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18-600 Foundations of Computer Systems

Lecture 11
“Cache Memories & Non-Volatile Storage”

A. Cache Organization and Operation

ectrical & Computer
Y ENGINEERING
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
From Lecture #10 ... / paerey ¢ P

'Y

Memory Hierarchy (where do all the b

ve?)

Register File
32 words, sub-nsec

L1 cache (SRAM)
~32 KB, ~nsec

L2 cache (SRAM)
512 KB ~ 1MB, many nsec

Abstraction

L3 cache, (SRAM)

Main Memory (DRAM)
AN 2-8 GB, ~100 nsec

Disk Storage
200-1K GB, ~10 msec
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Disk Storage
200-1K GB, ~10 msec
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From Lecture #7 ...

(Cache) Memory Implementation Options

e ey X Tkey Hl
+ —v Indgx
tag data /‘mda#
v
< s P
—> ¢ > |y |
S o
©
\r :
Indexed Memory Associative Memory N-_V\/_ay Indexed Memory
(RAM) (CAM) Set-Associative Memory (Multi-Ported)
K-bit index no index K-bit index (2x) k-bit index
2% blocks unlimited blocks 2K+ N blocks (2x) 2 blocks
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General Cache Concept

Cache

Memory

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”
(or cache “lines”)

4 9 10 3
Data is copied in block-sized
10 transfer units (or cache “lines”)
0 2 3
4 6 7/
3 10 11
12 13 14 15
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General Cache Concepts: Hit

Cache

Memory

Request: 14
3 9 14 3
0) 2 3
4 6 /
3 10 11
12 13 14 15

Data in block b is needed

Block b is in cache:
Hit!
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General Cache Concepts: Miss

Cache

Memory

Request: 12

3 12 14 3
12 Request: 12

0) 2 3
4 6 /
3 10 11
12 13 14 15

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)
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General Cachi

Types of Cacr

ng Concepts:
e Misses (3 C's)

* Cold (compulsory) miss
* Cold misses occur because the cache is empty.

* Capacity miss

* Occurs when the set of active cache blocks (working set) is larger than the cache.

e Conflict miss

* Occur when the level k cache is large enough, but multiple data objects all map to the

same level k block.

* E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
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Cache Memories

e Cache memories are small, fast SRAM-based memories managed automatically
in hardware
* Hold frequently accessed blocks of main memory

 CPU looks first for data in cache
e Typical system structure:

CPU chip
Register file
memory (:
— o~ - System bus Memory bus
_ |
T~ —
. = 1/0 Main
Bus interface bridee memory
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General Cache Organization (S, E, B)

E =2¢lines per set
A

S = 2°sets <

-

e

~
.

0000 0 ¢

\

0000 0 ¢

0000 0 ¢

0000 0 ¢

tag

1

2

B-1

Vv

valid

bit

N—

7

Cache size:
C =S x E x B data bytes

B=2b Bytes per cache block (the data)
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Cache Read

E = 2¢ lines per set

* Locate set
* Check if any line in set
has matching tag
* Yes + line valid: hit
* Locate data starting at offset

Address of word:

t bits s bits b bits
g ~ N ~ JR/_/
tag set block

index offset

e
f 00000
S=255e1'.5< eecocooe
K 00000
Vv tag 2| eeeeeeee B-1
valid bit ~— —

data begins at this offset

B = 2 bytes per cache block (the data)
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

r Address of int:
v tag 0f1]2f3f4[5]6]7 t bits 0..01 | 100
\Y; ta Ol1121314|5|6]|7 )
g find set
S=255ets<
v tag ol1f{2[3]4als5]6]7
L \Y; tag Ol1121314|5|6]|7
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:

valid? + match: assume yes = hit

t bits 0..01 | 100
Y tag O11(2(3|4|5|6]|7
block offset
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0...01 100

valid? + match: assume yes = hit

Y tag O1112|3|4|5]|16]|7

block offset

int (4 Bytes) is here

If tag doesn’t match: old line is evicted and replaced
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Direct-Mapped Cache Simulation

M=16 bytes (4-bit addresses), B=2 bytes/block,
X XX X S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 0000,], miss
7 0111,], miss
8 1000,], miss
0 0000, miss
v Tag Block

Set 0 1 0 M[0-1]

