
Lecture 2:
“Computer Systems: The Big Picture”

John P. Shen & Gregory Kesden
August 30, 2017

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 1

18-600 Foundations of Computer Systems

➢ Recommended Reference:
❖ Chapters 1 and 2 of Shen and Lipasti (SnL).

➢ Other Relevant References:
❖ “A Detailed Analysis of Contemporary ARM and x86 Architectures” by

Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam . (2013)
❖ “Amdahl’s and Gustafson’s Laws Revisited” by Andrzej Karbowski. (2008)

CS: AAP

CS: APP

18-600

Lecture 2:
“Computer Systems: The Big Picture”

1. Instruction Set Architecture (ISA)
a. Hardware / Software Interface (HSI)
b. Dynamic / Static Interface (DSI)
c. Instruction Set Architecture Design & Examples

2. Historical Perspective on Computing
a. Major Epochs of Modern Computers
b. Computer Performance Iron Law (#1)

3. “Economics” of Computer Systems
a. Amdahl’s Law and Gustafson’s Law
b. Moore’s Law and Bell’s Law

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 2

18-600 Foundations of Computer Systems

18-600 Lecture #28/30/2017 (©J.P. Shen) 3

Anatomy of Engineering Design

SPECIFICATION: Behavioral description of “What does it do?”

Synthesis: Search for possible solutions; pick best one. Creative process

IMPLEMENTATION: Structural description of “How is it constructed?”

Analysis: Validate if the design meets the specification.

“Does it do the right thing?” + “How well does it perform?”

ARCHITECTURE: (ISA) programmer/compiler view = SPECIFICATION
• Functional programming model to application/system programmers

• Opcodes, addressing modes, architected registers, IEEE floating point

IMPLEMENTATION: (μarchitecture) processor designer view

• Logical structure or organization that performs the ISA specification

• Pipelining, functional units, caches, physical registers, buses, branch predictors

REALIZATION: (Chip) chip/system designer view

• Physical structure that embodies the implementation

• Gates, cells, transistors, wires, dies, packaging

Instruction Set Processor Design

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 4

[Gerrit Blaauw & Fred Brooks, 1981]

1. Instruction Set Architecture (ISA)

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 5

a. Hardware / Software Interface (HSI)

b. Dynamic / Static Interface (DSI)

c. Instructure Set Architecture Design & Examples

Lecture 2: “Computer Systems: The Big Picture”

The Von Neumann Stored Program Computer

18-600 Lecture #28/30/2017 (©J.P. Shen) 6

• The Classic Von Neumann Computation Model: Proposed in 1945 by John
Von Neumann and others (Alan Turing, J. Presper Eckert and John Mauchly).

• A “Stored Program Computer”
1. One CPU

• One Control Unit
• Program Counter
• Instruction Register

• One ALU

2. Monolithic Memory
• Data Store
• Instruction Store

3. Sequential Execution Semantics
• Instructions from an Instruction Set (ISA)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Anatomy of a Computer System: (ISA)

18-600 Lecture #28/30/2017 (©J.P. Shen) 7

Application programs

Processor Memory I/O devices

Operating system

Software

(programs)

Hardware

(computer)

COMPILER

OS

ARCHITECTURE

➢What is a Computer System?
❖ Software + Hardware

❖ Programs + Computer  [Application program + OS] + Computer

❖ Programming Languages + Operating Systems + Computer Architecture

ISA

Computer
Engineering

Application Software
• Program development
• Program compilation

Hardware Technology
• Program execution
• Computer performance

Computer Hardware/Software Interface (HSI)

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 8

Instruction Set Architecture (ISA) SPECIFICATION

IMPLEMENTATION

Software
Engineering

P
ro

ce
ss

o
r

D
es

ig
n

P
ro

gr
am

D
ev

el
o

p
m

en
t

CS: APP

CS: AAP

Quantum Physics

Transistors & Devices

Logic Gates & Memory

Von Neumann Machine

x86 Machine Primitives

Visual C++

Firefox, MS Excel

Windows

Computer Dynamic/Static Interface (DSI)

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 9

Dynamic/Static Interface (DSI)=(ISA)

“s
ta

ti
c”

“d
yn

am
ic

”

Architectural State

Microarchitecture State

MACHINE

PROGRAM

Exposed to SW

Hidden in HW

Buffering needed between arch and uarch states:
• Allow uarch state to deviate from arch state.
• Able to undo speculative uarch state if needed.

Architectural state requirements:
• Support sequential instruction execution semantics.
• Support precise servicing of exceptions & interrupts.

ARCHITECTURE

DSI = ISA = a contract between the program and the machine.

18-600 Lecture #28/30/2017 (©J.P. Shen) 10

Dynamic/Static Design Space: DSI Placement
[B. Rau & J. Fisher, 1993]

Front end & Optimizer

Determine Depend.

Determine Independ.

Bind Resources

Execute

Bind Resources

Hardware

Compiler

Sequential

(Superscalar)

Dependence
Architecture

(Dataflow)

Independence
Architecture

(Attached

Array

Processor)

Independence
Architecture

VLIW

Determine Independ.

Determine Depend.

18-600 Lecture #28/30/2017 (©J.P. Shen) 11

RISC vs. CISC Transition from CISC to RISC:

[Josh Fisher, HP]

High
Level
Lang.

