
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 11:
“Cache Memories & Non-Volatile Storage”

John P. Shen & Gregory Kesden
October 4, 2017

10/04/2017 (© John Shen)

18-600 Foundations of Computer Systems

➢ Required Reading Assignment:
• Chapter 6 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron

18-600 Lecture #11 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 11:
“Cache Memories & Non-Volatile Storage”

10/04/2017 (© John Shen)

18-600 Foundations of Computer Systems

18-600 Lecture #11 2

A. Cache Organization and Operation
B. Performance Impact of Caches

a. The Memory Mountain
b. Rearranging Loops to Improve Spatial Locality
c. Using Blocking to Improve Temporal Locality

C. Non-Volatile Storage Technologies
a. Disk Storage Technology
b. Flash Memory Technology

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Hierarchy (where do all the bits live?)

3

Register File
32 words, sub-nsec

L1 cache (SRAM)
~32 KB, ~nsec

L2 cache (SRAM)
512 KB ~ 1MB, many nsec

L3 cache, (SRAM)
.....

Main Memory (DRAM)
2-8 GB, ~100 nsec

Disk Storage
200-1K GB, ~10 msec

M
e

m
o

ry
A

b
st

ra
ct

io
n

10/04/2017 (© John Shen) 18-600 Lecture #11

From Lecture #10 …

Memory Hierarchy (where do all the bits live?)

4

Register File
32 words, sub-nsec

L1 cache (SRAM)
~32 KB, ~nsec

L2 cache (SRAM)
512 KB ~ 1MB, many nsec

L3 cache, (SRAM)
.....

Main Memory (DRAM)
2-8 GB, ~100 nsec

Disk Storage
200-1K GB, ~10 msec

M
em

o
ry

A
b

st
ra

ct
io

n

10/04/2017 (© John Shen) 18-600 Lecture #11

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

(Cache) Memory Implementation Options

key idx key

d
e
c
o
d
e
r

Associative Memory

(CAM)

no index

unlimited blocks

N-Way

Set-Associative Memory

k-bit index

2k • N blocks

10/04/2017 (© John Shen) 18-600 Lecture #11 5

index
d
e
c
o
d
e
r

Indexed Memory

(RAM)

k-bit index

2k blocks

Indexed Memory

(Multi-Ported)

(2x) k-bit index

(2x) 2k blocks

index

d
e
c
o
d
e
r

index

d
e
c
o
d
e
r

From Lecture #7 …

tag data tag data

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concept

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”
(or cache “lines”)

Data is copied in block-sized
transfer units (or cache “lines”)

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

10/04/2017 (© John Shen) 18-600 Lecture #11 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is needed
Request: 14

14

Block b is in cache:
Hit!

10/04/2017 (© John Shen) 18-600 Lecture #11 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is needed
Request: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

10/04/2017 (© John Shen) 18-600 Lecture #11 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Caching Concepts:
Types of Cache Misses (3 C’s)

• Cold (compulsory) miss
• Cold misses occur because the cache is empty.

• Capacity miss
• Occurs when the set of active cache blocks (working set) is larger than the cache.

• Conflict miss
• Occur when the level k cache is large enough, but multiple data objects all map to the

same level k block.
• E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

10/04/2017 (© John Shen) 18-600 Lecture #11 9

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Memories

• Cache memories are small, fast SRAM-based memories managed automatically
in hardware
• Hold frequently accessed blocks of main memory

• CPU looks first for data in cache

• Typical system structure:

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Cache
memory

10/04/2017 (© John Shen) 18-600 Lecture #11 10

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Organization (S, E, B)
E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
C = S x E x B data bytes

valid bit

10/04/2017 (© John Shen) 18-600 Lecture #11 11

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Read
E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting at offset

