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Memory Hierarchy (where do all the bits live?)
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(Cache) Memory Implementation Options
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no index

unlimited blocks

N-Way 

Set-Associative Memory

k-bit index

2k • N blocks
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General Cache Concept
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Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks” 
(or cache “lines”)

Data is copied in block-sized 
transfer units (or cache “lines”)

Smaller, faster, more expensive
memory caches a  subset of
the blocks
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General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is needed
Request: 14

14

Block b is in cache:
Hit!
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General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is needed
Request: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)
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General Caching Concepts: 
Types of Cache Misses (3 C’s)

• Cold (compulsory) miss
• Cold misses occur because the cache is empty.

• Capacity miss
• Occurs when the set of active cache blocks (working set) is larger than the cache.

• Conflict miss
• Occur when the level k cache is large enough, but multiple data objects all map to the 

same level k block.
• E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
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Cache Memories

• Cache memories are small, fast SRAM-based memories managed automatically 
in hardware
• Hold frequently accessed blocks of main memory

• CPU looks first for data in cache

• Typical system structure:

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Cache 
memory
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General Cache Organization (S, E, B)
E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
C = S x E x B data bytes

valid bit
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Cache Read
E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting at offset
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Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

block offset

tag
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

int (4 Bytes) is here

block offset

If tag doesn’t match: old line is evicted and replaced
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Direct-Mapped Cache Simulation

M=16 bytes (4-bit addresses), B=2 bytes/block, 
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set
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E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

block offset

tag
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E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

block offset

short int (2 Bytes) is here

No match: 
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

10/04/2017 (© John Shen) 18-600 Lecture #11 19



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

2-Way Set Associative Cache Simulation
M=16 byte addresses, B=2 bytes/block, 
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1
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What about writes?
• Multiple copies of data exist:

• L1, L2, L3, Main Memory, Disk

• What to do on a write-hit?
• Write-through (write immediately to memory)

• Write-back (defer write to memory until replacement of line)
• Need a dirty bit (line different from memory or not)

• What to do on a write-miss?
• Write-allocate (load into cache, update line in cache)

• Good if more writes to the location follow

• No-write-allocate (writes straight to memory, does not load into cache)

• Typical
• Write-through + No-write-allocate

• Write-back + Write-allocate
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Intel Core i7 Cache Hierarchy

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 0

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB,  8-way, 
Access: 4 cycles

L2 unified cache:
256 KB, 8-way, 
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for all 
caches. 
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Cache Performance Metrics
• Miss Rate

• Fraction of memory references not found in cache (misses / accesses)
= 1 – hit rate

• Typical numbers (in percentages):
• 3-10% for L1
• can be quite small (e.g., < 1%) for L2, depending on size, etc.

• Hit Time
• Time to deliver a line in the cache to the processor

• includes time to determine whether the line is in the cache

• Typical numbers:
• 4 clock cycle for L1
• 10 clock cycles for L2

• Miss Penalty
• Additional time required because of a miss

• typically 50-200 cycles for main memory (Trend: increasing!)
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Let’s think about those numbers
• Huge difference between a hit and a miss

• Could be 100x, if just L1 and main memory

• Would you believe 99% hits is twice as good as 97%?
• Consider: 

cache hit time of 1 cycle
miss penalty of 100 cycles

• Average access time:

97% hits:  1 cycle + 0.03 * 100 cycles = 4 cycles

99% hits:  1 cycle + 0.01 * 100 cycles = 2 cycles

• This is why “miss rate” is used instead of “hit rate”
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Writing Cache Friendly Code

• Make the common case go fast
• Focus on the inner loops of the core functions

• Minimize the misses in the inner loops
• Repeated references to variables are good (temporal locality)

• Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified 
through our understanding of cache memories
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Lecture 11:
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The Memory Mountain

• Read throughput (read bandwidth)
• Number of bytes read from memory per second (MB/s)

• Memory mountain: Measured read throughput as a function of 
spatial and temporal locality.
• Compact way to characterize memory system performance. 
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Memory Mountain Test Function
long data[MAXELEMS];  /* Global array to traverse */

/* test - Iterate over first "elems" elements of
*        array “data” with stride of "stride", using 
*        using 4x4 loop unrolling.                                                            
*/

int test(int elems, int stride) {
long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
long length = elems, limit = length - sx4;

/* Combine 4 elements at a time */
for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];
acc1 = acc1 + data[i+stride];
acc2 = acc2 + data[i+sx2];
acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */
for (; i < length; i++) {

acc0 = acc0 + data[i];
}
return ((acc0 + acc1) + (acc2 + acc3));

}

Call test() with many 
combinations of elems
and stride.