Set 1

Set 2

Set 3 1 0 M[6-7]
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E-way Set Associative Cache (Here: E = 2)

E =2: Two lines per set Address of short int:
Assume: cache block size 8 bytes t bits 0..01 | 100
V tag 011]12]3]14]|5]|6]7 V tag O11(2|3]4]|5]|6]|7

v tag | [o]1]2]3]4]5]6]7 v tag | [o]1]2]3]4]5]6]7 find set
vV tag O1112]3]4]|5]|6|7 V tag 011121314567

Vv tag Of1{2(3f4]5]6]7 Vv tag 011231451617
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E-way Set Associative Cache (Here: E = 2)

E =2:Two lines per set
Assume: cache block size 8 bytes

Address of short int:

valid? + | match: yes = hit

compare both

t bits

0...01

100

V tag 011]12]13|4]|5]|6

block offset

10/04/2017 (© John Shen)
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E-way Set Associative Cache (Here: E = 2)

E =2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

Vv tag Of1{2(3(4]5]6]7 Vv tag O11f{2|3|4[5]6]7

block offset

short int (2 Bytes) is here

No match:
* Onelinein setis selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...
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2-Way Set Associative Cache Simulation

t=2 s=1

b=1

XX X

X

M=16 byte addresses, B=2 bytes/block,

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

Set O

Set 1

0 0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,], miss
0 :OOQOZ: hit
Tag Block

1 00 M[0-1]

1 10 M|[8-9]

%) 01 MI[6-7]
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What about writes?

* Multiple copies of data exist:
e L1, L2, L3, Main Memory, Disk

e What to do on a write-hit?

* Write-through (write immediately to memory)

* Write-back (defer write to memory until replacement of line)
* Need a dirty bit (line different from memory or not)

* What to do on a write-miss?

* Write-allocate (load into cache, update line in cache)
* Good if more writes to the location follow

* No-write-allocate (writes straight to memory, does not load into cache)

* Typical
e Write-through + No-write-allocate
e Write-back + Write-allocate
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Intel Core i7 Cache Hierarchy

Processor package

__________________________________________________________________________________________________________

Core 0O Core 3
Regs Regs
L1 L1 L1 L1
d-cache i-cache d-cache i-cache
L2 unified cache L2 unified cache

L3 unified cache
(shared by all cores)

_________________________________________________________________________________________________________

Main memory

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for all
caches.
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Cache Performance Metrics

* Miss Rate

* Fraction of memory references not found in cache (misses / accesses)
=1 — hit rate
e Typical numbers (in percentages):
e 3-10% for L1
* can be quite small (e.g., < 1%) for L2, depending on size, etc.

* Hit Time
* Time to deliver a line in the cache to the processor

* includes time to determine whether the line is in the cache

* Typical numbers:
* 4 clock cycle for L1
e 10 clock cycles for L2

* Miss Penalty

* Additional time required because of a miss
 typically 50-200 cycles for main memory (Trend: increasing!)
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Let's think about those numbers

* Huge difference between a hit and a miss
* Could be 100, if just L1 and main memory

* Would you believe 99% hits is twice as good as 97%?

* Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

e Average access time:
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

* This is why “miss rate” is used instead of “hit rate”
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Writing Cache Friendly Code

* Make the common case go fast
* Focus on the inner loops of the core functions

* Minimize the misses in the inner loops
* Repeated references to variables are good (temporal locality)
 Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories
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18-600 Foundations of Computer Systems

Lecture 11
“Cache Memories & Non-Volatile Storage”

B. Performance Impact of Caches
a. The Memory Mountain
b. Rearranging Loops to Improve Spatial Locality
c. Using Blocking to Improve Temporal Locality

ectrical & Computer
Y ENGINEERING
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The Memory Mountain

* Read throughput (read bandwidth)
* Number of bytes read from memory per second (MB/s)

* Memory mountain: Measured read throughput as a function of
spatial and temporal locality.

* Compact way to characterize memory system performance.
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Memory Mountain lest Function

long data|MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of

* array “data” with stride of "stride", using

*/ using 4x4 loop unrolling.

*

int test(int elems, int stride) {
long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long accO0=0, accl =0, acc2 =0, acc3 =0;
long length = elems, limit = length - sx4;

/* Combine 4 elements at a time */
for (i=0; i< limit; i += sx4) {

accO = accO + datali];

accl = accl + datafi+stride];

acc2 = acc2 + data[i+sx2];

acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */
for (; i < length; i++) {
accO = accO + datali];

return ((accO + accl) + (acc2 + acc3));

Call test () with many
combinations of elems
and stride.