10/04/2017 (© John Shen) 18-600 Lecture #11 12

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

10/04/2017 (© John Shen) 18-600 Lecture #11 13

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

block offset

tag

10/04/2017 (© John Shen) 18-600 Lecture #11 14

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

int (4 Bytes) is here

block offset

If tag doesn’t match: old line is evicted and replaced

10/04/2017 (© John Shen) 18-600 Lecture #11 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Direct-Mapped Cache Simulation

M=16 bytes (4-bit addresses), B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3

10/04/2017 (© John Shen) 18-600 Lecture #11 16

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

10/04/2017 (© John Shen) 18-600 Lecture #11 17

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

tag

10/04/2017 (© John Shen) 18-600 Lecture #11 18

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

short int (2 Bytes) is here

No match:
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

10/04/2017 (© John Shen) 18-600 Lecture #11 19

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

2-Way Set Associative Cache Simulation
M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1

10/04/2017 (© John Shen) 18-600 Lecture #11 20

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What about writes?
• Multiple copies of data exist:

• L1, L2, L3, Main Memory, Disk

• What to do on a write-hit?
• Write-through (write immediately to memory)

• Write-back (defer write to memory until replacement of line)
• Need a dirty bit (line different from memory or not)

• What to do on a write-miss?
• Write-allocate (load into cache, update line in cache)

• Good if more writes to the location follow

• No-write-allocate (writes straight to memory, does not load into cache)

• Typical
• Write-through + No-write-allocate

• Write-back + Write-allocate

10/04/2017 (© John Shen) 18-600 Lecture #11 21

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel Core i7 Cache Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for all
caches.

10/04/2017 (© John Shen) 18-600 Lecture #11 22

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Performance Metrics
• Miss Rate

• Fraction of memory references not found in cache (misses / accesses)
= 1 – hit rate

• Typical numbers (in percentages):
• 3-10% for L1
• can be quite small (e.g., < 1%) for L2, depending on size, etc.

• Hit Time
• Time to deliver a line in the cache to the processor

• includes time to determine whether the line is in the cache

• Typical numbers:
• 4 clock cycle for L1
• 10 clock cycles for L2

• Miss Penalty
• Additional time required because of a miss

• typically 50-200 cycles for main memory (Trend: increasing!)

10/04/2017 (© John Shen) 18-600 Lecture #11 23

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Let’s think about those numbers
• Huge difference between a hit and a miss

• Could be 100x, if just L1 and main memory

• Would you believe 99% hits is twice as good as 97%?
• Consider:

cache hit time of 1 cycle
miss penalty of 100 cycles

• Average access time:

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles

99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

• This is why “miss rate” is used instead of “hit rate”

10/04/2017 (© John Shen) 18-600 Lecture #11 24

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing Cache Friendly Code

• Make the common case go fast
• Focus on the inner loops of the core functions

• Minimize the misses in the inner loops
• Repeated references to variables are good (temporal locality)

• Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

10/04/2017 (© John Shen) 18-600 Lecture #11 25

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 11:
“Cache Memories & Non-Volatile Storage”

10/04/2017 (© John Shen)

18-600 Foundations of Computer Systems

18-600 Lecture #11 26

A. Cache Organization and Operation
B. Performance Impact of Caches

a. The Memory Mountain
b. Rearranging Loops to Improve Spatial Locality
c. Using Blocking to Improve Temporal Locality

C. Non-Volatile Storage Technologies
a. Disk Storage Technology
b. Flash Memory Technology

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Memory Mountain

• Read throughput (read bandwidth)
• Number of bytes read from memory per second (MB/s)

• Memory mountain: Measured read throughput as a function of
spatial and temporal locality.
• Compact way to characterize memory system performance.

10/04/2017 (© John Shen) 18-600 Lecture #11 27

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Mountain Test Function
long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of
* array “data” with stride of "stride", using
* using 4x4 loop unrolling.
*/

int test(int elems, int stride) {
long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
long length = elems, limit = length - sx4;

/* Combine 4 elements at a time */
for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];
acc1 = acc1 + data[i+stride];
acc2 = acc2 + data[i+sx2];
acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */
for (; i < length; i++) {

acc0 = acc0 + data[i];
}
return ((acc0 + acc1) + (acc2 + acc3));

}

Call test() with many
combinations of elems
and stride.

