IISc Bangalore

UP201 – Introductory Physics III An Invitation to Physics

Vijay B. Shenoy

Department of Physics, Indian Institute of Science, Bangalore 560012 up201.iisc@gmail.com

August 2, 2017

• What is this course about?

- What is this course about?
- Why you should do this course?

- What is this course about?
- Why you should do this course?
- Logistics
- ...
- ...time permitting : A Metallic Story!
- ...interspersed by Your questions!...

- What is this course about?
- Why you should do this course?
- Logistics
- ...
- ...time permitting : A Metallic Story!
- ...interspersed by Your questions!...and my questions...

Lets Physics¹...

¹Physics as a *verb*!

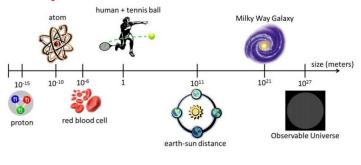
²Physics as a *noun*

• A quest to understand *order* in nature...

- A quest to understand *order* in nature...to make *falsifiable* theories with *predictive* capabilities
- *Nature:* What we "see" around us
- Order: There seems to be something "regular" going on

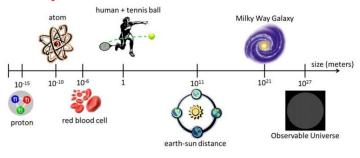
²Physics as a *noun*

- A quest to understand *order* in nature...to make *falsifiable* theories with *predictive* capabilities
- Nature: What we "see" around us
- *Order:* There seems to be something "regular" going on (e.g. Sun rises in the east,


²Physics as a *noun*

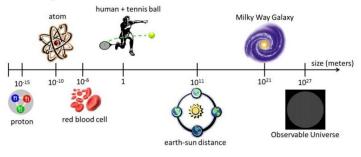
- A quest to understand *order* in nature...to make *falsifiable* theories with *predictive* capabilities
- *Nature:* What we "see" around us
- *Order:* There seems to be something "regular" going on (e.g. Sun rises in the east,or you feel hungry every four hours!)

²Physics as a *noun*


• We sense space and time!

• We sense space and time!

(Source: Internet)


• We sense space and time!

(Source: Internet)

• We have probed ("seen") an astonishing amount of things from the smallest (sub-nuclear) to the largest (on the scale of the universe)

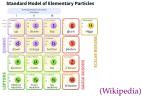
• We sense space and time!

(Source: Internet)

- We have probed ("seen") an astonishing amount of things from the smallest (sub-nuclear) to the largest (on the scale of the universe)
- Timescales range from 10^{-23} seconds to 14×10^9 years!

The Quest

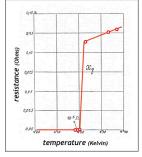
- How to make sense of what we sense?
- Ancient wisdom...


• ...to work of more recent stalwarts...

• Roughly, Nature is described by quantum mechanics on the smallest scales... and by general theory of relativity at the largest scales

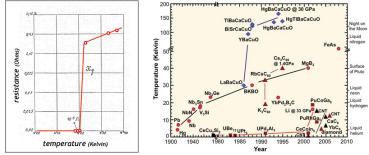
- Roughly, Nature is described by quantum mechanics on the smallest scales... and by general theory of relativity at the largest scales
- The universe had a beginning (about 13.5 billon years ago!)...and is expanding

- Roughly, Nature is described by quantum mechanics on the smallest scales... and by general theory of relativity at the largest scales
- The universe had a beginning (about 13.5 billon years ago!)...and is expanding
- "Things" made of Leptons, Quarks, Force carrying bosons, Higgs boson...the standard model


- Our planet Earth itself formed about 3.5 billon years back...Life on earth arose from self replicating chemicals...to dinosaurs...to apes...to us!
- ...
- ...and yet we do not know so many things! Like what?

