18-600 Foundations of Computer Systems

Lecture 13:
“Exceptional Control Flow Il
Signals and Nonlocal Jumps”

October 11, 2017

» Required Reading Assignment: {Ky Electrical & Computer

» Chapter 8 of CS:APP (3" edition) by Randy Bryant & Dave O’Hallaron. E N G I N E E RI N G
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Socrative Experiment (Continuing)

» Pittsburgh Students (18600PGH): https://api.socrative.com/rc/icJVVC
» Silicon Valley Students (18600SV): https://api.socrative.com/rc/iez85z
» Microphone/Speak out/Raise Hand: Still G-R-E-A-T!

> Socrative:

* Let’s me open floor for electronic questions, putting questions into a visual queue so |
don’t miss any

* Let’s me do flash polls, etc.

* Prevents cross-talk and organic discussions in more generalized forums from pulling
coteries out of class discussion into parallel question space.
» Keeps focus and reduces distraction while adding another vehicle for classroom interactivity.
 Won’t allow more than 150 students per “room”

* So, | created one room per campus
* May later try random assignment to a room, etc.
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https://api.socrative.com/rc/icJVVC
https://api.socrative.com/rc/iez85z

Reaping Child Processes

> ldea
* When process terminates, it still consumes system resources
* Examples: Exit status, various OS tables
e Called a “zombie”
* Living corpse, half alive and half dead

» Reaping
* Performed by parent on terminated child (using wait or waitpid)

e Parent is given exit status information
e Kernel then deletes zombie child process

» What if parent doesn’t reap?
* |f any parent terminates without reaping a child, then the orphaned child will be
reaped by init process (pid == 1)
* So, only need explicit reaping in long-running processes
* e.g., shells and servers
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/* Child */
printf("Terminating Child, PID = %d\n", getpid());
Example o)
} else {
printf("Running Parent, PID = %d\n", getpid());

)

linux> ./forks 7 & }

void fork7() {

ZOm b|e if (fork() == 0) {

while (1)

/* Infinite loop */

(1] 6639 } forks.c
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
PID TTY TIME CMD
ooe9 teeype)  WUsRIEE0 eekl > ps shows child process as
6639 ttyp9 00:00:03 forks udefunctn (i.e., 3 Zombie)
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps
l[imp ];;iiigjijd > Killing parept gllows child to be
linux> ps <— reaped by init
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

10/11/2017
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void fork8()
{

N OoOn- i (fork() == 0) {

/* Child */

-:e rMinN atl N g printf("Running Child, PID = %d\n",

getpid());
. while (1)
Child Example ' ninte loop *
}else {
printf("Terminating Parent, PID = %d\n",
getpid());

exit(0);
}
./forks 8 } forks.c

linux>
Terminating Parent, PID = 6675
Running Child, PID = 6676

» Child process still active even though

linux> ps parent has terminated
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 fork » Must kill child explicitly, or else will

6677 ttyp9 00:00:00 keep running indefinitely
linux> kill 6676

linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh

6678 ttyp9 00:00:00 ps
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wait: Synchronizing with Children

» Parent reaps a child by calling the wait function

» int wait (int *child status)
e Suspends current process until one of its children terminates
* Return value is the pid of the child process that terminated

* Ifchild status !'= NULL, then the integer it points to will be set to a value
that indicates reason the child terminated and the exit status:

* Checked using macros defined in wait.h

* WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG,
WIFSTOPPED, WSTOPSIG, WIFCONTINUED

e See textbook for details
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wait: Synchronizing with Children

void fork9() {
int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");
exit(0);
} else {
printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n");