CISC
Object
Code

Micro-
Code
Stream

Execution
Hardware

High
Level
Lang.

RISC
Object
Code

Execution
HardwareMissing

DSI

CISC

RISC

Micro-
Code

18-600 Lecture #28/30/2017 (©J.P. Shen) 12

Another way to view RISC

High
Level
Lang.

RISC
Object
Code

Execution
Hardware

High
Level
Lang.

Com-
piled
Vertical

Execution
Hardware

Micro

DSI

RISC

RISC?
CISC?

MissingVLIW?

Macro
Code Code

18-600 Lecture #28/30/2017 (©J.P. Shen) 13

High
Level
Lang.

CISC
Object
Code

Decoded

/Cached

Uops

Execution
Hardware

High
Level
Lang.

RISC
Object
Code

Execution
HardwareMissing

DSI

CISC

X86 P6

RISC

Micro-
Code

All x86 processors since Pentium Pro (P6)

RISC vs CISC: does it matter?

Instruction Set Architecture (ISA) Design

➢ Instruction Types

▪ Operation Specifiers (OpCodes)
▪ Operand Specifiers
▪ Addressing Modes

➢ Exceptions Handling

➢ Design Styles: Placement of DSI

▪ RISC vs. CISC
▪ Historically Important ISAs

18-600 Lecture #28/30/2017 (©J.P. Shen) 14

Instruction Types and OpCodes

18-600 Lecture #28/30/2017 (©J.P. Shen) 15

FOUR CLASSES OF INSTRUCTIONS ARE CONSIDERED:
• INTEGER ARITHMETIC/LOGIC INSTRUCTIONS

• ADD, SUB, MULT
• ADDU, SUBU,MULTU
• OR, AND, NOR, NAND

• FLOATING POINT INSTRUCTIONS
• FADD, FMUL, FDIV
• COMPLEX ARITHMETIC

• MEMORY TRANSFER INSTRUCTIONS
• LOADS AND STORES
• TEST AND SET, AND SWAP
• MAY APPLY TO VARIOUS OPERAND SIZES

• CONTROL FLOW INSTRUCTIONS
• BRANCHES ARE CONDITIONAL
• CONDITION MAY BE CONDITION BITS (ZCVXN)
• CONDITION MAY TEST THE VALUE OF A REGISTER (SET BY SLT INSTRUCTION)
• CONDITION MAY BE COMPUTED IN THE BRANCH INSTRUCTION ITSELF
• JUMPS ARE UNCONDITIONAL WITH ABSOLUTE ADDRESS OR ADDRESS IN REGISTER
• JAL (JUMP AND LINK) NEEDED FOR PROCEDURES

CPU Operands

18-600 Lecture #28/30/2017 (©J.P. Shen) 16

• INCLUDE: ACCUMULATORS, EVALUATION STACKS, REGISTERS, AND IMMEDIATE VALUES
• ACCUMULATORS:

• ADDA <mem_address>
• MOVA <mem_address>

• STACK
• PUSH <mem_address>
• ADD
• POP <mem_address>

• REGISTERS
• LW R1, <memory-address>
• SW R1, <memory_address>
• ADD R2, <memory_address>
• ADD R1,R2,R4

• LOAD/STORE ISAs

• MANAGEMENT BY THE COMPILER: REGISTER SPILL/FILL

• IMMEDIATE
• ADDI R1,R2,#5

Memory Operands

18-600 Lecture #28/30/2017 (©J.P. Shen) 17

• OPERAND ALIGNEMENT
• BYTE-ADDRESSABLE MACHINES
• OPERANDS OF SIZE S MUST BE STORED AT AN ADDRESS THAT IS MULTPIPLE OF S
• BYTES ARE ALWAYS ALIGNED
• HALF WORDS (16BITS) ALIGNED AT 0, 2, 4, 6
• WORDS (32 BITS) ARE ALIGNED AT 0, 4, 8, 12, 16,..
• DOUBLE WORDS (64 BITS) ARE ALIGNED AT 0, 8, 16,...
• COMPILER IS RESPONSIBLE FOR ALIGNING OPERANDS. HARDWARE CHECKS AND TRAPS IF

MISALIGNED
• OPCODE INDICATES SIZE (ALSO: TAGS IN MEMORY)

• LITTLE vs. BIG ENDIAN
• BIG ENDIAN: MSB IS STORED AT ADDRESS XXXXXX00
• LITTLE ENDIAN: LSB IS STORED AT ADDRESS XXXXXX00
• PORTABILITY PROBLEMS, CONFIGURABLE ENDIANNESS

Addressing Modes

18-600 Lecture #28/30/2017 (©J.P. Shen) 18

MODE EXAMPLE MEANING

REGISTER ADD R4,R3 reg[R4] <- reg[R4] +reg[R3]

IMMEDIATE ADD R4, #3 reg[R4] <- reg[R4] + 3

DISPLACEMENT ADD R4, 100(R1) reg[R4] <- reg[R4] + Mem[100 + reg[R1]]

REGISTER INDIRECT ADD R4, (R1) reg[R4] <- reg[R4] + Mem[reg[R1]]

INDEXED ADD R3, (R1+R2) reg[R3] <- reg[R3] + Mem[reg[R1] + reg[R2]]

DIRECT OR ABSOLUTE ADD R1, (1001) reg[R1] <- reg[R1] + Mem[1001]