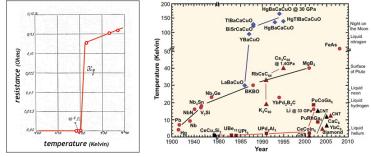
Physics Organization...

- Study of physics is organized into several interrelated areas...(not surprisingly, by scales!!)
- $< 10^{-12}m$: High Energy Physics
- Between 10^{-12} and $10^6 m$: Condensed Matter Physics
- > $10^6 m$: Astronomy and Astrophysics
- Such divisions are due to human limitations...there is only a unified subject...natural philosophy or physics!


A Challenge

• Superconductivity (discovered in 1911 by Kammerling Onnes)...a zero resistance state!

A Challenge


• Superconductivity (discovered in 1911 by Kammerling Onnes)...a zero resistance state!

(Wikipedia)

A Challenge

• Superconductivity (discovered in 1911 by Kammerling Onnes)...a zero resistance state!

(Wikipedia)

• Challenge: Can you make a room temperature superconductor? If you do so, things will change for ever; many new things like quantum computers will become a reality!

More Challenges...An Invitation to Physics

Many unanswered questions:

- High Energy Physics: How to marry quantum mechanics and general relativity?
- Astronomy and Astrophysics: Dark matter, Dark energy...
- Condensed Matter Physics: How do many degrees of freedom organize themselves? For example, how does the human (or for that matter of any higher organism) work?

(Source: Internet)

More Challenges...An Invitation to Physics

Many unanswered questions:

- High Energy Physics: How to marry quantum mechanics and general relativity?
- Astronomy and Astrophysics: Dark matter, Dark energy...
- Condensed Matter Physics: How do many degrees of freedom organize themselves? For example, how does the human (or for that matter of any higher organism) work?

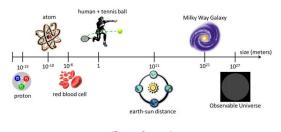
(Source: Internet)

• What is YOUR question/challenge?

Why should you do this (or any) course?

- An important aspect of education/training
 - In any "research" activity: You have to known when you should be surprised! How do you know you have made a discovery?
 - This requires some knowledge of the subject area that will enable you to
 - ★ Understand open questions
 - ★ Formulate new open questions
 - ★ Find answers to questions posed by others or you
- Knowledge
 - Conceptual: Focussing on conceptual ideas of the field
 - Technical: Tools and techniques need to explore/formulate/explain ideas

An example: The physics concept of "broken symmetry" is useful in describing phases of matter. Group theory is the technical stuff behind this...


• The aim of this course is to lay conceptual foundations of physics...for you to be able to appreciate the open problems..and even prepare to tackle some of them..

Introductory Physics @IISc

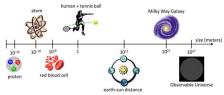
- UP101 Focusing on mechanics
- UP102 Focusing on electromagnetism UP101/UP102 combined deals with "Classical Physics"
- UP201 Thermal and Modern Physics (everything we discuss was discovered after 1850) Syllabus:
 - Temperature, The First Law of Thermodynamics, Kinetic Theory of Gases and Maxwell -Boltzmann Statistics, Heat Engines, Entropy and the Second Law of Thermodynamics
 - Relativity
 - Introduction to Quantum Physics, Basics of Quantum Mechanics
 - Atomic , Molecular and Solid state Physics,
 - Nuclear Physics, Particle Physics
 - Cosmology

More about UP201...Nature of Physics Theories

- Physics theories can be classified³ as
 - Microscopic theories
 - * Questions like: What are the laws of nature?
 - ★ What are things made of?
 - Phenomenological theories
 - ★ How to describe things on a given scale (without necessarily asking questions about lower scales)?
- Note/Caution: One persons microscopics may be another's phenomenology

³As you grow older you will find this to be entirely superfluous

More about UP201...


From a "terrestrial human" perspective stuff is UP201 can be basketed as

• Microscopic theories

- Relativity
- Introduction to Quantum Physics, Basics of Quantum Mechanics
- Atomic , Molecular and Solid state Physics,
- Nuclear Physics, Particle Physics (really, these are also phenomenological!)

