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Preface

Here I attempt to put down a stream of concious-
ness that summarizes what I understand of physics
in 1+1, i. e., one space and one time dimensions. The
material is freely lifted from various sources without
attribution – the best way to lift!
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1

Special Relativity

1.1 Einstein’s ideas

In early 1900s Einstein concluded that radical changes
are necessary in our views about space and time.
This was forced on him by the theory of electromag-
netism of Maxwell (who was inspired by Faraday,
among others) which refused to obey the “rules” of
Galilean transformations so stringently verified in
“real life” of those times (late 1800s). With no obvi-
ous way to tame electromagnetism into the Galilean
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4 1. SPECIAL RELATIVITY

framework, Einstein decided to abandon it make a
new one which would entail reformulating Newto-
nian mechanics.

Einstein still held steadfast on to a couple of ideas
of Galileo. First is that of an inertial frame which I
shall not venture to define – you know one when you
see one. Second, is the

THE PRINCIPLE OF RELATIVITY

Laws of physics are identical in all inertial frames.

Einstein agreed insisted that physics as seen by
two people moving uniformly with respect to each
other would be identical – this is the first postulate
of the special theory of relativity. You might squirm
thinking – but isn’t this what Newton said – so what
is the big deal? The key point realized by Einstein is
that to bring mechanics and electromagnetism into a
unified theory one needs a second postulate.

“INVARIANCE” OF SPEED OF LIGHT

The speed of light c as measured by all inertial observers
is the same.
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There is no “trick” – all observers agree on the units –
and the speed of light is always 3×108meters/second
for all inertial observers! This, at first (and even now
for me), is quite puzzling. The natural question that
arises is, why in an egalitarian world would light be
allowed a special favour? Rather, that being bogged
down by this question, we will proceed with explor-
ing the consequences of this postulate.

1.2 Spacetime...or Timespace

To do this we need to introduce the idea of space-
time and we will do this a lá Minkowski. The key
concept is that of an event. An event is a time t and
place in space r. In a world with one spatial dimen-
sion, an event is described by an ordered pair (t, r).
This, obviously, is not very comforting since t (units
of time) and r (which has units of length) have dif-
ferent dimensions, so that natural thing to do is to
define an event by the ordered pair (ct, x). We will
redefine this as (x0, x1) ≡ (ct, x), an act that is equiv-
alent to setting c = 1. We will also use index notation
xµ, µ = 0, 1 to denote and event. We see why we say
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that we are in 1+1 – we are in a world with 1 time
and 1 space dimension each.

The set of all events (x0, x1) is the 1+1 Minkowski
space or the 1+1 timespace (or spacetime). A “path”
connecting two events is called a “world line”. A
world line can describe the trajectory taken by a “par-
ticle”. If, for example, xµA corresponds to a flash-
light being turned on, xµB could be an event where
the light from the flashlight reaches. Assuming that
the two events are “close together” we define

dxµ = xµB − xµA (1.1)

which describes an infinitesimal world line from A

to B. We now define

ds2 = (dx0)2 − (dx1)2 (1.2)

which can be written in a nice form as

ds2 = gµνdxµdxν = dxνdxν (1.3)

where

gµν ≡
(

1 0
0 −1

)
. (1.4)
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We have introduced and used the Einstein summa-
tion convention where all the repeated indices (one
up and one down) are summed over 0 and 1 times-
pace coordinate labels. The inverse of the g-matrix
(metric tensor) is

gµν ≡
(

1 0
0 −1

)
. (1.5)

The two gs which we will distinguish by context, can
be used to raise and lower indices.

1.3 What do different observers agree
on?

Now the same two events A and B can be observed
by another observer who is moving uniformly at speed
v with respect to us. She will call the events yµA and
yµB, and she will also define

dyµ = yµB − yµA (1.6)

and define, an analogous,

ds̃2 = gµνdyµdyν. (1.7)
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Clearly, the two of us will not agree on the event co-
ordinates. But is there something that we will agree
on?

To find out what this is, use Einstein’s second
postulate - the speed of light in both our frames is
the same. Now imagine A to be the event when a
flash of light denoted by xA in my frame, and yA in
the moving frame. It reached B which I recorded as
xB, and she yB. What can we say about ds2 for a
worldline of light? Note that (going back to “usual
things” t, r) ds2 = (dx0)2 − (dx1)2 = c2dt2 − dr2 = 0,
because light moves with the speed of light! Now,
the world line seen by the moving observer ds̃2 =
(dy0)2 − (dy1)2 = c2dt̃2 − dr̃2 = 0 also (where t̃, r̃
are time and space coordinates seen by the moving
observer)!– this is again zero by Einstein’s postulate
that light speed is same in both frames. We conclude
that for worldlines of light ds2 = ds̃2, which is the
way of expressing Einstein’s second postulate.