}

HC exit
o ’ﬁ
printf
CT
>@ :.v >®

®
fork printf wait printf

forks.c

Feasible output:
HC

HP

CT

Bye

Infeasible output:
HP

CT

Bye

HC
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Another wait Example

» If multiple children completed, will take in arbitrary order
» Can use macros WIFEXITED and WEXITSTATUS to get information about exit status

void fork10() {
pid_t pid[N];
int i, child_status;

for (i=0;i<N;i++)
if ((pid[i] = fork()) ==0) {
exit(100+i); /* Child */
}
for (i=0; i< N; i++) { /* Parent */
pid t wpid = wait(&child_status);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminate abnormally\n", wpid);

} forks.c
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waitpid: Waiting for a Specific Process

» pid t waitpid(pid t pid, int &status, int options)
* Suspends current process until specific process terminates
 Various options (see textbook)

void fork11() {
pid_t pid[N];
inti;
int child_status;

for (i=0;i<N;i++)
if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */
for (i=N-1;i>=0; i--) {
pid t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminate abnormally\n", wpid);

forks.c
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execve: Loading and Running Programs

» int execve (char *filename, char *argv[], char *envp[])
» Loads and runs in the current process:
e Executable file £filename

* Can be object file or script file beginning with #! interpreter
(e.g., #! /bin/bash)

* ..with argument list argv
* By convention argv[0]==filename
* ..and environment variable list envp
* “name=value” strings (e.g., USER=droh)
* getenv, putenv, printenv
» Overwrites code, data, and stack
* Retains PID, open files and signal context
» Called once and never returns
e ...except if thereis an error

10/11/2017
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a Null-terminated Bottom of stack

StrUCture O- environment variable strings |
the stack when a | commandinesrgstrngs
new program

envp[n] == NULL

Sta rtS E envp [n-1] environ
i |.(global var)
| envp [0] ";_'_'_'_'__<;:\

i argv[argc] = NULL 1 envp
argv[argc—-1] (in $rdx)
argv. | e argv[0]
(In $rsi)
argc Stack frame for
in <rd; libc start main
Jln &icekh = — Top of stack

Future stack frame for
main
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execve Example

m Executes “/bin/ls -1t /usr/include” in child process using current

environment:
myargv[argc] = NULL
(argc == 3) myargv [2] > “/usr/include”
myargv[1l] I W,
myargv ——> myargv (0] —> “/bin/1s”
envp[n] = NULL
envp [n-1] ——> “PWD=/usr/droh”
, envp [0] —> “USER=droh”
environ >

if ((pid = Fork()) ==0){ /* Child runs program */
if (execve(myargv[0], myargy, environ) < 0) {
printf("%s: Command not found.\n", myargv[0]);
exit(1);
}
}
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18-600 Foundations of Computer Systems

Lecture 13:
“Exceptional Control Flow lI:
Signals and Nonlocal Jumps”

m Shells
m Signals
m Nonlocal jumps

ectrical & Computer
{y ENtGIII\IE(I:ERINtG
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ECF Exists at All Levels of a System

m Exceptions \

®" Hardware and operating system kernel software

. Previous Lecture
m Process Context Switch >

" Hardware timer and kernel software y,
m Signals
= Kernel software and application software } This Lecture
m Nonlocal jumps
. Anplicati 4 Textbook and
pplication code supplemental slides
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linux Process Hierarchy

Login shell
Child

Note: you can view the

w w hierarchy using the Linux

pstree command
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shell Programs

m Ashellis an application program that runs programs on behalf of the user.

= sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
" csh/tesh BSD Unix C shell
= bash “Bourne-Again” Shell (default Linux shell)
int main()
{ Execution is a
char cmdline[MAXLINE]; /* command line */ sequence of
while (1) { read/evaluate
/* read */ steps
printf(">");

Fgets(cmdline, MAXLINE, stdin);
if (feof(stdin))
exit(0);

/* evaluate */
eval(cmdline);