MEMORY INDIRECT ADD R1, @R3 reg[R1] <- reg[R1] + Mem[Mem[Reg[3]]]

POST INCREMENT ADD R1, (R2)+ ADD R1, (R2) then R2 <- R2+d

PREDECREMENT ADD R1, -(R2) R2 <- R2-d then ADD R1, (R2)

PC-RELATIVE BEZ R1, 100 if R1==0, PC <- PC+100

PC-RELATIVE JUMP 200 Concatenate bits of PC and offset

Exceptions and Interrupts

18-600 Lecture #28/30/2017 (©J.P. Shen) 19

• EVENTS TRIGGERED BY PROGRAM and HARDWARE, FORCING THE PROCESSOR TO EXECUTE A HANDLER
• INCLUDES EXCEPTIONS AND INTERRUPTS

• EXCEPTION & INTERRUP EXAMPLES:
• I/O DEVICE INTERRUPTS

• OPERATING SYSTEM CALLS

• INSTRUCTION TRACING AND BREAKPOINTS

• INTEGER OR FLOATING-POINT ARITHMETIC EXCEPTIONS

• PAGE FAULTS

• MISALIGNED MEMORY ACCESSES

• MEMORY PROTECTION VIOLATIONS

• UNDEFINED INSTRUCTIONS

• HARDWARE FAILURE/ALARMS

• POWER FAILURES

• PRECISE EXCEPTIONS:
• SYNCHRONIZED WITH AN INSTRUCTION

• MUST RESUME EXECUTION AFTER HANDLER

• SAVE THE PROCESS STATE AT THE FAULTING INSTRUCTION

• OFTEN DIFFICULT IN ARCHITECTURES WHERE MULTIPLE INSTRUCTIONS EXECUTE

Historically Important ISAs & Implementations

18-600 Lecture #28/30/2017 (©J.P. Shen) 20

ISA Company Implementations Type

System 370 IBM IBM 370/3081 CISC--Legacy

x86 Intel/AMD Many, many, … CISC-Legacy

Motorola68000 Motorola Motorola 68020 CISC-Legacy

Sun SPARC Sun Microsystems SPARC T2 RISC

PowerPC IBM/Motorola PowerPC-6 RISC

Alpha DEC/Compaq/HP Alpha 21264 RISC-Retired

MIPS MIPS/SGI MIPS10000 RISC

IA-64 Intel Itanium-2 RISC-Retired

ARM ARM/QC/Samsung Many, many, … RISC

18-600 Lecture #2

8/30/2017 (©J.P. Shen) 21

X86-64 Instruction Set Architecture

18-600 Lecture #28/30/2017 (©J.P. Shen) 22

X86-64 Instruction Set Architecture

18-600 Lecture #28/30/2017 (©J.P. Shen) 23

X86-64 Instruction Set Architecture

18-600 Lecture #28/30/2017 (©J.P. Shen) 24

X86-64 Instruction Set Architecture

18-600 Lecture #28/30/2017 (©J.P. Shen) 25

X86-64 Instruction Set Architecture

18-600 Lecture #28/30/2017 (©J.P. Shen) 26

X86-64 Instruction Set Architecture

18-600 Lecture #28/30/2017 (©J.P. Shen) 27

X86-64 Instruction Set Architecture

18-600 Lecture #28/30/2017 (©J.P. Shen) 28

ARM Instruction Set Architecture
Key to Tables

{cond} Refer to Table Condition Field {cond}
<Oprnd2> Refer to TableOprnd2

{field} Refer to TableField

S Sets condition codes (optional)

B Byte operation (optional)

H Halfword operation (optional)