• Phenomenological theories

- Temperature, The First Law of Thermodynamics, Kinetic Theory of Gases and Maxwell -Boltzmann Statistics, Heat Engines, Entropy and the Second Law of Thermodynamics
- Cosmology

Why should you do this course?

- To familiarize yourself about what is known in physics
- To pick up **physics concepts**, this course will *not* technique heavy (math prerequisites have all been covered in earlier courses)

• ...

- ...so as to appreciate the open questions...and make new ones yourself!
- ...and eventually to physics⁴!
- Goal: To know when to be surprised

Logistics

Useful Info About the Course

- Venue: F-12 1st Floor UG Building II (Old Physics Building)
- ② Time: Lectures Monday and Wednesday 11:00AM → 12:00noon, Tutorial – Friday 11:00AM → 12:00noon
- Lab: Already announced (details will be discussed by Lab Instructors)
- Homeworks: Weekly about 5-10 problems. Will not be collected, but some exam questions will be based on homeworks
- Exams: (one or two) Mid-sem exams (50% weight) and (50% weight) for end semester exam
- **Instructor Office Hours:** Right after class from $12:00 \rightarrow 12:30$
- **Teaching Assistants:** To be announced

Textbook

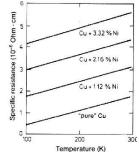
• We will (roughly) follow Serwey and Jewett

- Other reading material will be indicated in class from time to time
- Related useful references
 - Young and Friedman, University Physics (12th Edition)
 - Halliday, Resnick and Walker, Fundamentals of Physics, Extended (8th Edition)
 - Harris Benson , University Physics, Revised Edition
 - Kenneth Krane, Modern Physics, Second Edition

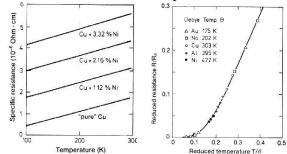
Webpage

• Course web page

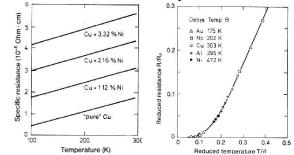
https://piazza.com/iisc.ernet.in/fall2017/up201/home


UP 201 Class Profil ×			Y6W8 = # X
	tps://piazza.com/lisc.emet.in/fall2017/up201/home	9,	
📰 Apps 💆 arXiv 💆 Ca	itchup 🏙 Techitelp 🏙 Phys 🏙 Utils 🔓 Google 🔛 PH320 🗎	🛿 Shift 🛃 Google Maps 🔒 IScTelDirectory 🖸 Daily Ar	Xiv 🔝 UP 201 🛛 🛍 Other bookmarks
Are yes a Fuderace or a 100 (ppgggggg dowd Facas for year daws			
	Indem Hathafe of Sciences - Fail 2017 UP 2011: Introductory Physics III Standard rolans 4		
	Description	Announcements	
	This is the fixed cause in the same of initiating signals prove causes it indexplanations of the fixed and the same of the could be a barriery backs that and initiating signals and the same of the hermit physics, peeded theory of valuative, interactivity counting physics, mode-same of the same of valuative, interactivity counting physics, and the same of the same of valuative, interactivity counting physics, and the same of the challenges to physics to a hereacotter.	Pirst Meeting	
	General Information When Montey, Priday 11 (2004) to 12 (2004)	STUDENTS INTENDING TO CREDIT THE COURSE MUST ATTEND THE PRET MEETING YORK OF PRETS	
	Where Hall P-12, 1st face of US Building II (2hd Physics Building)		
	Course Web Page Https://piacoa.com/list.emet.iv/act/0111vp201/home		
	Course Email spillt i aufgenal.com		
	Copyright © 2017 Places Technologies, Inc. All Rights Reserved.		