For each elems and 

stride:

1. Call test() once 

to warm up the 

caches.

2. Call test() again 

and measure the read 

throughput(MB/s)

mountain/mountain.c
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The Memory Mountain
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Matrix Multiplication Example

• Description:
• Multiply N x N matrices

• Matrix elements are doubles (8 bytes)

• O(N3) total operations

• N reads per source element

• N values summed per destination
• but may be able to hold in register

/* ijk */

for (i=0; i<n; i++)  {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

} 

Variable sum
held in register

matmult/mm.c
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Miss Rate Analysis for Matrix Multiply

• Assume:
• Block size = 32B (big enough for four doubles)

• Matrix dimension (N) is very large
• Approximate 1/N as 0.0

• Cache is not even big enough to hold multiple rows

• Analysis Method:
• Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x
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Layout of C Arrays in Memory (review)
• C arrays allocated in row-major order

• each row in contiguous memory locations

• Stepping through columns in one row:
• for (i = 0; i < N; i++)

sum += a[0][i];

• accesses successive elements

• if block size (B) > sizeof(aij) bytes, exploit spatial locality
• miss rate = sizeof(aij) / B

• Stepping through rows in one column:
• for (i = 0; i < n; i++)

sum += a[i][0];

• accesses distant elements

• no spatial locality!
• miss rate = 1 (i.e. 100%)
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Matrix Multiplication (ijk)

/* ijk */

for (i=0; i<n; i++)  {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

} 

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

matmult/mm.c
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Matrix Multiplication (jik)

/* jik */

for (j=0; j<n; j++) {

for (i=0; i<n; i++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum

}

}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

matmult/mm.c
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Matrix Multiplication (kij)

/* kij */

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C

0.0 0.25 0.25

matmult/mm.c
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Matrix Multiplication (ikj)

/* ikj */

for (i=0; i<n; i++) {

for (k=0; k<n; k++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C

0.0 0.25 0.25

matmult/mm.c
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Matrix Multiplication (jki)

/* jki */

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

matmult/mm.c
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Matrix Multiplication (kji)

/* kji */

for (k=0; k<n; k++) {

for (j=0; j<n; j++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

matmult/mm.c
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Summary of Matrix Multiplication

ijk (& jik): 
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj): 
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji): 
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

} 

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];   

}

}

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}
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Core i7 Matrix Multiply Performance
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Example: Matrix Multiplication

a b

i

j

*
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

c[i*n + j] += a[i*n + k] * b[k*n + j];

}
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Cache Miss Analysis

• Assume: 
• Matrix elements are doubles

• Cache block = 8 doubles

• Cache size C << n (much smaller than n)

• First iteration:
• n/8 + n = 9n/8 misses

• Afterwards in cache:
(schematic)

*=

n

*=

8 wide
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Cache Miss Analysis

• Assume: 
• Matrix elements are doubles

• Cache block = 8 doubles

• Cache size C << n (much smaller than n)

• Second iteration:
• Again:

n/8 + n = 9n/8 misses

• Total misses:
• 9n/8 * n2 = (9/8) * n3

n

*=
8 wide
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Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)

for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */

for (i1 = i; i1 < i+B; i++)

for (j1 = j; j1 < j+B; j++)

for (k1 = k; k1 < k+B; k++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

*
c

=
c

+
Block size B x B

matmult/bmm.c
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Cache Miss Analysis

• Assume: 
• Cache block = 8 doubles

• Cache size C << n (much smaller than n)

• Three blocks       fit into cache: 3B2 < C

• First (block) iteration:
• B2/8 misses for each block

• 2n/B * B2/8 = nB/4
(omitting matrix c)

