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Of course, the questions..

1 How does an alpha particle escape a nucleus?

2 Whats with STM? (Scanning tunneling microscope)

3 And quantum wells?

4 Ramsauer effect – alpha particles incident on inert gas atoms show
“resonances” in transmission!

5 Bound states? Metal-insulator transitions!
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The Great Barrier

V(x) = 0 V(x) = V
0

V(x) = 0

2a

Model (What do you expect classically?)

Scrödinger Recipe: Say energy state is E

− ~
2

2m

∂2ψ

∂x2
= Eψ, |x| ≥ a; − ~

2

2m

∂2ψ

∂x2
+ V0ψ = Eψ, |x| ≤ a

Is E < V0 possible? What happens?

Two length scales (a and
√

~2

2mV0
)!!
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Barrier Tunneling

Think of a state when electron is incident from left

State to the left of the barrier x < −a: superposition of plane wave
“traveling” to right and a “reflected wave”

ψl(x) = eikx + Re−ikx, k =
√

2mE
~2

To the right of the barrier a wave traveling to right ψr(x) = Teikx

Restrict to case when E < V0

The state in the barrier is ψb(x) = Aeqx + Be−qx (q =
√

2m(V0−E)
~2 ) – does

not correspond to a wavelike state
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Barrier Tunneling

How to determine R,T,A,B? Of interest: T!

Use conditions

ψl(−a) = ψb(−a), ψ′
l (−a) = ψ′

b(−a)

ψb(a) = ψr(a), ψ′
b(a) = ψ′

r(a)

four equations for four unknowns! All OK!

Solution T =
4ie2a(−ik+q)kq

(1−e4aq)q2+2i(1+e4aq)kq−(1−e4aq)k2

The quantity |T|2 is probability of transmission...upshot |T|2 ∼ e−4aq!

For a given V0, how does |T|2 depend on E, for various values of

a/
√

~2

2mV0
?
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Barrier Tunneling

Curves for various a/
√

~2

2mV0
indicated

For small a the electron does not feel the barrier, for large a there is very
little transmission

Note “resonances” for large values of a, when E > V0 (not considered, so
far)
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Tunneling in Real Life

Alpha particles: Held to nucleus by very strong nuclear forces. Barrier
height can be of many eVs!! Very high kinetic energy (confinement in
10−15m)!! |T|2 is quite small (in fact, can be shown to be ∼ e−90(!!!!!)), the
number of “attempts” to jump out are large (of the order of 1021 per
second)...probaility of decay is 10−11 per year!!

Ohmic contacts between metals and semiconductors: Need to have
linear I − V characteristics for contacts...problem...contact barrier!
Solution: Try to make a as small as possible by heavily doping
semiconductor near contact...depletion zone size comes down and
electrons tunnel across!
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Tunneling in Real Life

Field emission devices...pull out electrons using voltage–flat panel
displays

STM...maintain a constant tunneling current (at
constant voltage) by adjusting distance...maps out topography of surface!
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Well, What Now?...

V(x) = 0

2a

V(x) = 0V(x) = −V
0

Model (What do you expect classically?)

Scrödinger Recipe: Say energy state is E

− ~
2

2m

∂2ψ

∂x2
= Eψ, |x| ≥ a; − ~

2

2m

∂2ψ

∂x2
− V0ψ = Eψ, |x| ≤ a

What happens when E > 0? Is E < 0 possible?

UP201 ( IISc Bangalore ) Quantum Wells, Tunnels and Swings 9 / 31



Quantum Well

Think of a state when electron is incident from left

State to the left of the well x < −a: superposition of plane wave
“traveling” to right and a “reflected wave”

ψl(x) = eikx + Re−ikx, k =
√

2mE
~2

To the right of the well a wave traveling to right ψr(x) = Teikx

Restrict to case when E > 0

The state in the well is ψw(x) = Aeiqx + Be−iqx (q =
√

2m(E+V0)
~2 ) – does

correspond to a wavelike state of shorter wavelength!