Now what about the world line of some other ob-
ject such that is not light? Einstein has nothing ex-
plicit to say about this, but we can deduce by invok-
ing a couple of key ideas (which perhaps we should
elevate to the level of postulates). The first is the ho-
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mogeneity of timespace, and second is the isotropy
of space. For, the event can have whatever xA, but
the holy grail is ds2; this also applies to the moving
frame. We then conclude that

ds̃2 = ζ(v)ds2 (1.8)

where ζ(v) is a yet to be determined function. By
isotropy of space ζ(v) must depend only on the mag-
nitude of v since moving to the left will produce no
different physics than moving to the right. Thus ζ(v) ≡
ζ(|v|). But now we realize that from the point of view
of the moving observer

ds2 = ζ(−v)ds̃2 = ζ(|v|)ds̃2 (1.9)

Taking these results together we see that

ζ(|v|)2 = 1, (1.10)

independent of v! Now ζ(v = 0) = 1, and thus we
are forced to conclude ζ(v) = 1. The upshot of the
discussion is the

INVARIANCE OF ds2

Einsteins postulate along with homogeneity and isotropy
of timespace ensure that ds2 is invariant between frames.
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1.4 The Lorentz Transformation

The next question is what is a transformation rule
that relates yµ with xµ such that ds2 is invariant for
every set of two events A and B in both the frames.
It is natural to look for a transformation of the form

yµ = Λµνx
ν + aµ (1.11)

What areΛµν and aµ? Note that dyµ does not depend
on aµ. This is because aµ stands for a shift of the the
origin of timespace. In other words, what I would
call an event at my spatial and temporal origin will
be called as aµ by my friend in the moving frame. It
is also easy to see that Λµν depends on the velocity v
of the my friend’s frame. This follows from

ds̃2 = gµνdyµdyν = gµνΛ
µ
σΛ

ν
ηdxσdxη

= gσηdxσdxη = ds2.
(1.12)

Since ds2 and ds̃2 are related by a factor ζ(v), it fol-
lows that Λ depends on v. The last equation gives

ΛµσgµνΛ
ν
η = gση (1.13)
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From this, one can go on to show that the Λ matrix
must have the form

Λ ≡
(

cosh θ sinh θ
sinh θ cosh θ

)
(1.14)

and evidently θ depends on v. How do we deter-
mine this dependence? The worldline of the moving
observer as seen by me is given by the equation

a1 = Λ1
νx
ν + a1, (1.15)

this because, in her reference frame, her position co-
ordinate is always a1. Writing this in “usual quanti-
ties” gives us

0 = sinh θ× (ct) + cosh θ× r (1.16)

which is the equation of the trajectory of the moving
observer in our frame. We immediately have

tanh θ = −
v

c
≡ β (1.17)

and

Λ ≡ 1√
1 − β2

(
1 −β
−β 1

)
(1.18)
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Incidently, the form in eqn. (1.14) is not the only way
we can write this; for example, the coshθ could have
had a − sign in front of it. We will not bother about
such nicities for now, and stick to the from in eqn. (1.14)
which defines what is called an

ORTHOCHRONOUS LORENTZ(POINCARÉ) TRANS-
FORMATION

(
y0

y1

)
=

1√
1 − β2

(
1 −β
−β 1

)(
x0

x1

)
+

(
a0

a1

)
(1.19)

1.5 Some Consequences

1.5.1 “Simultaneity” is not invariant!

Two events are said to be simultaneous in a frame,
if they both have the same time (”0”) coordinate in
that frame. A key consequence of the Lorentz trans-
formation is that events that are simultaneous to me
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are generally not so to my moving friend. This is eas-
ily seen by setting xA ≡ (0, x1

A) and xB ≡ (0, x1
B). The

Lorentz transformation shows that yA ad yB will have
will different time coordinates if v 6= 0. A nice way
to visualize this is using Einstein’s train car analogy.

1.5.2 Time dialation

I am observing my friend move away from me. In
her frame, her position coordinate does not change
(as embodied in eqn. (1.15)). However, her clock
ticks! We would now like to relate an interval t̃ on
her clock and the corresponding interval t on my
clock. The equation to look at is (in natural coor-
dinates)

ct̃+ a0 =
ct− βx√

1 − β2
+ a0 (1.20)

Along this world line in our frame x = vt, and this

t̃ =
√

1 − β2 × t (1.21)

Thus time elapsed on the the moving clock is “smaller”,
i.e., time “runs at a slower rate” on a moving clock –
time dialates!
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1.5.3 Length contraction

A key point is the process length measurement in
a frame of an object like a rod orresponds to two si-
multaneous events in that frame. Consider our friend
carrying a rod AB of length L0 in her frame. The
measurement process gives her two events in her
frame say yA = (0, 0) and yB = (0,L0). To simplify
the discussion, I have taken aµ = 0. However, as we
know these events will not be simultaneous for me.
By choice of aµ, we know that xA = (0, 0) i.e, the A-
end of the rod is at my timespace origin at time t = 0
in my frame. What I need to do is to find where the
other endB of the rod is at time t = 0 in my frame, let
us denote this by the event (0,L) in my frame. Now
the event yB corresponds to

x0
B = γβL0, x1

B = γL0 (1.22)

But note that the B end of the rod also moves with
velocity v respect to me, which means that x1

B = L +
βx0
B. The upshot is that

L =
√

1 − β2 × L0 (1.23)
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This is the “length contraction”, an moving object
appears shorter in its direction of motion.