For each elems and

stride:

1. Call test() once

to warm up the

caches.

2. Call test() again

and measure the read

throughput(MB/s)

mountain/mountain.c

10/04/2017 (© John Shen) 18-600 Lecture #11 28

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Memory Mountain

128m

32m

8m

2m

512k

128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s2

s3
s4

s5
s6

s7
s8

s9
s10

s11

Size (bytes)

R
e
a

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Stride (x8 bytes)

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Slopes
of spatial
locality

Ridges
of temporal
locality

L1

Mem

L2

L3

Aggressive
prefetching

10/04/2017 (© John Shen) 18-600 Lecture #11 29

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication Example

• Description:
• Multiply N x N matrices

• Matrix elements are doubles (8 bytes)

• O(N3) total operations

• N reads per source element

• N values summed per destination
• but may be able to hold in register

/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

Variable sum
held in register

matmult/mm.c

10/04/2017 (© John Shen) 18-600 Lecture #11 30

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Miss Rate Analysis for Matrix Multiply

• Assume:
• Block size = 32B (big enough for four doubles)

• Matrix dimension (N) is very large
• Approximate 1/N as 0.0

• Cache is not even big enough to hold multiple rows

• Analysis Method:
• Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x
10/04/2017 (© John Shen) 18-600 Lecture #11 31

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Layout of C Arrays in Memory (review)
• C arrays allocated in row-major order

• each row in contiguous memory locations

• Stepping through columns in one row:
• for (i = 0; i < N; i++)

sum += a[0][i];

• accesses successive elements

• if block size (B) > sizeof(aij) bytes, exploit spatial locality
• miss rate = sizeof(aij) / B

• Stepping through rows in one column:
• for (i = 0; i < n; i++)

sum += a[i][0];

• accesses distant elements

• no spatial locality!
• miss rate = 1 (i.e. 100%)

10/04/2017 (© John Shen) 18-600 Lecture #11 32

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (ijk)

/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

matmult/mm.c

10/04/2017 (© John Shen) 18-600 Lecture #11 33

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (jik)

/* jik */

for (j=0; j<n; j++) {

for (i=0; i<n; i++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum

}

}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

matmult/mm.c

10/04/2017 (© John Shen) 18-600 Lecture #11 34

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (kij)

/* kij */

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C

0.0 0.25 0.25

matmult/mm.c

10/04/2017 (© John Shen) 18-600 Lecture #11 35

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (ikj)

/* ikj */

for (i=0; i<n; i++) {

for (k=0; k<n; k++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C

0.0 0.25 0.25

matmult/mm.c

10/04/2017 (© John Shen) 18-600 Lecture #11 36

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (jki)

/* jki */

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

matmult/mm.c

10/04/2017 (© John Shen) 18-600 Lecture #11 37

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (kji)

/* kji */

for (k=0; k<n; k++) {

for (j=0; j<n; j++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

matmult/mm.c

10/04/2017 (© John Shen) 18-600 Lecture #11 38

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Matrix Multiplication

ijk (& jik):
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

10/04/2017 (© John Shen) 18-600 Lecture #11 39

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Matrix Multiply Performance

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700

C
y
c

le
s

 p
e

r
in

n
e

r
lo

o
p

 i
te

ra
ti

o
n

Array size (n)

jki

kji

ijk

jik

kij

ikj

ijk / jik

jki / kji

kij / ikj

10/04/2017 (© John Shen) 18-600 Lecture #11 40

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Matrix Multiplication

a b

i

j

*
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

c[i*n + j] += a[i*n + k] * b[k*n + j];