• Afterwards in cache
(schematic) *=

*=

Block size B x B

n/B blocks
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Cache Miss Analysis

• Assume: 
• Cache block = 8 doubles

• Cache size C << n (much smaller than n)

• Three blocks       fit into cache: 3B2 < C

• Second (block) iteration:
• Same as first iteration

• 2n/B * B2/8 = nB/4

• Total misses:
• nB/4 * (n/B)2 = n3/(4B)

*=

Block size B x B

n/B blocks
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Blocking Summary

• No blocking: (9/8) * n3

• Blocking: 1/(4B) * n3

• Suggest largest possible block size B, but limit 3B2 < C!

• Reason for dramatic difference:
• Matrix multiplication has inherent temporal locality:

• Input data: 3n2, computation 2n3

• Every array elements used O(n) times!

• But program has to be written properly
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Cache Summary

• Cache memories can have significant performance impact

• You can write your programs to exploit this!
• Focus on the inner loops, where bulk of computations and memory accesses occur. 

• Try to maximize spatial locality by reading data objects sequentially with stride 1.

• Try to maximize temporal locality by using a data object as often as possible once it’s 
read from memory. 
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Lecture 11:
“Cache Memories & Non-Volatile Storage”
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A. Cache Organization and Operation
B. Performance Impact of Caches

a. The Memory Mountain
b. Rearranging Loops to Improve Spatial Locality
c. Using Blocking to Improve Temporal Locality

C. Non-Volatile Storage Technologies 
a. Disk Storage Technology
b. Flash Memory Technology
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What’s Inside A Disk Drive?

Spindle
Arm

Actuator

Platters

Electronics

(including a 

processor 

and memory!)

SCSI

connector

Image courtesy of Seagate Technology
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Disk Geometry
• Disks consist of platters, each with two surfaces.

• Each surface consists of concentric rings called tracks.

• Each track consists of sectors separated by gaps.

• Aligned tracks form a cylinder.
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Disk Capacity
Capacity =  (# bytes/sector) x (avg. # sectors/track) x

(# tracks/surface) x (# surfaces/platter) x

(# platters/disk)

Example:
• 512 bytes/sector
• 300 sectors/track (on average)
• 20,000 tracks/surface
• 2 surfaces/platter
• 5 platters/disk

Capacity = 512 x 300 x 20000 x 2 x 5

= 30,720,000,000

= 30.72 GB 
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Disk Operation
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The disk surface 
spins at a fixed
rotational rate

By moving radially, the arm 
can position the read/write 
head over any track.

The read/write head
is attached to the end
of the arm and flies over
the disk surface on
a thin cushion of air.

sp
in

d
le

spindle

sp
in

d
le

spindlespindle

Single-Platter View

Arm

Read/write heads 
move in unison
from cylinder to 

cylinder

Spindle

Multi-Platter View
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Disk Access

Rotation is counter-clockwise
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Head in position above a track
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Disk Access – Read

About to read 

blue sector
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Disk Access of RED
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After BLUE read Seek for RED Rotational latency After RED read

Wait for red sector 

to rotate around

Red request 

scheduled next

Data transfer Seek Rotational 
latency

Data transfer
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Disk Access Time

• Average time to access some target sector approximated by :
• Taccess =  Tavg seek +  Tavg rotation + Tavg transfer 

• Seek time (Tavg seek)
• Time to position heads over cylinder containing target sector.

• Typical  Tavg seek is 3—9 ms

• Rotational latency (Tavg rotation)
• Time waiting for first bit of target sector to pass under r/w head.

• Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min

• Typical Tavg rotation = 7200 RPMs

• Transfer time (Tavg transfer)
• Time to read the bits in the target sector.

• Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.
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Disk Access Time Example
• Given:

• Rotational rate = 7,200 RPM

• Average seek time = 9 ms.

• Avg # sectors/track = 400.

• Derived:
• Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.

• Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms

• Taccess = 9 ms + 4 ms + 0.02 ms

• Important points:
• Access time dominated by seek time and rotational latency.

• First bit in a sector is the most expensive, the rest are free.