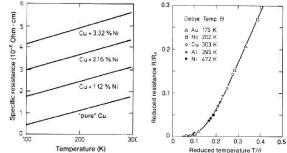
- Students crediting the course **MUST** enroll on the webpage (need ug.iisc.in email address)
- All communication from the instructor including homeworks, announcements etc. will be through the webpage only
- Course email : up201.iisc@gmail.com all communication about the course must use this email address; instructor/TA personal emails must be avoided


A Metallic Story

• Copper is a metal, gold is also...so is sodium...they look so different, and yet we insist that "they are the same"!


- Copper is a metal, gold is also...so is sodium...they look so different, and yet we insist that "they are the same"!
- Resistivity of metals increases with temperature...

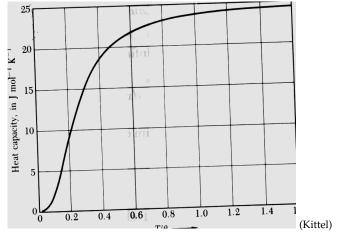
- Copper is a metal, gold is also...so is sodium...they look so different, and yet we insist that "they are the same"!
- Resistivity of metals increases with temperature...



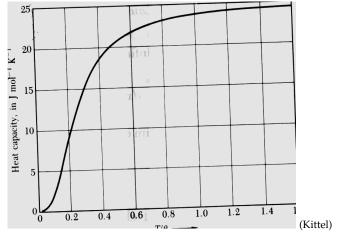
- Copper is a metal, gold is also...so is sodium...they look so different, and yet we insist that "they are the same"!
- Resistivity of metals increases with temperature...

...we see that there is something "unviersal" about it!

- Copper is a metal, gold is also...so is sodium...they look so different, and yet we insist that "they are the same"!
- Resistivity of metals increases with temperature...

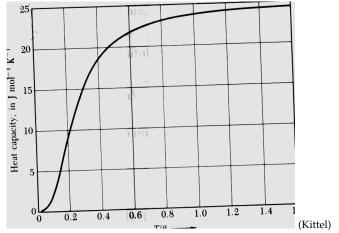


...we see that there is something "unviersal" about it!


- Despite their different appearance, there is something deeply common among various metals...this commonality characterizes the "metallic state"
- ...Drudé theory of metals

• Dulong-Petit Law

• Dulong-Petit Law



• Dulong-Petit Law

• High-Temperature Molar Specific Heat = 3R

• Dulong-Petit Law

• High-Temperature Molar Specific Heat = 3R

• Atoms - Classical Oscillators

• Wiedemann-Franz Law: Ratio of thermal (κ) to electrical conductivities (σ) depends linearly on *T* $\kappa/\sigma = (Const)T$, (Const) $\approx 2.3 \times 10^{-8}$ watt-ohm/K²

• Wiedemann-Franz Law: Ratio of thermal (κ) to electrical conductivities (σ) depends linearly on *T* $\kappa/\sigma = (Const)T$, (Const) $\approx 2.3 \times 10^{-8}$ watt-ohm/K²

OF SELECTED METALS				
ELEMENT	273 K		373 K	
	к (watt/cm-K)	$\kappa/\sigma T$ (watt-ohm/K ²)	κ (watt/cm-K)	$\kappa/\sigma T$ (watt-ohm/K ²)
Li	0.71	2.22×10^{-8}	0.73	2.43×10^{-8}
Na	1.38	2.12		
K	1.0	2.23		
Rb	0.6	2.42		
Cu	3.85	2.20	3.82	2.29
Ag	4.18	2.31	4.17	2.38
Au	3.1	2.32	3.1	2.36
Be	2.3	2.36	1.7	2.42
Mg	1.5	2.14	1.5	2.25
Nb	0.52	2.90	0.54	2.78
Fe	0.80	2.61	0.73	2.88
Zn	1.13	2.28	1.1	2.30
Cd	1.0	2.49	1.0	
Al	2.38	2.14	2.30	2.19
In	0.88	2.58	0.80	2.60
Tl	0.5	2.75	0.45	2.75
Sn	0.64	2.48	0.60	2.54
Pb	0.38	2.64	0.35	2.53
Bi	0.09	3.53	0.08	3.35
Sb	0.18	2.57	0.17	2.69