For each elems and
stride:

1. Call test () once
to warm up the
caches.

2. Call test () again
and measure the read
throughput (MB/s)

} moun tain/mouln tain.c

10/04/2017 (© John Shen) 18-600 Lecture #11
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Haswell

The Memory Mountain 2.1 GHz

32 KB L1 d-cache
Aggressive

- 56 KB L2 cache

prefetching isooo ’ 8 MB L3 cache
14000 "... | 64 B block size
12000

w
m
2
5
o
5
S
£ 8000 - ,
< \ - \A Ridges
©
S 6000 b‘ —— of temporal
4000 = locality
2000 y B
Slopes .//
of spatial ! 32k
f p. 51, . 128k
locality . 512k
> s6 ; 2m
S
Stride (x8 bytes) s8 8m Size (bytes)

s10 32m
sl1

128m
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Matrix Multiplication Example

Variable sum

* Description: /* 13k %/ held in register
* Multiply N x N matrices for (i=0; i<n; i++) {
* Matrix elements are doubles (8 bytes) for (3=0; J<n; J++) |
* O(N3) total operations sum = 0.0;
* N reads per source element for (k=0; k<n; k++)
* N values summed per destination sum += al[i][k] * blk]I[7];
* but may be able to hold in register c[i]l[3] = sum;
) matmult/mm. c
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Miss Rate Analysis for Matrix Multiply

* Assume:
 Block size = 32B (big enough for four doubles)

* Matrix dimension (N) is very large
* Approximate 1/N as 0.0

* Cache is not even big enough to hold multiple rows

* Analysis Method:

* Look at access pattern of inner loop

) k ]

i — i X |]<

C A B
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Layout of C Arrays in Memory (review)

e C arrays allocated in row-major order
e each row in contiguous memory locations

e Stepping through columns in one row:
e for (1 = 0, 1 < N; 1++)
sum += a[0][1];
* accesses successive elements
* if block size (B) > sizeof(a;) bytes, exploit spatial locality
* miss rate = sizeof(a;) / B
 Stepping through rows in one column:
e for (1 = 0; 1 < n; 1i++)
sum += a[1][0];
* accesses distant elements

* no spatial locality!
* miss rate =1 (i.e. 100%)
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Matrix Multiplication (ijk)

/* 1ijk */
for (i1i=0; i<n; 1i++)
for (3=0; j<n; J++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += af[i][k] * blk][7];
c[1][]J] = sum;
) matmult/mm. c

Misses per inner loop iteration.

A B ¢
0.25 0.0

Inner loop:

|

Row-wise

— ("
A

)
(ki)
B C
Column- Fixed
wise
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Matrix Multiplication (jik)

J* 3ik */
(3=0;
(1=0;
sum = 0.0;

(k=0; k<n;
sum += af[1] [k]

for j<n; J++) |

for i<n; i++) A
k++)
* blkl[J];

for

c[1][J] = sum
) matmult/mm. c

Misses per inner loop iteration:
A B C
0.0

Inner loop:
— i
A

Row-wise

Column-
wise

(i)

C

|

Fixed

0.25 1.0
18-600 Lecture #11
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Matrix Multiplication (kij)

/* kij */
Inner loop:
for (k=0; k<n; k++) {

for (1=0; i<n; 1i++) { QJQ ‘ \(K*)
B

r = af1]lkl;

—
C

for (3=0; j<n; J++) A
c[1][J] += r * bl[k][]J]; ‘ ‘ ‘
} matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.25 0.25
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Matrix Multiplication (ikj)

/% ikj */
(1=0,; 1<n; 1++) {

(k=0,; k<n; k++) {

ali] [k];

(3=0; I<n; J++)
c[1][J] += r * blk][J];

for
for

r

for

} matmult/mm. c

Misses per inner loop iteration:
A B C

0.0 0.25 0.25

Inner loop:
(k) —(k*
A B‘
Fixed Row-wise

c_l (i,%)
|

Row-wise

10/04/2017 (© John Shen) 18-600 Lecture #11
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Matrix Multiplication (jki)