• SRAM access time is about  4 ns/doubleword, DRAM about  60 ns
• Disk is about 40,000 times slower than SRAM, 

• 2,500 times slower then DRAM.
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Logical Disk Blocks

• Modern disks present a simpler abstract view of the complex sector geometry:
• The set of available sectors is modeled as a sequence of b-sized logical blocks (0, 1, 2, ...)

• Mapping between logical blocks and actual (physical) sectors
• Maintained by hardware/firmware device called disk controller.

• Converts requests for logical blocks into (surface,track,sector) triples.

• Allows controller to set aside spare cylinders for each zone.
• Accounts for the difference in “formatted capacity” and “maximum capacity”. 
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I/O Bus

Main
memory

I/O 
bridge

Bus interface

ALURegister file

CPU chip

System bus Memory bus

Disk 
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor
Disk

I/O bus Expansion slots for
other devices such
as network adapters.
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Reading a Disk Sector (1)

Main
memory

ALU

Register file CPU chip

Disk 
controller

Graphics
adapter

USB
controller

mouse keyboard Monitor
Disk

I/O bus

Bus interface

CPU initiates a disk read by writing a command, logical 
block number, and destination memory address to a 
port (address) associated with disk controller.
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Reading a Disk Sector (2)

Main
memory

ALU

Register file
CPU chip

Disk 
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

I/O bus

Bus interface

Disk controller reads the sector and performs a direct 
memory access (DMA) transfer into main memory.
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Reading a Disk Sector (3)

Main
memory

ALU

Register file
CPU chip

Disk 
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

I/O bus

Bus interface

When the DMA transfer completes, the disk 
controller notifies the CPU with an interrupt (i.e., 
asserts a special “interrupt” pin on the CPU)
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Non-Volatile Memories
• DRAM and SRAM are volatile memories

• Lose information if powered off.

• Non-volatile memories retain value even if powered off
• Read-only memory (ROM): programmed during production
• Programmable ROM (PROM): can be programmed once
• Erasable PROM (EPROM): can be bulk erased (UV, X-Ray)
• Electrically erasable PROM (EEPROM): electronic erase capability
• Flash memory: EEPROMs. with partial (block-level) erase capability

• Wears out after about 100,000 erasing cycles

• Uses for Non-volatile Memories
• Firmware programs stored in a ROM (BIOS, controllers for disks, network cards, 

graphics accelerators, security subsystems,…)
• Solid state disks (replace rotating disks in thumb drives, smart phones, mp3 players, 

tablets, laptops,…)
• Disk caches in large database systems.
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Flash Memory Technology
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Flash Memory Cell Operation
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NAND vs. NOR Flash Memories
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NAND vs. NOR Flash Memories
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NAND Flash & Secured Digital (SD) Cards

18-600 Lecture #1110/04/2017 (© John Shen) 69



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solid State Drive (SSD) vs. Hard Disk Drive (HDD)
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Solid State Disks (SSDs)

• Pages: 512B to 4KB, Blocks: 32 to 128 pages

• Data read/written in units of pages. 

• Page can be written only after its block has been erased

• A block wears out after about 100,000 repeated writes.

Flash 
translation layer

I/O bus

Page 0 Page 1 Page P-1…
Block 0

… Page 0 Page 1 Page P-1…
Block  B-1

Flash memory

Solid State Disk (SSD)
Requests to read and 
write logical disk blocks
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SSD Tradeoffs vs. Rotating Disks
• Advantages 

• No moving parts  faster, less power, more rugged

• Disadvantages
• Have the potential to wear out 

• Mitigated by “wear leveling logic” in flash translation layer

• E.g. Intel SSD 730 guarantees 128 petabyte (128 x 1015 bytes) of writes before they 
wear out

• In 2015, about 30 times more expensive per byte

• Applications
• MP3 players, smart phones, laptops

• Beginning to appear in desktops and servers (as disk cache)
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The CPU-Memory-Storage Gaps
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“ECF I:  Exceptions and Processes”
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18-600  Foundations of Computer Systems

➢ Required Reading Assignment:
• Chapter 5 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.
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