EXPERIMENTAL THERMAL CONDUCTIVITIES AND LORENZ NUMBERS OF SELECTED METALS

(Ashcroft-Mermin)

• Electron charge (*e*), mass(*m*), number density(*n*)

• Electron charge (*e*), mass(*m*), number density(*n*)

• Newtons' Law
$$\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} = \boldsymbol{F} \left(\boldsymbol{p} - \text{momentum}, \boldsymbol{F} - \text{force}, t - \text{time} \right)$$

- Electron charge (*e*), mass(*m*), number density(*n*)
- Newtons' Law $\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} = \boldsymbol{F} \left(\boldsymbol{p} \text{momentum}, \boldsymbol{F} \text{force}, t \text{time} \right)$
- Force on a charged particle (*q*), (*q* = -*e* for electron, *E*, *B*-electric and magnetic fields)

$$\boldsymbol{F} = q(\boldsymbol{E} + \frac{\boldsymbol{p}}{m} \times \boldsymbol{B})$$

- Electron charge (*e*), mass(*m*), number density(*n*)
- Newtons' Law $\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} = \boldsymbol{F} \left(\boldsymbol{p} \text{momentum}, \boldsymbol{F} \text{force}, t \text{time} \right)$
- Force on a charged particle (*q*), (*q* = -*e* for electron, *E*, *B*-electric and magnetic fields)

$$\boldsymbol{F} = \boldsymbol{q}(\boldsymbol{E} + \frac{\boldsymbol{p}}{m} \times \boldsymbol{B})$$

• Current density
$$j = -en \frac{p}{m}$$

- Electron charge (*e*), mass(*m*), number density(*n*)
- Newtons' Law $\frac{\mathrm{d}p}{\mathrm{d}t} = F(p-\text{momentum}, F-\text{force}, t-\text{time})$
- Force on a charged particle (*q*), (*q* = -*e* for electron, *E*, *B*-electric and magnetic fields)

$$\boldsymbol{F} = \boldsymbol{q}(\boldsymbol{E} + \frac{\boldsymbol{p}}{m} \times \boldsymbol{B})$$

- Current density $j = -en\frac{p}{m}$
- Conductivities:

$$j = \sigma E$$
 (Electrical), $q = -\kappa \nabla T$ (Thermal)

• Early 19th century

- Early 19th century
- Electrons treated as classical particles

- Early 19th century
- Electrons treated as classical particles
- Electrons collide with atoms (and other electrons)

- Early 19th century
- Electrons treated as classical particles
- Electrons collide with atoms (and other electrons)
- About 10²³ electrons (How to do this???)

- Early 19th century
- Electrons treated as classical particles
- Electrons collide with atoms (and other electrons)
- About 10²³ electrons (How to do this???)
- What would you do?

• How to handle all the electrons?

- How to handle all the electrons?
- Relaxation time approximation:

 τ – time in which an electron will definitely undergo a collision

- How to handle all the electrons?
- Relaxation time approximation:
 - τ time in which an electron will definitely undergo a collision
- Drudé Equation

$$p(t + dt) = \underbrace{\left(1 - \frac{dt}{\tau}\right)}_{\text{prob. no coll.}} (p(t) + Fdt)$$
$$\implies \frac{dp}{dt} = -\frac{p}{\tau} + F$$

• Over a long time *t*_{*l*}, electrons attain drift velocity and do not accelerate

- Over a long time *t*_{*l*}, electrons attain drift velocity and do not accelerate
- Thus,

$$\frac{1}{t_l} \int_0^{t_l} \frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} \,\mathrm{d}t = = \mathbf{0}$$
$$\frac{1}{t_l} \int_0^{t_l} \boldsymbol{p} \,\mathrm{d}t = \boldsymbol{p}_{\mathbf{d}}$$