/* Jki */
for (3=0;
for (k=0;

j<n; J++) |

k<n; k++) {

r = blk][J3];
for (1=0;
cl1][7]

Misses per inner loop iteration:
A B C
1.0 0.0 1.0

Inner loop:

mi

A

|

Column-
wise

(K.}

B

|

Fixed

o

C

|

Column-
wise
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Matrix Multiplication (kji)

/* kji */

(k=0,; k<n;
(3=0;
b[k][J]7
(1=0;
c[1] [J]

k++) |
Jt++) A

for
for J<n;

r =

1<n; 1++)

+= al1] [k] * r;

for

} matmult/mm. c

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

Inner loop:

i
A

|

Column-
wise

"

(K.}

T j
Fixed Column-
wise
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Summary of Matrix Multi

for (1=0; i<n; 1++) {
for (3J=0; J<n; J++) |
sum = 0.0;
for (k=0; k<n;
sum += al[i] [k]
c[1][3] =

k++)
* blk][317
sum,

plication

ijk (& jik):
e 2 loads, O stores
e misses/iter =1.25

kij (& ikj):
e 2 loads, 1 store
e misses/iter = 0.5

jki (& kji):
e 2 loads, 1 store
® misses/iter =2.0

10/04/2017 (© John Shen)
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Core i/ Matrix Multiply Performance

100
——X
S & —=
<
g
S —*=jki
g =
o 10 ..
E ] —>=ijk
5 —o—jik
o .
" —+—Kkij
GJ - -
A | = : : : : : : —+
A— — - = e 2 A A A A A A A —A
kij / ikj
1 T T T T T
50 100 150 200 250 300 350 400 450 500 550 600 650 700

Array size (n)
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Example: Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
vold mmm (double *a, double *b, double *c, int n) {
int i, 3, k;
for (1 = 0; 1 < n; 1++)
for (J = 0; 3 < n; J++)
for (k = 0; k < n; k++)
cli*n + J] += al[i*n + k] * blk*n + 7J];

|l
*
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Cache Miss Analysis

e Assume:

 Matrix elements are doubles
e Cache block = 8 doubles
e Cache size C << n (much smaller than n)

e First iteration:
* n/8 + n =9n/8 misses

* Afterwards in cache:
(schematic)

8 wide

10/04/2017 (© John Shen) 18-600 Lecture #11
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Cache Miss Analysis

e Assume:

 Matrix elements are doubles
 Cache block = 8 doubles
e Cache size C << n (much smaller than n)

n
A
' Y
e Second iteration: = o
* Again: _
n/8 + n =9n/8 misses - *
8 wide

e Total misses:
* 9n/8 * n2=(9/8) * n3
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Blocked Matrix I\/Iu\t|p||cat|on

c = (double *) calloc(sizeof (double) n*n);

/* Multiply n x n matrices a and b */
volid mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (1 = 0; 1 < n; 1+=B)
for (3 = 0; 3 < n; Jj+=B)
for (k = 0; k < n; k+=BRB)
/* B x B mini matrix multiplications */

for (11 = 1i; 11 < 1+4+B; 1i++)
for (71 = j, 71 < 3+B; J++)
for (k1 = k; k1l < k+B; k++)
cl[i l*n+jl] += a[i1l*n + k1l]*b[kl*n + 31];
J matmult/bmm| c
C a C

i By [

Block size Bx B
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Cache Miss Analysis

* Assume:
e Cache block = 8 doubles
e Cache size C << n (much smaller than n)

* Three blocks I fit into cache: 3B%< C n/B blocks
' % N\
] HENEN ]
* First (block) iteration: =
* B2/8 misses for each block - * ]
« 2n/B * B2/8 = nB/4 T
omitting matrix c
( & ) Block size B x B
] HE NN
e Afterwards in cache = %
(schematic)
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Cache Miss Analysis

* Assume:
* Cache block = 8 doubles
e Cache size C << n (much smaller than n)
* Three blocks M fit into cache: 3B2< C

nj/f blocks
* Second (block) iteration: - o N
e Same as first iteration
e 2n/B * B2/8 = nB/4 - k
e Total misses: Block size B x B

* nB/4 * (n/B)? =n3/(4B)
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Blocking Summary

* No blocking: (9/8) * n3
* Blocking: 1/(4B) * n3

 Suggest largest possible block size B, but limit 3B% < C!

e Reason for dramatic difference:

* Matrix multiplication has inherent temporal locality:
* |nput data: 3n2, computation 2n3
* Every array elements used O(n) times!