T Forces address translation. Cannot be used with pre-indexed addresses

<a_mode1> Refer to Table Addressing Mode 1

<a_mode2> Refer to Table Addressing Mode 2

<a_mode3> Refer to Table Addressing Mode 3

<a_mode4> Refer to Table Addressing Mode 4

<a_mode5> Refer to Table Addressing Mode 5

<a_mode6> Refer to Table Addressing Mode 6

#32_Bit_Immed A 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits

Operation Assembler S updates Action Notes

Move Move

NOT

SPSR to register

CPSR to register

register to SPSR

register to CPSR

immediate to SPSRflags

immediate to CPSRflags

MOV{cond}{S} Rd, <Oprnd2>

MVN{cond}{S} Rd, <Oprnd2>

MRS{cond} Rd, SPSR

MRS{cond} Rd, CPSR

MSR{cond} SPSR{field}, Rm

MSR{cond} CPSR{field}, Rm

MSR{cond} SPSR_f, #32_Bit_Immed

MSR{cond} CPSR_f, #32_Bit_Immed

N

N

Z

Z

C

C

Rd:= <Oprnd2>

Rd:= 0xFFFFFFFF EOR <Oprnd2>

Rd:= SPSR

Rd:= CPSR

SPSR:= Rm

CPSR:= Rm

SPSR:= #32_Bit_Immed

CPSR:= #32_Bit_Immed

Architecture 3, 3M and 4 only

Architecture 3, 3M and 4 only

Architecture 3, 3M and 4 only

Architecture 3, 3M and 4 only

Architecture 3, 3M and 4 only

Architecture 3, 3M and 4 only

ALU Arithmetic

Add

with carry

Subtract

with carry

reverse subtract

reverse subtract with carry

Negate

Multiply

accumulate

unsigned long

unsigned accumulate long

signed long

signed accumulate long

Compare

negative

Logical

Test

Test equivalence

AND

EOR

ORR

Bit Clear

Shift/Rotate

ADD{cond}{S} Rd, Rn, <Oprnd2> N Z C V Rd:= Rn + <Oprnd2>
ADC{cond}{S} Rd, Rn, <Oprnd2> N Z C V Rd:= Rn + <Oprnd2> + Carry
SUB{cond}{S} Rd, Rn, <Oprnd2> N Z C V Rd:= Rn - <Oprnd2>
SBC{cond}{S} Rd, Rn, <Oprnd2> N Z C V Rd:= Rn - <Oprnd2> - NOT(Carry)
RSB{cond}{S} Rd, Rn, <Oprnd2> N Z C V Rd:= <Oprnd2> - Rn
RSC{cond}{S} Rd, Rn, <Oprnd2> N Z C V Rd:= <Oprnd2> - Rn - NOT(Carry)

MUL{cond}{S} Rd, Rm, Rs N Z Rd:= Rm * Rs Not in Architecture 1

MLA{cond}{S} Rd, Rm, Rs, Rn N Z Rd:= (Rm * Rs) + Rn Not in Architecture 1
UMULL{cond}{S} RdHi, RdLo, Rm, Rs N Z RdHi:= (Rm*Rs)[63:32]

RdLo:= (Rm*Rs)[31:0]
Architecture 3M and 4only

UMLAL{cond}{S} RdHi, RdLo, Rm, Rs N Z RdLo:=(Rm*Rs)+RdLo
RdHi:=(Rm*Rs)+RdHi+

Architecture 3M and 4only

CarryFrom((Rm*Rs)[31:0]+RdLo))
SMULL{cond}{S} RdHi, RdLo, Rm, Rs N Z RdHi:= signed(Rm*Rs)[63:32]

RdLo:= signed(Rm*Rs)[31:0]
Architecture 3M and 4only

SMLAL{cond}{S} RdHi, RdLo, Rm, Rs N Z RdHi:=signed(Rm*Rs)+RdHi+
CarryFrom((Rm*Rs)[31:0]+RdLo))

Architecture 3M and 4only

CMP{cond} Rd, <Oprnd2> N Z C V CPSR flags:= Rn - <Oprnd2>
CMN{cond} Rd, <Oprnd2> N Z C V CPSR flags:= Rn + <Oprnd2>

TST{cond} Rn, <Oprnd2> N Z C CPSR flags:= Rn AND <Oprnd2>

TEQ{cond} Rn, <Oprnd2> N Z C CPSR flags:= Rn EOR <Oprnd2> Does not update the V flag
AND{cond}{S} Rd, Rn, <Oprnd2> N Z C Rd:= Rn AND<Oprnd2>
EOR{cond}{S} Rd, Rn, <Oprnd2> N Z C Rd:= Rn EOR <Oprnd2>
ORR{cond}{S} Rd, Rn, <Oprnd2> N Z C Rd:= Rn OR <Oprnd2>
BIC{cond}{S} Rd, Rn, <Oprnd2> N Z C Rd:= Rn AND NOT <Oprnd2>

See TableOprnd2

18-600 Lecture #28/30/2017 (©J.P. Shen) 29

ARM Instruction Set Architecture
Operation Assembler Action Notes

Branch Branch

with link

and exchange instruction set

B{cond} label

BL{cond} label

BX{cond} Rn

R15:= address

R14:=R15, R15:= address

R15:=Rn, T bit:= Rn[0] Architecture 4 with Thumb only
Thumb state; Rn[0] = 0
ARM state; Rn[0] =1

Load Word

with user-mode privilege

Byte

with user-mode privilege

signed

Halfword

signed

Multiple

Block data operations

Increment Before

Increment After

Decrement Before

Decrement After

Stack operations

and restore CPSR

User registers

LDR{cond} Rd, <a_mode1>

LDR{cond}T Rd, <a_mode2>

LDR{cond}B Rd, <a_mode1>

LDR{cond}BT Rd, <a_mode2>

LDR{cond}SB Rd, <a_mode3>

LDR{cond}H Rd, <a_mode3>

LDR{cond}SH Rd, <a_mode3>

LDM{cond}IB Rd{!}, <regs>{^}

LDM{cond}IA Rd{!}, <regs>{^}

LDM{cond}DB Rd{!}, <regs>{^}

LDM{cond}DA Rd{!}, <regs>{^}

LDM{cond}<a_mode4> Rd{!},<registers>

LDM{cond}<a_mode4> Rd{!}, <registers+pc>

LDM{cond}<a_mode4> Rd, <registers>^

Rd:= [address]

Rd:= [byte value from address]
Loads bits 0 to 7 and sets bits 8-31 to 0

Rd:= [signed byte value from address]
Loads bits 0 to 7 and sets bits 8-31 to bit 7

Rd:= [halfword value from address]
Loads bits 0 to 15 and sets bits 16-31 to 0

Rd:= [signed halfword value from address]
Loads bits 0 to 15 and sets bits 16-31 to bit 15

Stack manipulation (pop)