- Over a long time *t*_{*l*}, electrons attain drift velocity and do not accelerate
- Thus,

$$\frac{1}{t_l} \int_0^{t_l} \frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} \,\mathrm{d}t = = \mathbf{0}$$
$$\frac{1}{t_l} \int_0^{t_l} \boldsymbol{p} \,\mathrm{d}t = \boldsymbol{p}_{\mathbf{d}}$$

• Drudé Equation gives drift velocity:

$$p_d = \tau F$$

 $\implies v_d = \frac{\tau}{m} F$ (drift velocity)

• Drift velocity in an electric field (F = -eE)

$$\boldsymbol{v}_d = -\frac{\tau e}{m} \boldsymbol{E}$$

• Drift velocity in an electric field (F = -eE)

$$v_d = -\frac{\tau e}{m}E$$

• Current density

$$j = -nev_d = \frac{ne^2\tau}{m}E$$

• Drift velocity in an electric field (F = -eE)

$$v_d = -\frac{\tau e}{m}E$$

• Current density

$$j = -nev_d = \frac{ne^2\tau}{m}E$$

• Electrical conductivity

$$\sigma = \frac{ne^2\tau}{m}$$

• The theory has a parameter τ

- The theory has a parameter τ
- How to calculate τ ?

- The theory has a parameter τ
- How to calculate τ ?
- Well, we don't know yet!

- The theory has a parameter τ
- How to calculate τ ?
- Well, we don't know yet!
- And...so, what?

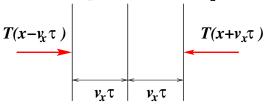
So What?

- The theory has a parameter τ
- How to calculate τ ?
- Well, we don't know yet!
- And...so, what?
- Calculate relaxation times from conductivity measurements

So What?

- The theory has a parameter τ
- How to calculate τ ?
- Well, we don't know yet!
- And...so, what?
- Calculate relaxation times from conductivity measurements
- What do you think it will be?

Relaxation Times


• Calculated relaxation times

DRUDE RELAXATION TIMES IN UNITS OF 10 ⁻¹⁴ SECOND ^a					
ELEMENT	77 K	273 K	373 K		
Li	7.3	0.88	0.61		
Na	17	3.2			
K	18	4.1			
Rb	14	2.8			
Cs	8.6	2.1			
Cu	21	2.7	1.9		
Ag	20	4.0	2.8		
Au	12	3.0	2.1		
Be		0.51	0.27		
Mg	6.7	1.1	0.74		
Ca		2.2	1.5		
Sr	1.4	0.44			
Ba	0.66	0.19			
Nb	2.1	0.42	0.33		
Fe	3.2	0.24	0.14		
Zn	2.4	0.49	0.34		
Cd	2.4	0.56			
Hg	0.71				
Al	6.5	0.80	0.55		
Ga	0.84	0.17			
In	1.7	0.38	0.25		
T1	0.91	0.22	0.15		
Sn	1.1	0.23	0.15		
Pb	0.57	0.14	0.099		
Bi	0.072	0.023	0.016		
Sb	0.27	0.055	0.036		

(Ashcroft-Mermin)_{30 / 38}

Thermal Conductivity

• Energy of an electron at temperature T, $E[T] = \frac{3}{2}k_BT$

- A (one-D) body with a temperature gradient
- Magnitude of velocity (speed) in *x* direction = *v*_{*x*}
- Heat flux from left to right = $\frac{n}{2}v_x E[T(x v_x \tau)]$
- Heat flux from right to left = $\frac{n}{2}v_x E[T(x + v_x \tau)]$

Thermal Conductivity contd.