* But program has to be written properly
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Cache Summary

e Cache memories can have significant performance impact

* You can write your programs to exploit this!
* Focus on the inner loops, where bulk of computations and memory accesses occur.
* Try to maximize spatial locality by reading data objects sequentially with stride 1.

* Try to maximize temporal locality by using a data object as often as possible once it’s
read from memory.
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18-600 Foundations of Computer Systems

Lecture 11
“Cache Memories & Non-Volatile Storage”

C. Non-Volatile Storage Technologies
a. Disk Storage Technology (K) Electrical & Computer

b. Flash Memory Technology ENGINEERI NG
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What's Inside A Disk Drive?

Spindle

Arm
Platters

Actuator

Electronics
(including a

processor
and memory!)

Image courtesy of Seagate Technology

/

SCSI
connector
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* Dis

Disk Geometry

ks consist of platters, each with two surfaces.

e Each surface consists of concentric rings called tracks.

* Each track consists of sectors separated by gaps.

* Aligned tracks form a cylinder.

Tracks

Surface

@)

/

\
\

Track k Gaps

/"\//

/
/

~

|

Sectors

Surface 0

Surface 1
Surface 2

Surface 3
Surface 4

Surface 5

Cylinder k

.
f~——-—-]

Platter O

5
b Platter 1
— >

K g — >§ Platter 2

Spindle
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Disk Capacity

Capacity = (# bytes/sector) x (avg. # sectors/track) x
(# tracks/surface) x (# surfaces/platter) x
(# platters/disk)

Example:
* 512 bytes/sector
300 sectors/track (on average)
20,000 tracks/surface
2 surfaces/platter
5 platters/disk

Capacity =512 x 300 x 20000 x 2 x 5
=30,720,000,000
=30.72 GB
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Disk Operation

The read/write head

is attached to the end

of the arm and flies over
the disk surface on

a thin cushion of air.

The disk surface
spins at a fixed
rotational rate

By moving radially, the arm
can position the read/write
head over any track.

Single-Platter View

Read/write heads
move in unison
from cylinder to

cylinder

Arm

f
itk

Spindle

Multi-Platter View
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Disk Access

' Head In position above a track

Rotation 1s counter-clockwise
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Disk Access — Read

@ @

About to read After BLUE
blue sector read
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Disk Access of RED

DHBHGE

After BLUE read Seek for RED Rotational latency  After RED read

Red request Wait for red sector
scheduled next to rotate around
Data transfer Seek Rotational Data transfer
latency
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Disk Access Time

* Average time to access some target sector approximated by :
* Taccess = Tavg seek + Tavg rotation + Tavg transfer

* Seek time (Tavg seek)
* Time to position heads over cylinder containing target sector.
e Typical Tavg seek is 3—9 ms

* Rotational latency (Tavg rotation)
* Time waiting for first bit of target sector to pass under r/w head.
* Tavg rotation=1/2 x 1/RPMs x 60 sec/1 min
e Typical Tavg rotation = 7200 RPMs

* Transfer time (Tavg transfer)
* Time to read the bits in the target sector.
* Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.
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Disk Access Time Example

* Given:
* Rotational rate =7,200 RPM
* Average seek time =9 ms.
* Avg # sectors/track = 400.

e Derived:
* Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.
* Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms
* Taccess =9 ms+4 ms+0.02 ms

* Important points:
* Access time dominated by seek time and rotational latency.
* First bitin a sector is the most expensive, the rest are free.

 SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
e Disk is about 40,000 times slower than SRAM,
e 2,500 times slower then DRAM.
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Logical Disk Blocks

* Modern disks present a simpler abstract view of the complex sector geometry:
* The set of available sectors is modeled as a sequence of b-sized logical blocks (0, 1, 2, ...)

* Mapping between logical blocks and actual (physical) sectors
* Maintained by hardware/firmware device called disk controller.
» Converts requests for logical blocks into (surface,track,sector) triples.