}

10/04/2017 (© John Shen) 18-600 Lecture #11 41

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis

• Assume:
• Matrix elements are doubles

• Cache block = 8 doubles

• Cache size C << n (much smaller than n)

• First iteration:
• n/8 + n = 9n/8 misses

• Afterwards in cache:
(schematic)

*=

n

*=

8 wide

10/04/2017 (© John Shen) 18-600 Lecture #11 42

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis

• Assume:
• Matrix elements are doubles

• Cache block = 8 doubles

• Cache size C << n (much smaller than n)

• Second iteration:
• Again:

n/8 + n = 9n/8 misses

• Total misses:
• 9n/8 * n2 = (9/8) * n3

n

*=
8 wide

10/04/2017 (© John Shen) 18-600 Lecture #11 43

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)

for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */

for (i1 = i; i1 < i+B; i++)

for (j1 = j; j1 < j+B; j++)

for (k1 = k; k1 < k+B; k++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

*
c

=
c

+
Block size B x B

matmult/bmm.c

10/04/2017 (© John Shen) 18-600 Lecture #11 44

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis

• Assume:
• Cache block = 8 doubles

• Cache size C << n (much smaller than n)

• Three blocks fit into cache: 3B2 < C

• First (block) iteration:
• B2/8 misses for each block

• 2n/B * B2/8 = nB/4
(omitting matrix c)

• Afterwards in cache
(schematic) *=

*=

Block size B x B

n/B blocks

10/04/2017 (© John Shen) 18-600 Lecture #11 45

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis

• Assume:
• Cache block = 8 doubles

• Cache size C << n (much smaller than n)

• Three blocks fit into cache: 3B2 < C

• Second (block) iteration:
• Same as first iteration

• 2n/B * B2/8 = nB/4

• Total misses:
• nB/4 * (n/B)2 = n3/(4B)

*=

Block size B x B

n/B blocks

10/04/2017 (© John Shen) 18-600 Lecture #11 46

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking Summary

• No blocking: (9/8) * n3

• Blocking: 1/(4B) * n3

• Suggest largest possible block size B, but limit 3B2 < C!

• Reason for dramatic difference:
• Matrix multiplication has inherent temporal locality:

• Input data: 3n2, computation 2n3

• Every array elements used O(n) times!

• But program has to be written properly

10/04/2017 (© John Shen) 18-600 Lecture #11 47

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Summary

• Cache memories can have significant performance impact

• You can write your programs to exploit this!
• Focus on the inner loops, where bulk of computations and memory accesses occur.

• Try to maximize spatial locality by reading data objects sequentially with stride 1.

• Try to maximize temporal locality by using a data object as often as possible once it’s
read from memory.

10/04/2017 (© John Shen) 18-600 Lecture #11 48

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 11:
“Cache Memories & Non-Volatile Storage”

10/04/2017 (© John Shen)

18-600 Foundations of Computer Systems

18-600 Lecture #11 49

A. Cache Organization and Operation
B. Performance Impact of Caches

a. The Memory Mountain
b. Rearranging Loops to Improve Spatial Locality
c. Using Blocking to Improve Temporal Locality

C. Non-Volatile Storage Technologies
a. Disk Storage Technology
b. Flash Memory Technology

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What’s Inside A Disk Drive?

Spindle
Arm

Actuator

Platters

Electronics

(including a

processor

and memory!)

SCSI

connector

Image courtesy of Seagate Technology

10/04/2017 (© John Shen) 18-600 Lecture #11 50

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Geometry
• Disks consist of platters, each with two surfaces.

• Each surface consists of concentric rings called tracks.

• Each track consists of sectors separated by gaps.

• Aligned tracks form a cylinder.