• Net heat flux towards positive *x* axis

$$q = \frac{n}{2} v_x (E[T(x - v_x \tau)] - E[T(x + v_x \tau)]) = n v_x \frac{\partial E}{\partial T} \left(-\frac{\partial T}{\partial x} v_x \tau \right)$$
$$= -n \underbrace{v_x^2}_{\frac{k_B T}{m}} \underbrace{\frac{\partial E}{\partial T}}_{\frac{3}{2}k_B} \frac{\partial T}{\partial x} = -\left(\frac{3nk_B^2 \tau T}{2m}\right) \frac{\partial T}{\partial x}$$

• Thermal conductivity:

$$\kappa = \frac{3nk_B^2 T\tau}{2m}$$

• Ratio of thermal to electrical conductivity

$$\frac{\kappa}{\sigma} = \frac{3}{2} \left(\frac{k_B}{e}\right)^2 T$$

• Ratio of thermal to electrical conductivity

$$\frac{\kappa}{\sigma} = \frac{3}{2} \left(\frac{k_B}{e}\right)^2 T$$

• It *is* linear in *T*!

• Ratio of thermal to electrical conductivity

$$\frac{\kappa}{\sigma} = \frac{3}{2} \left(\frac{k_B}{e}\right)^2 T$$

- It *is* linear in *T*!
- It *is* independent of the metal!

• Ratio of thermal to electrical conductivity

$$\frac{\kappa}{\sigma} = \frac{3}{2} \left(\frac{k_B}{e}\right)^2 T$$

- It *is* linear in *T*!
- It is independent of the metal!
- What about the constant (Lorentz number)?

$$\frac{3}{2}\left(\frac{k_B}{e}\right)^2 = 1.11 \times 10^{-8} \text{watt-ohm/K}^2$$

• Ratio of thermal to electrical conductivity

$$\frac{\kappa}{\sigma} = \frac{3}{2} \left(\frac{k_B}{e}\right)^2 T$$

- It *is* linear in *T*!
- It is independent of the metal!
- What about the constant (Lorentz number)?

$$\frac{3}{2} \left(\frac{k_B}{e}\right)^2 = 1.11 \times 10^{-8} \text{watt-ohm/K}^2$$

• Expt. value $\approx 2.3 \times 10^{-8}$ watt-ohm/K²! Celebrations!

• Dulong-Petit say specific heat is 3*R*

- Dulong-Petit say specific heat is 3*R*
- One mole of univalent metal contains one mole of ions and one mole of electrons

- Dulong-Petit say specific heat is 3*R*
- One mole of univalent metal contains one mole of ions and one mole of electrons
- Ionic specific heat = 3*R*

- Dulong-Petit say specific heat is 3*R*
- One mole of univalent metal contains one mole of ions and one mole of electrons

-

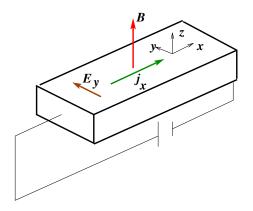
• Ionic specific heat = 3*R*

• Electronic specific heat =
$$\frac{3}{2}R$$
 (ideal gas)

- Dulong-Petit say specific heat is 3*R*
- One mole of univalent metal contains one mole of ions and one mole of electrons
- Ionic specific heat = 3*R*
- Electronic specific heat = $\frac{3}{2}R$ (ideal gas)
- Total specific heat = $\frac{9}{2}R$

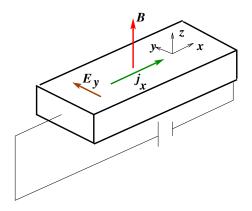
- Dulong-Petit say specific heat is 3*R*
- One mole of univalent metal contains one mole of ions and one mole of electrons
- Ionic specific heat = 3*R*
- Electronic specific heat = $\frac{3}{2}R$ (ideal gas)

• Total specific heat =
$$\frac{9}{2}R$$

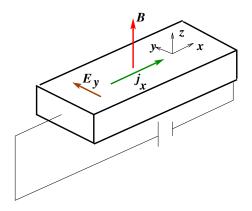

• $\frac{9}{2} \neq 3$ for usual values of 2, 3, 9!