1.5.4 Einstein’s Law of Velocity Addition

Suppose I observe a particle move in my frame and
describe this by a worldline xµ(τ) where τ is a pa-
rameter (we will see later that there is natural choice
for this parameter). My friend who is moving with
a velocity v with respect to me describes the same
phenomenon by a world line yµ(τ). The velocity of
the particle measured in each of the frames

wx = c
dx1

dx0 . wy = c
dy1

dy0 (1.24)

and the natural question is how is wy related to wx
(the Galilean answer is wy = wx − v). By Lorentz
transformation

wy = c

(
−βdx0 + dx1

dx0 − βdx1

)
=
wx − v

1 − vwx
c2

(1.25)

which is the Einstein’s law of velocity addition. It
has all the expected features – reduces to Galilean
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result for β� 1 and we get wy = c if wx = c (which
is Einstein’s second postulate).

1.5.5 Proper velocity

It is rather disconcerting that the velocity addition
law eqn. (1.25) does not have a “nice” form, in the
sense that the velocity addition law is “nonlinear”
unlike the Lonrentz transformation. Also, there is
another philosophical point – the Lorentz transfor-
mation treats space and time on an “equal” footing,
while the velocity addition law speaks only about
velocity of the type dr

dt .
Here is where the parameter τ introduced at the

beginning of the last section comes to our rescue. Let
us define something which is called a proper velocity
in my frame as

uµx =
dxµ

dτ
(1.26)

and my moving friend will define it as

uµy =
dyµ

dτ
(1.27)
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Here is a beautiful thing: if we choose τ as the proper
time associated with the particle we both are observ-
ing, then some nice things happen. In fact, since the
particle could be moving non-uniformly, the natural
thing to look at is not τ itself, but a differential dτ.
Clearly,

dτ =

√
1 −

(wx
c

)2
×dt =

√
1 −

(wy
c

)2
×dt̃ (1.28)

Since dτ is time seen by the particle in its frame, this
does not change when we go from my frame to my
friend’s frame. We know that dyµ = Λµνdxν, and this
immediately gives

uµy = Λµνu
ν
x (1.29)

Ah, the proper velocity transforms nicely! And, in
fact, we see that

gµνu
µ
yu
ν
y = gµνu

µ
xu
ν
x = c2 (1.30)

If we were to write in “usual language”, we see that(
u0
x

u1
x

)
=

1√
1 − β2

x

(
c

wx

)
(1.31)

where βx = wx
c

.
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1.5.6 Doppler Effect

Light is described by a wave, i. e., using “usual lan-
guage” by

φ(t, x) = Ae(i(kr−ωt)) (1.32)

where where k is the wavevector, and ω = ck is the
frequency. This wave propagates (in my frame) to-
wards the positive r-axis in my frame. This can be
written in a nicer form for the present purposes

φ(xµ) = Ae−ikµx
µ

(1.33)

where (
k0

k1

)
=

(
ω
c

k

)
(1.34)

and, of course, kµ = gµνk
ν. Now in my friends mov-

ing frame (moving with velocity v with respect to
me) the same light wave is described by φ̃(yµ), and
it is natural to demand

φ̃(yµ) = φ(xµ), (1.35)

and it is immediate that

φ̃(yµ) = Ae−ik̃µy
µ

(1.36)
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where

k̃µ = kν(Λ
−1)νµ = γ

(
γ(1 − β)ω

c
−γ(1 − β)k

)
(1.37)

whence we see that

ω̃ =

√
1 − β

1 + β
×ω (1.38)

with a similar formula for k̃. Thus is my friend is
moving in the same direction as the light wave (to-
wards +r axis, i.e., β > 0) then she will see a red-
shifted light.