10/04/2017 (© John Shen) 18-600 Lecture #11 51

Spindle

Surface
Tracks

Track k

Sectors

Gaps

Surface 0

Surface 1
Surface 2

Surface 3
Surface 4

Surface 5

Cylinder k

Spindle

Platter 0

Platter 1

Platter 2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Capacity
Capacity = (# bytes/sector) x (avg. # sectors/track) x

(# tracks/surface) x (# surfaces/platter) x

(# platters/disk)

Example:
• 512 bytes/sector
• 300 sectors/track (on average)
• 20,000 tracks/surface
• 2 surfaces/platter
• 5 platters/disk

Capacity = 512 x 300 x 20000 x 2 x 5

= 30,720,000,000

= 30.72 GB

10/04/2017 (© John Shen) 18-600 Lecture #11 52

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Operation

10/04/2017 (© John Shen) 18-600 Lecture #11 53

The disk surface
spins at a fixed
rotational rate

By moving radially, the arm
can position the read/write
head over any track.

The read/write head
is attached to the end
of the arm and flies over
the disk surface on
a thin cushion of air.

sp
in

d
le

spindle

sp
in

d
le

spindlespindle

Single-Platter View

Arm

Read/write heads
move in unison
from cylinder to

cylinder

Spindle

Multi-Platter View

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access

Rotation is counter-clockwise

10/04/2017 (© John Shen) 18-600 Lecture #11 54

Head in position above a track

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access – Read

About to read

blue sector

10/04/2017 (© John Shen) 18-600 Lecture #11 55

After BLUE
read

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access of RED

10/04/2017 (© John Shen) 18-600 Lecture #11 56

After BLUE read Seek for RED Rotational latency After RED read

Wait for red sector

to rotate around

Red request

scheduled next

Data transfer Seek Rotational
latency

Data transfer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access Time

• Average time to access some target sector approximated by :
• Taccess = Tavg seek + Tavg rotation + Tavg transfer

• Seek time (Tavg seek)
• Time to position heads over cylinder containing target sector.

• Typical Tavg seek is 3—9 ms

• Rotational latency (Tavg rotation)
• Time waiting for first bit of target sector to pass under r/w head.

• Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min

• Typical Tavg rotation = 7200 RPMs

• Transfer time (Tavg transfer)
• Time to read the bits in the target sector.

• Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

10/04/2017 (© John Shen) 18-600 Lecture #11 57

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access Time Example
• Given:

• Rotational rate = 7,200 RPM

• Average seek time = 9 ms.

• Avg # sectors/track = 400.

• Derived:
• Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.

• Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms

• Taccess = 9 ms + 4 ms + 0.02 ms

• Important points:
• Access time dominated by seek time and rotational latency.

• First bit in a sector is the most expensive, the rest are free.

• SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
• Disk is about 40,000 times slower than SRAM,

• 2,500 times slower then DRAM.

10/04/2017 (© John Shen) 18-600 Lecture #11 58

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logical Disk Blocks

• Modern disks present a simpler abstract view of the complex sector geometry:
• The set of available sectors is modeled as a sequence of b-sized logical blocks (0, 1, 2, ...)

• Mapping between logical blocks and actual (physical) sectors
• Maintained by hardware/firmware device called disk controller.

• Converts requests for logical blocks into (surface,track,sector) triples.

• Allows controller to set aside spare cylinders for each zone.
• Accounts for the difference in “formatted capacity” and “maximum capacity”.

10/04/2017 (© John Shen) 18-600 Lecture #11 59

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Bus

Main
memory

I/O
bridge

Bus interface

ALURegister file

CPU chip

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor
Disk

I/O bus Expansion slots for
other devices such
as network adapters.

10/04/2017 (© John Shen) 18-600 Lecture #11 60

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading a Disk Sector (1)

Main
memory

ALU

Register file CPU chip

Disk
controller

Graphics
adapter

USB
controller

mouse keyboard Monitor
Disk

I/O bus

Bus interface

CPU initiates a disk read by writing a command, logical
block number, and destination memory address to a
port (address) associated with disk controller.

