{j \in [1,n]} f(\mathbf{p}_j(t)) - f(\mathbf{p}_i(t))$$

> Probability of p_i

$$\pi_i^h = \frac{\mu_i^h}{\sum_j \mu_j^h}$$

• G-best learning of the standard PSO

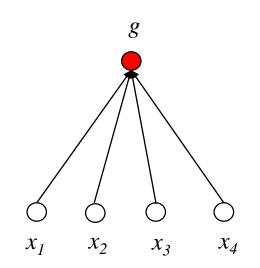
➢ Is a pure elitism learning

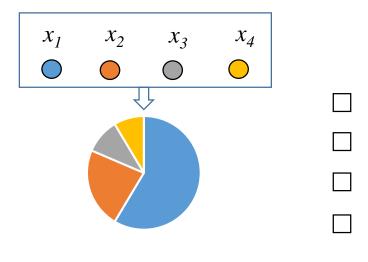
Only has one exemplar: the global best position all particles found

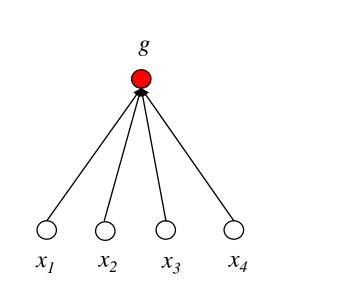
o Ideas

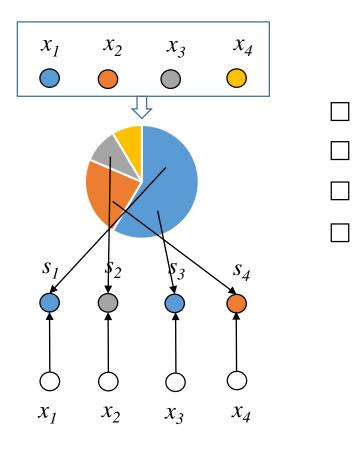
Discard g-best learning

Let a particle learns from another particle according to its probability









Probability based social learning

• Problem of worse exemplar

- The select a examplar worse than it, $f(s_i) > f(x_i)$
- Learning from a bad exemplar is not good for the search procedure

• Solution

- > If $f(s_i) > f(x_i)$, the learner particle **does not move**
- Such a particle is called an idle particle

$$\mathbf{v}_{i}(t+1) = \begin{cases} r_{1}\mathbf{v}_{i}(t) \\ + r_{2}c(\mathbf{h}_{i}(t) - \mathbf{x}_{i}(t)) \\ + r_{3}(\mathbf{s}_{i}(t) - \mathbf{x}_{i}(t)), & \text{if } f(\mathbf{s}_{i}(t)) < f(\mathbf{x}_{i}(t)) \\ 0, & \text{otherwise} \end{cases}$$

$$\mathbf{x}_i(t+1) = \mathbf{x}_i(t) + \mathbf{x}_i(t+1)$$

• Features:

➢No inertia weight

➢No acceleration coefficient for the social learning item

Outline

• Optimization problem

• Stochastic algorithms

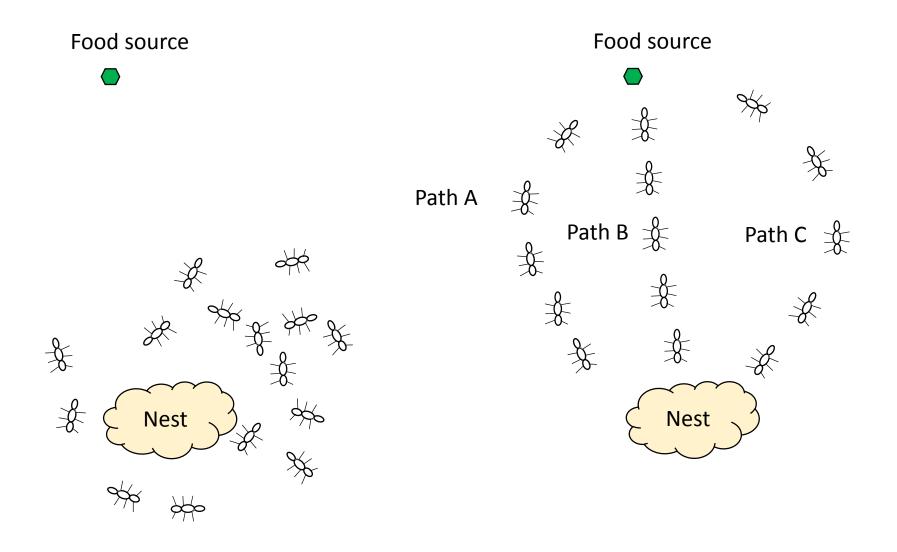
• Particle Swarm Optimization

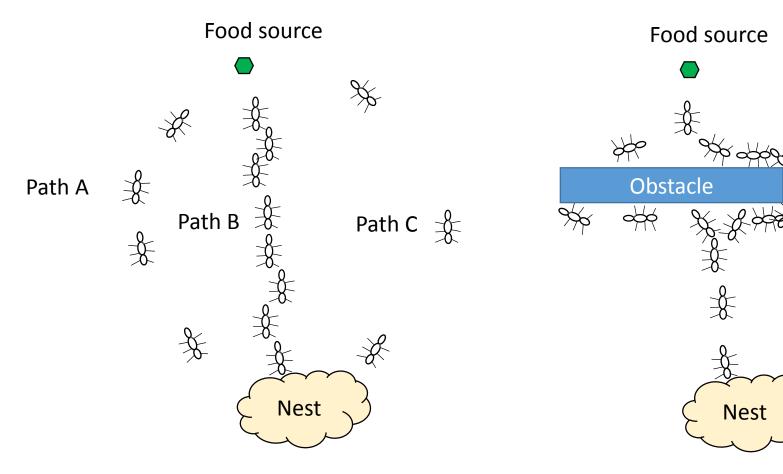
• Other swarm intelligence algorithms

- Simulating the behaviours of ant swarm finding foods
- Introduced by Dorigo in 1992 (Dorigo, 1992)
- More complicated than PSO

Picture from Wikipedia https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms

- Goal: searching the optimal path between the nest and the food source
- o Ideas and concepts
 - Path between food source and nest: candidate solution
 - > Ants move randomly according to the probabilities of all possible paths
 - > Ants deposit **pheromone** on their trails
 - More pheromones on a path increases the probability it to be followed (attracts more ants)
 - Pheromones evaporate by time





Artificial bee colony algorithm (ABC)

- Simulating the foraging behaviours of honey bees
- Introduced by Karaboga in 2005 (Karaboga, 2005)

Picture from website https://www.shortlist.com/food-drink/these-gifs-show-you-what-would-happen-to-your-food-if-all-the-bees-died/67594

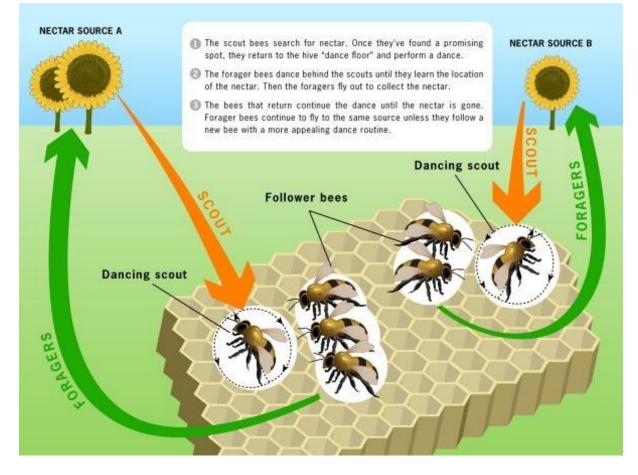
Artificial bee colony algorithm (ABC)

• Ideas and concepts

Nectar source: candidate solution

- ≻Bees
 - Employed (forager) bees: each forager bee stores the information of a nectar source, and dances to share the information
 - Scouter (spy) bees: search for new nectar sources
 - Onlooker (follower) bees: each onlooker bee watches the dances of foragers, chooses one source and goes to the source, then search and evaluate the neighbour area of the source

Artificial bee colony algorithm (ABC)



Picture from website http://thebridge.psgtech.ac.in/?p=717

Thank you!