Architecture 4only

Architecture 4only

Architecture 4only

! sets the W bit (updates the
base register after the transfer
 ̂sets the Sbit

! sets the W bit (updates the
base register after the transfer

Store Word

with user-mode privilege

Byte

with user-mode privilege

Halfword

Multiple

Block data operations

Increment Before

Increment After

Decrement Before

Decrement After

Stack operations

User registers

STR{cond} Rd, <a_mode1>

STRT{cond} Rd, <a_mode2>

STRB{cond} Rd, <a_mode1>

STRBT{cond} Rd, <a_mode2>

STR{cond}H Rd, <a_mode3>

STM{cond}IB Rd{!}, <registers>{^}

STM{cond}IA Rd{!}, <registers>{^}

STM{cond}DB Rd{!}, <registers>{^}

STM{cond}DA Rd{!}, <registers>{^}

STM{cond}<a_mode5> Rd{!}, <regs>

STM{cond}<a_mode5> Rd{!}, <regs>^

[address]:= Rd

[address]:= byte value from Rd

[address]:= halfword value from Rd

Stack manipulation (push)

Architecture 4only

! sets the W bit (updates the
base register after the transfer
 ̂sets the Sbit

Swap Word

Byte

SWP{cond} Rd, Rm, [Rn]

SWP{cond}B Rd, Rm, [Rn]

Not in Architecture 1 or 2

Not in Architecture 1 or 2

Coprocessors Data operations

Move to ARM reg from coproc

Move to coproc from ARM reg

Load

Store

CDP{cond} p<cpnum>, <op1>, CRd, CRn, CRm, <op2>

MRC{cond} p<cpnum>, <op1>, Rd, CRn, CRm, <op2>

MCR{cond} p<cpnum>, <op1>, Rd, CRn, CRm, <op2>

LDC{cond} p<cpnum>, CRd, <a_mode6>

STC{cond} p<cpnum>, CRd, <a_mode6>

Not in Architecture 1

Software
Interrupt

SWI #24_Bit_Value 24-bit immediate value

18-600 Lecture #28/30/2017 (©J.P. Shen) 30

ARM Instruction Set Architecture
Oprnd2

Immediate value #32_Bit_Immed

Logical shift left Rm LSL #5_Bit_Immed

Logical shift right Rm LSR #5_Bit_Immed

Arithmetic shift right Rm ASR #5_Bit_Immed

Rotate right Rm ROR #5_Bit_Immed

Register Rm

Logical shift left Rm LSL Rs

Logical shift right Rm LSR Rs

Arithmetic shift right Rm ASR Rs

Rotate right Rm ROR Rs

Rotate right extended Rm RRX

Field

Suffix Sets

_c Control field mask bit (bit 3)
_f Flags field mask bit (bit 0)

_s Status field mask bit (bit 1)

_x Extension field mask bit (bit 2)

Addressing Mode 1

Immediate offset [Rn, #+/-12_Bit_Offset]

Register offset [Rn, +/-Rm]

Scaled register offset [Rn, +/-Rm, LSL #shift_imm]

[Rn, +/-Rm, LSR #shift_imm]

[Rn, +/-Rm, ASR #shift_imm]

[Rn, +/-Rm, ROR #shift_imm]

[Rn, +/-Rm, RRX]

Pre-indexed offset

Immediate [Rn, #+/-12_Bit_Offset]!

Register [Rn, +/-Rm]!

Scaled register [Rn, +/-Rm, LSL #shift_imm]!

[Rn, +/-Rm, LSR #shift_imm]!

[Rn, +/-Rm, ASR #shift_imm]!

[Rn, +/-Rm, ROR #shift_imm]!

[Rn, +/-Rm, RRX]!

Post-indexed offset

Immediate [Rn], #+/-12_Bit_Offset

Register [Rn], +/-Rm

Scaled register [Rn], +/-Rm, LSL #shift_imm

[Rn], +/-Rm, LSR #shift_imm

[Rn], +/-Rm, ASR #shift_imm

[Rn], +/-Rm, ROR #shift_imm

[Rn, +/-Rm, RRX]

Condition Field {cond}

Suffix Description
EQ Equal
NE Not equal

CS Unsigned higher or same

CC Unsigned lower

MI Negative

PL Positive or zero

VS Overflow

VC Nooverflow

HI Unsigned higher

LS Unsigned lower or same

GE Greater or equal

LT Less than

GT Greater than

LE Less than or equal

AL Always

Addressing Mode 2

Immediate offset [Rn, #+/-12_Bit_Offset]

Register offset [Rn, +/-Rm]

Scaled register offset [Rn, +/-Rm, LSL #shift_imm]

[Rn, +/-Rm, LSR #shift_imm]

[Rn, +/-Rm, ASR #shift_imm]

[Rn, +/-Rm, ROR #shift_imm]

[Rn, +/-Rm, RRX]

Post-indexed offset

Immediate [Rn], #+/-12_Bit_Offset

Register [Rn], +/-Rm

Scaled register [Rn], +/-Rm, LSL #shift_imm

[Rn], +/-Rm, LSR #shift_imm

[Rn], +/-Rm, ASR #shift_imm

[Rn], +/-Rm, ROR #shift_imm

[Rn, +/-Rm, RRX]
Addressing Mode 4

Addressing Mode Stack Type
IA Increment After FD Full Descending
IB Increment Before ED Empty Descending

DA Decrement After FA Full Ascending

DB Decrement Before EA Empty Ascending

Addressing Mode 3 - Signed Byte and Halfword Data Transfer

Immediate offset [Rn, #+/-8_Bit_Offset]

Pre-indexed [Rn, #+/-8_Bit_Offset]!