Solve for T in exactly the same way as the barrier problem!
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Quantum Well

Curves for various a/
√

~2

2mV0
indicated

There are particular values of k at which T = 1...”Resonances”...Why?

Roughly explains the Ramsauer effect!

What happens if E < 0?
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Quantum Well – Bound States

2a
V(x) = 0 V(x) = 0V(x) = −V

0

States with −V0 < E < 0 are possible! “Bound states”!

Wavefunction (q =
√

2m|E|
~2 , k =

√
2m(E−V0)

~2 )

ψl(x) = Aeqx, ψw(x) = Beikx + Ce−ikx, ψr(x) = De−qx

Main idea: Wavefunction decay exponentially outside the box!

How to determine allowed Es?
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Quantum Well – Bound States

Use exactly same ideas as before

ψl(−a) = ψw(−a), ψ′
l (−a) = ψ′

w(−a)

ψw(a) = ψr(a), ψ′
w(a) = ψ′

r(a)

Main point: Homogeneous equations for A,B,C,D

Condition of non-triviality gives possible energy states

√

|E|
V0 − |E| = tan

(√

2m(V0 − |E|)a2

~2

)

n even

√

|E|
V0 − |E| = − cot

(√

2m(V0 − |E|)a2

~2

)

n odd
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Bound States...Big Deal?

Whats the big deal?

The “simplest” model of an atom!!

Bound state are always possible in 1D (and 2D..I am not sure about this)
for “attractive” potentials

Quantum wells are used for many purposes... Infrared sensor, lasers etc.
etc..
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Bound States...Big Deal?

In 3D there are attractive potentials for which there are no bound

states!For example, V(r) ∼ e−ξr

r , there is no bound state for
ξ > ξc...crucial to understand metal-insulator transitions (Mott)

P in Si
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Summary

Tunneling : Transmission probability goes as e−2ℓq where ℓ is the size
scale of the barrier

Quantum wells: “Resonances”

Bound states: Again useful for many things!
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Why Harmonic Oscillator?

What is with specific heat of solids?

Molecular vibrations?

Light itself...really?
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1D Harmonic Oscillator

Hamiltonian (ω – “natural frequency”)

H =
P2

2m
+

1

2
mω2X2

What are the energy eigenvalues and eigenstates? Need to solve

Hψ = Eψ

Are there bound states? Extended states? Both?
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1D Harmonic Oscillator

What can we say without solving anything?

Well, what do you expect classically? Any energy E is possible. Particle

will be confined to |x| ≤
√

2E
mω2

Looks like we will have only bound states!

Clearly, 〈X〉 = 0!
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1D Harmonic Oscillator

Since, 〈X〉 = 0, 〈V(X)〉 = 1
2 mω2∆x2

Since bound state, 〈P〉 = 0 and 〈 P2

2m 〉 =
∆p2

2m

From uncertainty relation ∆p = ~

∆x

Total energy E = ~
2

2m∆x2 +
1
2 mω2∆x2

We can show this energy is minimum if ∆x =
√

~

mω , for this value of ∆x,

E ≈ ~ω!

Thus, uncertainty principle tells us that the minimum energy level of the
harmonic oscillator must have energy of the order of ~ω!

Contrast this with classical result!
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Solution of Quantum Swing

Solution of − ~
2

2m
∂2ψ
∂x2 + 1

2 mω2x2ψ = Eψ is a bit technical

Allowed energy levels En = (n + 1
2 )~ω, n = 0, 1, 2...

Lowest energy level 1
2~ω! Very close to our estimate!

Levels are equally spaced

Energy eigenstates ψn(x) = CnHn(αx)e−
1
2α

2x2

with α =
√

mω
~

,

Cn =
√

α√
π2nn!

Hn(ξ) are the Hermite polynomials which satisfy the differential
equation H′′

n (ξ)− 2ξH′
n(ξ) + 2nHn = 0
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Hermite Polynomials...What?