* Allows controller to set aside spare cylinders for each zone.
e Accounts for the difference in “formatted capacity” and “maximum capacity”.
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/O Bus

CPU chip

Il

Register file Y ALU

System bus Memory bus

P l |
Bus interface < > I(O < > Main
bridge memory

AN
o I

/O bus xpansion slots for
\/ \/ \/ other devices such
USB Graphics Disk as network adapters.
controller adapter controller

T

Mouse Keyboard Monitor Z
Disk
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Reading a Disk Sector (1)

CPU initiates a disk read by writing a command, logical
block number, and destination memory address to a
port (address) associated with disk controller.

Register file CPU chi
N P
/ | ALU
\
e T~
/! N
Bus interface \l I/|

< > Main
memory

N

<

N

USB
controller

T

mouse keyboard

NS

Graphics
adapter

Monitor

1/0 bus
>
N

Disk
controller

=)
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Reading a Disk Sector (2)

Register file

e T~

—AN\
/1—1/
——

Bus interface

ALU

CPU chip

Disk controller reads the sector and performs a direct
memory access (DMA) transfer into main memory.

<

>

4 N

|1
AN

N

/

Main
memory

<

>

1/0 bus
USB Graphics Di: k
controller adapter contioller
Mouse Keyboard Monitor

=)
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Reading a Disk Sector (3)

Register file

e T~

—AN\
/1—1/
——

Bus interface

ALU

<

A 1K

4 N

>

1/0 bus

CPU chip When the DMA transfer completes, the disk
controller notifies the CPU with an interrupt (i.e.,
asserts a special “interrupt” pin on the CPU)

Main
memory

<

NS

USB
controller

Mouse Keyboard

NS

N

Graphics Disk

adarjter contr_oller

Monitor .
Disk

>
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Non-Volatile Memories

* DRAM and SRAM are volatile memories
* Lose information if powered off.

* Non-volatile memories retain value even if powered off

Floating
e Read-only memory (ROM): programmed during production | T
* Programmable ROM (PROM): can be programmed once |
* Erasable PROM (EPROM): can be bulk erased (UV, X-Ray) EPROM device structure

 Electrically erasable PROM (EEPROM): electronic erase capability

* Flash memory: EEPROMs. with partial (block-level) erase capability
* Wears out after about 100,000 erasing cycles

 Uses for Non-volatile Memories

* Firmware programs stored in a ROM (BIOS, controllers for disks, network cards,
graphics accelerators, security subsystems,...)

 Solid state disks (replace rotating disks in thumb drives, smart phones, mp3 players,
tablets, laptops,...)

* Disk caches in large database systems.
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Flash Memory Technology

Insulator

Control Gate Drain

Source
Floating Gate

Channel

P-substrate

& flash memory cell (FGMOS)

Control Floating
8i02 ate;  ghe

vd

%
/’/}!
P-substrate

Electmn flow during
programming
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Flash Memory Cell Operation

Programming via hot electron injection Erasure via tunneling
oV

Gate
Select gate oxide
9 e (+ 0K+ e

=

Hot electrons trapped
in tunnel oxide

£
|

Gate
Select gate oxide
I I+ )

-

L

Programming a NOR memory cell Erasing a NOR memory cell (setting
(setting it to logical 0), via hot-electron it to logical 1), via quantum tunneling e —
|nJeCt|On tunnel oxide cracks
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NAND vs. NOR Flash Memories

NAND NOR
Bi Bit line
. i | t
Bit Ei'rtle ‘ Lilne Contact . ¢ Contact
Line Select | . Word line
Word line
o3 _II WLS —" o
" f
wLo _" o Cell Array | ®f |
""’L"_" Unit Cell

—
i _" wL3 —" o

WL3 _" - Source line

WLZ2 —"
2F

. o | VB
WL —“ w1 _" - -

=
wio | +
WD _" Cross
Section
Ground
Select =
- 2 2

NAND-Flash Structure NOR-Flash Structure Cell Size 4F 10F
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NAND vs. NOR Flash Memories