Post-indexed [Rn], #+/-8_Bit_Offset

Register [Rn, +/-Rm]

Pre-indexed [Rn, +/-Rm]!

Post-indexed [Rn], +/-Rm

Addressing Mode 6 - Coprocessor Data Transfer

Immediate offset

Pre-indexed

Post-indexed

[Rn, #+/-(8_Bit_Offset*4)]

[Rn, #+/-(8_Bit_Offset*4)]!

[Rn], #+/-(8_Bit_Offset*4)

Addressing Mode 5

Addressing Mode Stack Type
IA Increment After EA Empty Ascending
IB Increment Before FA Full Ascending

DA Decrement After ED Empty Descending

DB Decrement Before FD Full Descending

Commercially Successful ISA’s

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 31

“s
ta

ti
c”

“d
yn

am
ic

”

MACHINE

PROGRAM

ARCHITECTURE Instruction Set Architecture (ISA)

Program Execution:
• Load program into Memory
• Fetch instructions from Memory
• Exeucte Instructions in CPU
• Update Architecture State

Instruction Set Definition:
• Architecture State: Reg & Memory
• Op-code & Operand types
• Operand Addressing modes
• Control Flow instructions

2. Historical Perspective on Computing

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 32

a. Major Epochs of Modern Computers

b. Computer Performance Iron Law (#1)

Lecture 2: “Computer Systems: The Big Picture”

Eniac (1946)

Seven Decades of Modern Computing . . .

Mainframes

Minicomputers

Personal Computers

Laptop Computers

???

18-600 Lecture #2 338/30/2017 (©J.P. Shen)

Mobile Computers

• The Decade of the 1970's: "Birth of Microprocessors"
• Programmable controllers, bit-sliced ALU’s, single-chip processors
• Emergence of Personal Computers (PC)

• The Decade of the 1980's: "Quantitative Architecture"
• Instruction pipelining, fast cache memories, compiler considerations
• Widely available Minicomputers, emergence of Personal Workstations

• The Decade of the 1990's: "Instruction-Level Parallelism"
• Superscalar, speculative microarchitectures, aggressive compiler optimizations
• Widely available low-cost desktop computers, emergence of Laptop computers

• The Decade of the 2000's: "Mobile Computing Convergence"
• Multi-core architectures, system-on-chip integration, power constrained designs
• Convergence of smartphones and laptops, emergence of Tablet computers

Historical Perspective on the Last Five Decades

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 34

• The Decade of the 1960's: "Computer Architecture Foundations"
• Von Neumann computation model, programming languages, compilers, OS’s
• Commercial Mainframe computers, Scientific numerical computers

Intel 4004, circa 1971

The first single chip CPU

• 4-bit processor for a calculator.

• 1K data memory

• 4K program memory

• 2,300 transistors

• 16-pin DIP package

• 740kHz (eight clock cycles per CPU
cycle of 10.8 microseconds)

• ~100K OPs per second

Molecular Expressions: Chipshots

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 35

Performance leader in floating-point apps

• 64-bit processor

• 3 MByte in cache!!

• 221 million transistor

• 1 GHz, issue up to 8 instructions
per cycle

In ~30 years, about 100,000 fold
growth in transistor count!

Intel Itanium 2, circa 2002

http://cpus.hp.com/images/die_photos/McKinley_die.jpg

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 36

Performance Growth in Perspective

• Doubling every 18 months (1982-2000):
• total of 3,200X

• Cars travel at 176,000 MPH; get 64,000 miles/gal.

• Air travel: L.A. to N.Y. in 5.5 seconds (MACH 3200)

• Wheat yield: 320,000 bushels per acre

• Doubling every 24 months (1971-2001):
• total of 36,000X

• Cars travel at 2,400,000 MPH; get 600,000 miles/gal.

• Air travel: L.A. to N.Y. in 0.5 seconds (MACH 36,000)

• Wheat yield: 3,600,000 bushels per acre

Unmatched by any other industry!!

[John Crawford, Intel, 1993]

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 37

Convergence of Key Enabling Technologies

• CMOS VLSI:
• Submicron feature sizes: 0.3u → 0.25u → 0.18u → 0.13u → 90n → 65n → 45n → 32nm…
• Metal layers: 3 → 4 → 5 → 6 → 7 (copper) → 12 …
• Power supply voltage: 5V → 3.3V → 2.4V → 1.8V → 1.3V → 1.1V …

• CAD Tools:
• Interconnect simulation and critical path analysis
• Clock signal propagation analysis
• Process simulation and yield analysis/learning

• Microarchitecture:
• Superpipelined and superscalar machines
• Speculative and dynamic microarchitectures
• Simulation tools and emulation systems

• Compilers:
• Extraction of instruction-level parallelism
• Aggressive and speculative code scheduling
• Object code translation and optimization

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 38

18-600 Lecture #28/30/2017 (©J.P. Shen) 39

“Iron Law” of Processor Performance

1/ComputerPerformance = ---------------
Time

Program

= ------------------ X ---------------- X ------------
Instructions Cycles

Program Instruction

Time

Cycle

(inst. count) (CPI) (cycle time)

Architecture  Implementation Realization

Compiler Designer Processor Designer Chip Designer

• In the 1980’s
(decade of
pipelining):