This result derived from rather opaque consid-
erations can be seen in a better fashion as follows.
Imagine that I have a light-gun which shoots mass-
less bullets (aka photon) at r = 0; the light-gun shoots
one bullet every T = 2π

ω
seconds. Now my friend is

moving with respect to me at velocity v, and things
are set up such that she and I were at r = 0 and t = 0
(in both our frames) when the light gun emitted its
first bullet. Now she continues to move to right,
and after a time T in my frame the light gun emits
second bullet, which will reach her at time T̃ in her



20 1. SPECIAL RELATIVITY

frame – she denotes this event as (0, T̃). Question is
what is the relationship between T̃ and T? The event
of the second light-bullet reaching my friend is ob-
served by me as (ct, vt), where t is the elapsed time
in my frame. But we know that the second light-
bullet started off from the origin only at a time T
later, and thus c(t − T) = vt, or t = 1

1−βT . But we
know from time dialation formula that

T̃ =
√

1 − β2 × t =

√
1 + β

1 − β
× T (1.39)

which is precisely eqn. (1.38).
This brings us to the end of a survey of the es-

sential kinematic effects that are brought about by
Einstein’s postulates.

1.6 Relativistic Dynamics

Newton’s law states that F = dp
dt , where F is the force

and p is the momentum. This is, of course, Galilean
invariant. It is Lorentz invariant? If we probe this,
we will find soon that there are many difficulties. Let



1.6. RELATIVISTIC DYNAMICS 21

us illustrate this with a simple example. Consider, in
my frame two particles of equal mass m moving in
opposite directions with velocitieswx and −wx. The
collide with each other and come to rest (evidently,
a particle of mass 2m). This entire process conserves
momentum (as it should) in my frame. Let us now
as my friend moving with velocity v as to what she
finds. First of all, the initial total momentum of the
two particle in her system is m(wx−v)

1−wxv

c2
− m(wx+v)

1+wxv

c2
(by

Einsten’s law of velocity addition). After the colli-
sion, she will find the momentum to be −2mv. In
other words she find that momentum is NOT con-
served! This is quite unsettling!

Actually, the root cause of all this is the velocity
addition law which “does not look nice”, and we in-
herit the “problems of velocity” by defining p = mu.
What would be a natural way to defined momen-
tum? Well we have already seen that the proper ve-
locity transforms nicely, and so it is natural to define
momentum as

pµ = muµ (1.40)

It is natural to now insist first that the total pµ be a
conserved quantity. Let us see the consequences of
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this definition before we go on.

First, it is evident that with this definition the
sum total p1 of the colliding balls in both the frames
before and after collision to be equal! So this defi-
nition makes law of conservation of of the momen-
tum a “physical law”, i. e., something that is same in
all frames. But note that what we usually call mo-
mentum is only the “1” component of pµ. And what
is more a Lorentz transformation from one frame to
another “mixes up” the ps of our frame to give the
ps in the other frame. The natural thing to ask for is
that the total pµ vector is conserved. Now this leads
a bit of a puzzle with the 0 component. In my frame,
the total p0 before collision was 2mc√

1−(wxc )
2
, this has

to be equal to it after collision. What this means is
that after the particles have coalesce into one, p0 =

2mc√
1−(wxc )

2
. Since the velocity of the final particle, one

would have expected this to be 2mc, but quite inter-
estingly we find something larger. Natural question
is how do we interpret p0?

Lets simply begin by trying to interpret the defi-
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nition. We see that for a particle of massm

p0 =
mc√

1 −
(
wx
c

)2
(1.41)

We see that this will be

p0 ≈ 1
c

(
mc2 +

1
2
mw2

x

)
(1.42)

be when |wx| � c. This apart from the factor of 1/c
and the constant term mc2 looks like the (Newto-
nian, nonrelativistic) kinetic energy of the particle.
One suspects then that p0 = E

c
!

If this is true, then one should be able to see that
rate of work done on the particle by a force F must
the rate of change of energy. Consider now a sin-
gle particle on which a force F is acting. Since p1 is
a consistent definition of momentum, a reasonable
form Newton’s law is (which reduces to the usual
case when |wx|� c is

F =
dp1

dt
=

d
dt

 mwx√
1 −

(
wx
c

)2

 (1.43)
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Now the rate of work done, or power is

Fwx = wx
d
dt

 mwx√
1 −

(
wx
c

)2


=

mwx

(1 −
(
wx
c

)2
)3/2

dwx
dt

= c
dp0

dt

(1.44)

from where we obtain the relation

p0 =
E

c
(1.45)

where E is the energy of the particle. For a particle
of mass m at rest in our frame, p0 = mc leading to
the famous

E = mc2 (1.46)
which is the rest energy a particle of mass m. Note
that

pµp
µ =

(
E

c

)2

− p2 = m2c2 (1.47)

(using eqn. (1.30)) which results in

E2 = p2c2 +m2c4 (1.48)


	Special Relativity
	Einstein's ideas
	Spacetime...or Timespace
	What do different observers agree on?
	The Lorentz Transformation
	Some Consequences
	``Simultaneity'' is not invariant!
	Time dialation
	Length contraction
	Einstein's Law of Velocity Addition
	Proper velocity
	Doppler Effect

	Relativistic Dynamics


