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1 Generating functional for correlation functions

Consider a scalar QFT, defined by the action functional,
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The Classical dynamics is described by the equation of motion,
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However all the information of the quantum dynamics are contained in the infinite set of n-point time
ordered Green’s functions/correlation functions,

G™ (z1,...,2,) = (T(x1) ... p(an)),

for arbitrary n. Note that there are actually n! terms on the rhs of the above equation, since there are n!
number of possible time orderings of n-points.

One can gather together all the Green’s functions together into a single “generating functional of
Green’s functions”, Z[J(x)]. This is a Taylor series (in powers of J(x)!), the expansion coefficients of
which are the n-point Green’s functions of the theory,
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Thus the aim of solving the QFT (which is to compute n-point time-ordered Green’s functions for arbitrary
n) can be readily accomplished by solving for the generating functional, Z [J], once and for all. To this
end one needs to find the equation obeyed by Z [J], which is known as the Schwinger-Dyson (SD) equation.

!For reasons which will become apparent, J(z) is dubbed the “Schwinger source” function. Since its a function, it is not
quantized, i.e. it is a classical object.



Exercise:

A. Show that when the source, J(z) is not set to zero, i.e. for J # 0, the functional derivative of the

generating functional is,
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B. Generalize this to an arbitrary power or polynomial of, F(¢(x)) = " a, ¢"(x),
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2 Schwinger-Dyson (SD) Equation for Scalar field theory

" / APy . AP (T F (6(2))(21) . .. (@) J(@1) ... (wn) = F (W(x)) Z1J].

(4)

(5)

To set up the SD equation, we first see how the Green’s functions propagate. The first non-trivial case is

thus the two point function. For this we first compute the time derivative

X(T 6(2)6(y)) = o (02" = ") (@) (y)) + (" — 2°) (B(y)(x))
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The second term in line 2 containing a delta function vanishes on account of the equal time commutation

relation. Then we take a further time derivative
BT (x)p(y)) = (T d(x)p(y))
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Here again we simplified the second term containing the delta function using the equal time commutation

relation,
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One can then compute easily the Laplacian acting on the two point function to get,

VAT ¢(x)p(y)) = (T V3¢(z) d(y)).

Thus the d’Alembertian operator acting on the time-ordered two point function turns out,

O*(T ¢(x)d(y)) = (T 9*¢(x) d(y)) —i 6*(x — ).



Exercise:

A. Show that for time-ordered three point function,
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the action of the d’Alembertian is,
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B. Generalize the above to a general (n + 1)-point function using induction

n
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Applying 92 to both sides of Eq. (4) and then plugging in the result (8) as well as using the equation
of motion (2), we get,
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Thus we have arrived at the Schwinger-Dyson equation for the generating functional of this QFT,
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Note that this is a functional differential equation. Also the polynomial in ¢, V'(¢) has been replaced by
a polynomial in derivatives, V' (%), thus rendering the differential equation linear.

Note that if we define, an expectation value of in the presence of source, J as,
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then the above SD equation turns out to be
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which is just the same equation of motion as the scalar but with a source term in the rhs. Thus J is
justified to be dubbed as a source.

3 Solution of the SD-equation : Functional representation of the gen-
erating functional (Feynman Path Integral)

As in the case with any linear differential equation, the first step in solving it is to switch to functional
Fourier transformed variables,

Z1(y)] = / [dp(y)] ¢4V IWRW) Z ()]

The measure [dp(z)] is a measure on the space of functions, ¢(z) as as such is a formal device which is
not mathematically well defined (It can only be defined on a lattice i.e. thru a regulator, and then the
limit of vanishing lattice spacing). Second thing to note is that ¢(x) is an integration variable which is
not the scalar field, ¢(z), yet. However, we will see it can be identified with the “off-shell”scalar field
¢(x) (courtesy Feynman’s insight about the functional integral as representing a sum over histories aka
the path integral) and hence we will end up swapping ¢ for ¢ in the final expression. We get,
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Now recall that derivative of a definite integral is zero,
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which we plug in Eq. (10) and get the Fourier transformed SD-equation,
ov ) ~
FPo+——(p)+i Z ] =0. 11
v+ 5 ¥) 5o(2) (] (11)

This is a first order (functional) differential equation and can be solved using an integrating factor (com-
plete this in the following exercise). The solution is,

Z[p] = Ne~i/d"= [p0?e+V ()] — (i lle], (12)

where, I is the action functional, (1) and N is some integration constant.



Exercise:

Complete the derivation (12) from (11).
Thus finally we have the solution to the SD-equation,
Z[J] :N/[d@] cillel+[ dPy J(y)e(y)

The boundary condition, Z [J = 0] = 1 implies determines the hitherto undetermined integration constant,
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Now we can swap, ¢ with our field variables, ¢ as we see that the action for ¢ makes an appearance,

Z [J(z)] :N/[d¢] e [g@)]+[ dPy J(z)¢(x) (13)

Feynman first obtained such functional expressions as “vacuum to vacuum amplitudes” in the presence
of a source, J (creating or destroying ¢ excitations),

Z[J] = (0[0)s

and he interpreted the functional integral as a weighed sum over paths/ sum over histories with the weight
of a path/ history being the phase, exp (i I) i.e. the exponential of the action evaluated on that path.
Note that functional integral is over all ¢ i.e. these paths are arbitrary i.e. they do not have to obey the
classical equation of motion. Further, noting that taking (powers of) functional derivatives wrt J, adds
(powers of) ¢ to the functional integrand,
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and then using Eq.(3), we get a functional integral representation of time-ordered Green’s functions,
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Exercise: Free Field Theory
A. Show that for free theory (denoted by subscript 0), i.e. when
1
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the functional integration (13) can be carried out to entirely to solve,
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where is iAp the time-ordered two point function for free fields aka the Feynman propagator aka the
causal Green’s function.

B. Using (15) show that for free fields

(To(xy)...0(xn)) =0, n=odd.

C. If n = 2m, i.e. even, then the rhs is a product of propagators,

(Tp(x1) ... ¢(x4)) = iAp(x1, 22) iAF(23, 74) + iIAp (21, 23) iAF(22, T4) + IAR (21, 24) iAF(22, 73).

(For general n = 2m there are %

of total 2m objects). Express this in terms of diagrams (these are the position space Feynman diagrams).

terms of corresponding to various ways of making m pairs out

4 Interacting Fields and Feynman diagram expansions

For Interacting theories, for which, V(¢) = m72¢2 +> %d)", one can show (by noting that inside the
functional integral ¢ can be replaced by )
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