• CPI: 5.0  1.15

• In the 1990’s
(decade of
superscalar):

• CPI: 1.15  0.5
(best case)

• In the 2000’s:

• we learn the
power lesson

• ILP  TLP

Iron Law #1 – Processor (Latency) Performance

18-600 Lecture #28/30/2017 (©J.P. Shen) 40

❖ Time to execute a program: T (latency)

❖ Processor performance: Perf = 1/T

cycle

time

ninstructio

cycles

program

nsinstructio
T 

CycleTimeCPIPathLengthT 

CPIPathLength

Frequency

CycleTimeCPIPathLength
PerfCPU







1

18-600 Lecture #28/30/2017 (©J.P. Shen) 41

Landscape of Processor Families [SPECint92]

Landscape of Microprocessor Families (SPECint95)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

80 180 280 380 480 580 680 780 880 980

Frequency (MHz)

S
P

E
C

in
t9

5
/M

H
z

Alpha

AMD-x86

Intel-x86

** Data source www.spec.org

5

10

15

20

25
30 35 40 45 50 55 60 SPECint 95

064

164

264

Athlon

AthlonPPro

Pentium

PII
PIII

PIII

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 42

Landscape of Processor Families [SPECint95]

Landscape of Microprocessor Families (SPECint2K)

0

0.5

1

0 500 1000 1500 2000 2500

Frequency (MHz)

S
P

E
C

in
t2

0
0
0
/M

H
z

Intel-x86

AMD-x86

Alpha

PowerPC

Sparc

IPF

800 SPECint 2000700600500400300
200

100
50

PIII-Xeon

Pentium 4

Athlon

264C

Sparc-III

264A

604e Itanium

** Data source www.spec.org

264B

25

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 43

Landscape of Processor Families [SPECint2000]

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 44

Landscape of Microprocessor Families

0

0.5

1

0 500 1000 1500 2000 2500 3000 3500

Frequency (MHz)

S
P

E
C

in
t2

0
0

0
/M

H
z

Intel-x86

AMD-x86

Power

Itanium

700
500

300

100

PIII

P4

Athlon

** Data source www.spec.org

Power4

NWD

900

1100
1900 SpecINT 2000 1300

1500

Opteron

800 MHz

Extreme

Power 3

Power5

PSC

DTN

1700

Itanium

Source: www.SPEC.org

CPIPathLength

Frequency
ePerformanc CPU




Deeper pipelining

W
id

er

p
ip

el
in

e

Landscape of Processor Families [SPECint2000]
[John DeVale & Bryan Black, 2005]

3. “Economics” of Computer Systems

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 45

a. Amdahl’s Law and Gustafson’s Law

b. Moore’s Law and Bell’s Law

Lecture 2: “Computer Systems: The Big Picture”

“Economics” of Computer Architecture

• Exercise in engineering tradeoff analysis
• Find the fastest/cheapest/power-efficient/etc. solution
• Optimization problem with 10s to 100s of variables

• All the variables are changing
• At non-uniform rates
• With inflection points
• Only one guarantee: Today’s right answer will be wrong tomorrow

➢ Two Persistent high-level “forcing functions”:
➢ Application Demand (PROGRAM)
➢ Technology Supply (MACHINE)

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 46

Foundational “Laws” of Computer Architecture

➢ Application Demand (PROGRAM)
• Amdahl’s Law (1967)

• Speedup through parallelism is limited by the sequential bottleneck

• Gustafson’s Law (1988)
• With unlimited data set size, parallelism speedup can be unlimited

➢ Technology Supply (MACHINE)
• Moore’s Law (1965)

• (Transistors/Die) increases by 2x every 18 months

• Bell’s Law (1971)
• (Cost/Computer) decreases by 2x every 36 months

18-600 Lecture #28/30/2017 (©J.P. Shen) 47

Amdahl’s Law

• h = fraction of time in serial code

• f = fraction that is vectorizable or parallelizable
• N = max speedup for f

• Overall speedup  

No. of
Processors

N

Time

1
h 1 - h

1 - f

f

N

f
f

Speedup





)1(

1

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 48

• Speedup = (Execution time on Single CPU)/(Execution on N parallel processors)

• ts /tp (Serial time is for best serial algorithm)

Amdahl’s Law Illustrated

• Speedup = timewithout enhancement / timewith enhancement

• If an enhancement speeds up a fraction f of a task by a factor of N

• timenew = timeorig·((1-f) + f/N)

• Soverall = 1 / ((1-f) + f/N)

1

timeorig

f(1 - f)

timeorig

(1 - f)

timenew

f/N

f(1 - f)

timeorig

(1 - f)

timenew

f/N

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 49

“Tyranny of Amdahl’s Law” [Bob Colwell, CMU-Intel-DARPA]

f (vectorizability)

P
 (

s
p
e
e

d
u
p
)

P
1

1 f– 
f

50

 
 +

---------------------------------=

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 50

• Suppose that a computation has a
4% serial portion, what is the limit of
speedup on 16 processors?

• 1/((0.04) + (0.96/16)) = 10

• What is the maximum speedup?

• 1/0.04 = 25 (with N  )

From Amdahl’s Law to Gustafson’s Law

• Amdahl’s Law works on a fixed problem size

• This is reasonable if your only goal is to solve a problem faster.

• What if you also want to solve a larger problem?