Hn(ξ) are the Hermite polynomials which satisfy the differential
equation H′′

n (ξ)− 2ξH′
n(ξ) + 2nHn = 0

(Pauling and Wilson)
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What does the ground state look like?

ψ0(x) ∼ e−
1
2α

2x2

(Pauling and Wilson)
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What do other states look like?

(Pauling and Wilson)
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(Extra) Playing God with Quantum Swing!

Much cleaner way to derive energy levels...play God with Driac
notation!

Intrinsic length scale xo =
√

~

mω , momentum scale po =
√
~mω

Define nondimensional operators X̂ = X
xo

and P̂ = P
po

Hamiltonian H = ~ω
(

1
2 P̂2 + 1

2 X̂2
)

Commutation relation [X̂, P̂] = i

UP201 ( IISc Bangalore ) Quantum Wells, Tunnels and Swings 25 / 31



(Extra) Playing God with Quantum Swing!

Define annihilation operator a = X̂+iP̂√
2

Creation operator: Hermitian conjugate a† = X̂−iP̂√
2

Clearly X̂ = a†+a√
2

and P̂ = a−a†√
2i

Commutation relation [X̂, P̂] = i implies [a, a†] = 1

Hamiltonian H = ~ω
(

1
2 P̂2 + 1

2 X̂2
)

= ~ω
(
a†a + 1

2

)
!!

Clearly, H and a†a have the same eigenvectors! Thus, if a†a|α〉 = α|α〉,
H|α〉 = ~ω(α+ 1

2 )|α〉
Anticipating, lets us call a†a = N, a Hermitian operator
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(Extra) Playing God with Quantum Swing!

Suppose, N|α〉 = α|α〉, what is a|α〉?
Na|α〉 = a†aa|α〉 = (aa† − 1)a|α〉 = (α− 1)a|α〉! This implies
a|α〉 = C|α− 1〉, with C =

√
α! Annihilation operator!

Similarly, a†|α〉 =
√
α+ 1|α+ 1〉! Creation operator!

“Clearly”: am|α〉 =
√

α(α− 1)(α− 2)...(α− (m − 1)|α− m〉...this
necessarily implies that α has to be a nonnegative integer! Thus
α = 0, 1, 2...etc. We have shown that the eigenvalues of N are
nonnegative integers i. e., N|n〉 = n|n〉!
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(Extra) Playing God with Quantum Swing!

H = ~ω
(
N + 1

2

)
, H|n〉 = ~ω

(

n +
1

2

)

︸ ︷︷ ︸

En

|n〉

The ground state is |0〉...called “vacuum” state

Any higher state can be generated from the ground state |n〉 = (a†)n

√
n!
|0〉

Modern theory of solids is formulated using creation and annihilation
operators, the number n being interpreted as the “number of particles”

The above are called Bose operators (applicable to phonons); for
electrons there are Fermi operators which satisfy anti-commutation
relations!
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Phonons in solids

Quantized lattice vibrations! Phonon frequency depends on wavelength

Ashcroft and Mermin
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Phonons, and other things

Quantum mechanics explains specific heat anomaly (if
kbT ≪ ~ω,Cv ∼ e−~ω/kbT, if kbT ≫ ~ω,Cv ∼ kb (Dulong-Petit)) Quantum
alacrity!

Can be used to understand molecular vibrations

Quantum theory of light is developed in “exact analogy” with the
theory of phonons...can show that light of frequency has energy levels
~ω(n + 1

2 ) where n is the number of photons...if you have large n you
will have very intense light

More interestingly this will tell you that “vacuum” in quantum
mechanics is a VERY BUSY place!
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Summary – Quantum Swing

Energy levels go as
(
n + 1

2

)
~ω

There is a very nice way to do this using creation and annihilation
operators

Explains many things about materials – example specific heat anomaly

Quantum swing is a very basic problem in physics, it will arise in one
form or other in many problems
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