10/04/2017 (© John Shen) 18-600 Lecture #11 61

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading a Disk Sector (2)

Main
memory

ALU

Register file
CPU chip

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

I/O bus

Bus interface

Disk controller reads the sector and performs a direct
memory access (DMA) transfer into main memory.

10/04/2017 (© John Shen) 18-600 Lecture #11 62

Disk

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading a Disk Sector (3)

Main
memory

ALU

Register file
CPU chip

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

I/O bus

Bus interface

When the DMA transfer completes, the disk
controller notifies the CPU with an interrupt (i.e.,
asserts a special “interrupt” pin on the CPU)

10/04/2017 (© John Shen) 18-600 Lecture #11 63

Disk

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Non-Volatile Memories
• DRAM and SRAM are volatile memories

• Lose information if powered off.

• Non-volatile memories retain value even if powered off
• Read-only memory (ROM): programmed during production
• Programmable ROM (PROM): can be programmed once
• Erasable PROM (EPROM): can be bulk erased (UV, X-Ray)
• Electrically erasable PROM (EEPROM): electronic erase capability
• Flash memory: EEPROMs. with partial (block-level) erase capability

• Wears out after about 100,000 erasing cycles

• Uses for Non-volatile Memories
• Firmware programs stored in a ROM (BIOS, controllers for disks, network cards,

graphics accelerators, security subsystems,…)
• Solid state disks (replace rotating disks in thumb drives, smart phones, mp3 players,

tablets, laptops,…)
• Disk caches in large database systems.

10/04/2017 (© John Shen) 18-600 Lecture #11 64

EPROM device structure

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Flash Memory Technology

18-600 Lecture #1110/04/2017 (© John Shen) 65

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Flash Memory Cell Operation

18-600 Lecture #1110/04/2017 (© John Shen) 66

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

NAND vs. NOR Flash Memories

18-600 Lecture #1110/04/2017 (© John Shen) 67

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

NAND vs. NOR Flash Memories

18-600 Lecture #1110/04/2017 (© John Shen) 68

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

NAND Flash & Secured Digital (SD) Cards

18-600 Lecture #1110/04/2017 (© John Shen) 69

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solid State Drive (SSD) vs. Hard Disk Drive (HDD)

18-600 Lecture #1110/04/2017 (© John Shen) 70

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solid State Disks (SSDs)

• Pages: 512B to 4KB, Blocks: 32 to 128 pages

• Data read/written in units of pages.

• Page can be written only after its block has been erased

• A block wears out after about 100,000 repeated writes.

Flash
translation layer

I/O bus

Page 0 Page 1 Page P-1…
Block 0

… Page 0 Page 1 Page P-1…
Block B-1

Flash memory

Solid State Disk (SSD)
Requests to read and
write logical disk blocks

10/04/2017 (© John Shen) 18-600 Lecture #11 71

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SSD Tradeoffs vs. Rotating Disks
• Advantages

• No moving parts  faster, less power, more rugged

• Disadvantages
• Have the potential to wear out

• Mitigated by “wear leveling logic” in flash translation layer

• E.g. Intel SSD 730 guarantees 128 petabyte (128 x 1015 bytes) of writes before they
wear out

• In 2015, about 30 times more expensive per byte

• Applications
• MP3 players, smart phones, laptops

• Beginning to appear in desktops and servers (as disk cache)

10/04/2017 (© John Shen) 18-600 Lecture #11 72

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The CPU-Memory-Storage Gaps

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

T
im

e
 (

n
s

)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle timeDRAM

CPU

SSD

Disk

10/04/2017 (© John Shen) 18-600 Lecture #11 73

SRAM

Lecture 12:
“ECF I: Exceptions and Processes”

John P. Shen & Gregory Kesden
October 9, 2017

10/04/2017 (© John Shen) 18-600 Lecture #11 74

18-600 Foundations of Computer Systems

➢ Required Reading Assignment:
• Chapter 5 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SE
18-600

PL
OS
CA