- Dulong-Petit say specific heat is 3*R*
- One mole of univalent metal contains one mole of ions and one mole of electrons
- Ionic specific heat = 3*R*
- Electronic specific heat = $\frac{3}{2}R$ (ideal gas)

• Total specific heat =
$$\frac{9}{2}R$$


- $\frac{9}{2} \neq 3$ for usual values of 2, 3, 9!
- Ok, turn the music down!

Hall Effect


• Electric field applied in the *x* direction – current flows j_x

Hall Effect

- Electric field applied in the *x* direction current flows j_x
- Magnetic field *B* applied in the *z* direction

Hall Effect

- Electric field applied in the *x* direction current flows j_x
- Magnetic field *B* applied in the *z* direction
- An electric field E_y develops in the y-direction

Hall Effect contd.

Hall coefficient

$$R_H = \frac{E_y}{j_x B}$$

• Drudé value of Hall coefficient

$$R_H^D = -\frac{1}{ne}$$

(prove this!)

• Independent of relaxation time!

• Ratio of theoretical and experimental Hall coefficients

• Ratio of theoretical and experimental Hall coefficients HALL COEFFICIENTS OF SELECTED ELEMENTS IN MODERATE TO HIGH FIELDS^a

METAL	VALENCE	$-1/R_H ne$
Li	1	0.8
Na	1	1.2
K	1	1.1
Rb	1	1.0
Cs	1	0.9
Cu	1	1.5
Ag	1	1.3
Au	1	1.5
Be	2	-0.2
Mg	2	-0.4
In	3	-0.3
Al	3	-0.3

• Ratio of theoretical and experimental Hall coefficients HALL COEFFICIENTS OF SELECTED ELEMENTS IN MODERATE TO HIGH FIELDS^a

METAL	VALENCE	$-1/R_H ne$	
Li	1	0.8	
Na	1	1.2	
K	1	1.1	
Rb	1	1.0	
Cs	1	0.9	
Cu	1	1.5	
Ag	1	1.3	
Au	1	1.5	
Be	2	-0.2	
Mg	2	-0.4	
In	3	-0.3	
Al	3	-0.3	
			(1

• Ok for some metals, but suggests that *electrons are positively charged in some metals*! Oh, God!

• Ratio of theoretical and experimental Hall coefficients HALL COEFFICIENTS OF SELECTED ELEMENTS IN MODERATE TO HIGH FIELDS^a

METAL	VALENCE	$-1/R_H ne$
Li	1	0.8
Na	1	1.2
K	1	1.1
Rb	1	1.0
Cs	1	0.9
Cu	1	1.5
Ag	1	1.3
Au	1	1.5
Be	2	-0.2
Mg	2	-0.4
In	3	-0.3
Al	3	-0.3
		(Ashcroft-N

- Ok for some metals, but suggests that *electrons are positively charged in some metals*! Oh, God!
- *Stop the party!*

• Classical theory is able to explain Wiedemann-Franz (Success!)

- Classical theory is able to explain Wiedemann-Franz (Success!)
- Fails with specific heat (Ok, lets see!)

- Classical theory is able to explain Wiedemann-Franz (Success!)
- Fails with specific heat (Ok, lets see!)
- Fails *miserably* with Hall coefficients (Surprise!)

- Classical theory is able to explain Wiedemann-Franz (Success!)
- Fails with specific heat (Ok, lets see!)
- Fails *miserably* with Hall coefficients (Surprise!)
- ۲
- ۲
- Well, we DO NEED Quantum Mechanics!

- Classical theory is able to explain Wiedemann-Franz (Success!)
- Fails with specific heat (Ok, lets see!)
- Fails *miserably* with Hall coefficients (Surprise!)
- ۲
- ۲
- Well, we DO NEED Quantum Mechanics!