• Gustafson’s Law (Scaled Speedup)

• Gustafson’s Law is derived by fixing the parallel execution time (Amdahl fixed
the problem size -> fixed serial execution time)

• For many practical situations, Gustafson’s law makes more sense

• Have a bigger computer, solve a bigger problem.

• “Amdahl’s Law turns out to be too pessimistic for high-performance computing.”

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 51

Gustafson’s Law

• Fix execution of the computation on a single processor as

• s + p = serial part + parallelizable part = 1

• Speedup(N) = (s + p)/(s + p/N)

= 1/(s + (1 – s)/N) = 1/((1-p) + p/N)  Amdahl’s law

• Now let 1 = (a + b) = execution time of computation on N processors (fixed)
where a = sequential time and b = parallel time on any of the N processors

• Time for sequential processing = a + (b×N) and Speedup = (a + b×N)/(a + b)

• Let α = a/(a+b) be the sequential fraction of the parallel execution time

• Speedupscaled(N) = (a + b×N)/(a + b) = (a/(a+b) + (b×N)/(a+b)) = α + (1- α)N

• If α is very small, the scaled speedup is approximately N, i.e. linear speedup.

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 52

Two Laws on Algorithm and Performance

 







 










N

ff
Speedup(N)MC

1

1

1

f = sequential %

Parallelism (N)

Ex
ec

u
ti

o
n

 T
im

e

f
Ex

ec
u

ti
o

n
 T

im
e

Parallelism (N)f*

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 53

Amdahl’s Law Gustafson’s Law
NffNSpeedup MC *)1(*)(

f* = sequential fraction of
total parallel execution time

Two “Gordon” Laws of Computer Systems

➢ Gordon Moore’s Law (1965)
• (Transistors/Die) increases by 2X every 18 months

• Constant price, increasing performance

• Has held for 40+ years, and will continue to hold

➢ Gordon Bell’s Law (1971)
• (Cost/Computer) decreases by 2X every 36 months (~ 10X per decade)

• Constant performance, decreasing price

• Corollary of Moore’s Law, creation of new computer categories

“In a decade you can buy a computer for less than its sales tax today.” – Jim Gray

We have all been living on this exponential curve and assuming it…
18-600 Lecture #28/30/2017 (©J.P. Shen) 54

Moore’s Law Trends

• Moore’s Law for device integration
• Chip power consumption
• Single-thread performance trend [source: Intel]

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 55

Bell’s Law Trends

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 56

• 2X/3year = 10X/decade
• 4X/3years = 100X/decade

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=j3Ij11AVdCqJmM&tbnid=pJHZS-o_FrOAVM:&ved=0CAUQjRw&url=http://research.microsoft.com/en-us/um/people/gbell/&ei=IqKvUtiZF4LroASb2oKQAw&bvm=bv.57967247,d.cGU&psig=AFQjCNG7X8M8fZ6hJh3eQFOotEk_X6DCcQ&ust=1387328343731838

Know Your “Supply & Demand Curves”

“PC era” Ubiq. comp.

2004

Time

$$$

Cell phones
Ray tracing

Portable computing

“Speed at any price” “What’s in it for me?” -buyer

[Bob Colwell CRA Grand Challenges panel 2005]

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 57

Moore’s Law and Bell’s Law are Alive and Well

Cross Over Point in 2013 !!!

1,000,000

10,000,000

100,000,000

1,000,000,000

2,000,000,000

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 58

18-600 Course Coverage: Processor Architecture

Evolution of Von Neumann Implementations:

➢ SP: Sequential Processors (direct implementation of sequential execution)

➢ PP: Pipelined Processors (overlapped execution of in-order instructions)

➢ SSP: Superscalar Processors (out-of-order execution of multiple instructions)

➢ MCP: Multi-core Processors = CMP: Chip Multiprocessors (concurrent multi-threads)

➢ PDS: Parallel & Distributed Systems (concurrent multi-threads and multi-programs)

18-600 Lecture #28/30/2017 (©J.P. Shen) 59

Persistence of Von Neumann Model (Legacy SW Stickiness)

1. One CPU
2. Monolithic Memory
3. Sequential Execution Semantics

18-600 Course Coverage: Parallelism Exploited

18-600 Lecture #28/30/2017 (©J.P. Shen) 60

Persistence of Von Neumann Model (Legacy SW Stickiness)

1. One CPU
2. Monolithic Memory
3. Sequential Execution Semantics

Parallelisms for Performance

➢ ILP: Basic Block (exploit ILP in PP, SSP)

➢ ILP: Loop Iteration (exploit ILP in SSP, VLIW)

➢ DLP: Data Set (exploit DLP in SIMD, GPU) Parallel Programming

➢ TLP: Task/Thread (exploit TLP in MCP) Parallel Programming

➢ PLP: Process/Program (exploit PLP in MCP, PDS) Concurrent Programming

Parallelisms for Performance  for Power Reduction  for Energy Efficiency

Lecture 3:
“Bits, Bytes, Integers, & Floating Points”

John P. Shen & Gregory Kesden
September 6, 2017

8/30/2017 (©J.P. Shen) 18-600 Lecture #2 61

18-600 Foundations of Computer Systems

➢ Required Reading Assignment:
• Chapter 2 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron

➢ Lab Assignment for This Week:
❖ Lab #1 (Data Lab)