Attribute NAND NOR

Comparison characteristics MLC : SLC | NAND : NOR

Main Application | File storage | Code execution

Storage capacity | High Low Persistence ratio 1:10 1:10
Cost per bit Better
N etive Power — Sequential write ratio 1:3 1:4
szl Fomes e Sequential read ratio 1:1 1:5
Write Speed Good
Read Speed p— Price ratio 1:1.3 1:0.7
Characteristic NAND Flash: MT29F2G08A NOR Flash: TE28F128)3
Random access READ 25s (first byte) 0.075ps
0.025ps each for remaining 2111 bytes
Sustained READ speed 26 MB/s (x8) or 41 MB/s (x16) 31 MB/s (x8) or
(sector basis) 62 MB/s (x16)
Random WRITE speed = 220us/2112 bytes 128us/32 bytes
Sustained WRITE speed 7.5 MB/s 0.250 MB/s
(sector basis)
Erase block size 128KB 128KB
ERASE time per block (TYP) 500ps T sec
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NAND Flash & Secured Digital (SD) Cards

Major Markets Driving NAND Flash B

70,000 Secure Digital
Other g YLOCK
60,000 i =
B solid State Drives -
50,000 M Digital Video Camcorders ToPve2TD

Personal Navigation Devices |
24.0mm !

40,000
Digital Still Cameras K
30,000 l i Hinm

Mobile Phones

20,000 ‘ ' B MP3/PMP Players N
- MADE IN JAPAN

USB Flash Drives
a L |
I M Flash Memory Cards

Million GB

I
10,000 —
I

2007 2008 2009 2010 2011 2012 2013 20714

| 11.0mm | __|

0_

Source: Forward Insights, NAND Quarterly Insights Q3/09, www. forward-insights.com/
Report No. FI-NFL-NQI-Q309 September 2009, accessed 4/14/2010; used with permission.
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Solid State Drive (SSD) vs. Hard Disk Drive (HDD)

SSD Top Side

HDD Top Side

HDD Bottom Side

Attribute

Power Draw [ Battery Life

Cost

Capacity

Operating System Boot
Time
Noise

Vibration

Heat Produced

SSD (Solid State Drive)

Less power draw,
averages 2 — 3 watis,
resulting in 30+ minute
battery boost

Expensive, roughly $0.20 per
gigabyte (based on buying a
1TB drive)

Typically not larger than 1TB
for notebook size drives; 4TB

max for desktops

Around 10-13 seconds W
average bootup time

There are no moving parts
and as such no sound

Mo vibration as there are 4

no moving parts

Lower power draw and no
maving parts so little heat is

produced

HDD (Hard Disk Drive)

More power draw, averages 6 —
T watts and therefore uses more
battery

Only around $0.03 per
gigabyte, very cheap (buying a
4TB model)

Typically around 500GB and
ZTB maximum for notebook size

drives; 10TB max for desktops

Around 30-40 seconds average
bootup time

Audible clicks and spinning can
be heard

The spinning of the platters can

sometimes result in vibration

HDD doesn't produce much heat,
but it will have a measurable
amount more heat than an 55D

due to moving parts and higher
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Solid State Disks (SSDs)

]

/O bus R =t
Solid State Disk (SSD) \/Write logical disk blocks
' Flash
| translation layer
. Flash memory ]
Block O Block B-1

Page 0 | Pagel ... | PageP-1 || Page 0 | Pagel

_____________________________________________________________________________________________________________________________________

* Pages: 512B to 4KB, Blocks: 32 to 128 pages

* Data read/written in units of pages.

* Page can be written only after its block has been erased
* A block wears out after about 100,000 repeated writes.
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SSD Tradeofts vs. Rotating Disks

e Advantages
* No moving parts = faster, less power, more rugged

* Disadvantages

* Have the potential to wear out

* Mitigated by “wear leveling logic” in flash translation layer

* E.g. Intel SSD 730 guarantees 128 petabyte (128 x 10> bytes) of writes before they
wear out

* In 2015, about 30 times more expensive per byte

* Applications
 MP3 players, smart phones, laptops
* Beginning to appear in desktops and servers (as disk cache)
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The CPU-Memory-Storage Gaps

100,000,000.0
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0.1
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\'\.

T, Disk

1985 1990 1995 2000 2003 2005 2010 2015
Year

—o—Disk seek time

—— SSD access time
—-DRAM access time

—8— SRAM access time

-+ CPU cycle time

—O— Effective CPU cycle time
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18-600 Foundations of Computer Systems

Lecture 12:

“ECF I: Exceptions and Processes”

John P. Shen & Gregory Kesden
October 9, 2017

Next Time ...

> Required Reading Assighment: (&) Electrical & Computer

* Chapter 5 of CS:APP (3" edition) by Randy Bryant & Dave O’Hallaron. E N G I N E E RI N G
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