}

} shellex.c

Carnegie Mellon University 1




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function

void eval(char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */

pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin_command(argv)) {
if ((pid = Fork()) ==0) { /* Child runs user job */
if (execve(argv[0], argy, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);

exit(0);
}
}
/* Parent waits for foreground job to terminate */
if ('bg) {
int status;
if (waitpid(pid, &status, 0) < 0)
unix_error("waitfg: waitpid error");
}
else

printf("%d %S”, p|d’ Cmd“ne);

return;

} Shellex.c FlUniversity 17




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Problem with Simple Shell Example

m Our example shell correctly waits for and reaps foreground jobs

m But what about background jobs?
= Will become zombies when they terminate
= Will never be reaped because shell (typically) will not terminate
= Will create a memory leak that could run the kernel out of memory

Carnegie Mellon University 18




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ECF to the Rescue!

m Solution: Exceptional control flow

" The kernel will interrupt regular processing to alert us when a
background process completes

" |n Unix, the alert mechanism is called a signal

Carnegie Mellon University 19
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18-600 Foundations of Computer Systems

Lecture 13:
“Exceptional Control Flow II:
Signals and Nonlocal Jumps”

m Shells
m Signals
m Nonlocal jumps
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals

m Asignalis a small message that notifies a process that an event of
some type has occurred in the system
= Akin to exceptions and interrupts
= Sent from the kernel (sometimes at the request of another process) to a process
= Signal type is identified by small integer ID’s (1-30)
" Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event

2 SIGINT Terminate User typed ctrl-c

9 SIGKILL Terminate Kill program (cannot override or ignore)
11 SIGSEGV  Terminate Segmentation violation

14 SIGALRM  Terminate Timer signal

17 SIGCHLD  Ignore Child stopped or terminated

Carnegie Mellon University 2




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

m Kernel sends (delivers) a signal to a destination process by updating
some state in the context of the destination process

m Kernel sends a signal for one of the following reasons:

= Kernel has detected a system event such as divide-by-zero (SIGFPE) or the
termination of a child process (SIGCHLD)
= Another process has invoked the kill system call to explicitly request the

kernel to send a signal to the destination process
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Signal Concepts: Receiving a Signal
m A destination process receives a signal when it is forced by the kernel to
react in some way to the delivery of the signal

m Some possible ways to react:
= Jgnore the signal (do nothing)
" Terminate the process (with optional core dump)
" Catch the signal by executing a user-level function called signal handler

= Akin to a hardware exception handler being called in response to an asynchronous

interrupt:
(1) Signal received (2) Control passes
by process | to signal handler

curr v >
lnext (3) Signal
handler runs

(4) Signal handler
returns to
next instruction
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending and Blocked Signals

m Asignalis pending if sent but not yet received
" There can be at most one pending signal of any particular type
" |mportant: Signals are not queued

= |f a process has a pending signal of type k, then subsequent signals of type k that
are sent to that process are discarded

m A process can block the receipt of certain signals
= Blocked sighals can be delivered, but will not be received until the signal is unblocked

m A pending signal is received at most once
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending/Blocked Bits

m Kernel maintains pending and blocked bit vectors in the context of
each process
®" pending: represents the set of pending signals
= Kernel sets bit k in pending when a signal of type k is delivered
= Kernel clears bit k in pending when a signal of type k is received

" blocked: represents the set of blocked signals
= Can be set and cleared by using the sigprocmask function

= Also referred to as the signal mask.
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals: Process Groups

m Every process belongs to exactly one process group

pid=20

i pid=40
pgid=20

pgid=40

Background Background
process group 32 process group 40
. . getpgrp ()
pid=21 pid=22
pgid=20 pgid=20 Return process group of current process
Foreground setpgid()
process group 20 Change process group of a process (see text

for details)
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with /bin/kill Program

m /bin/kill program sends
arbitrary signal to a process or
process group

m Examples

"= /bin/kill -9 24818
Send SIGKILL to process 24818

= /bin/kill -9 -24817
Send SIGKILL to every process in
process group 24817

linux> ./forks 16
Childl: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
PID TTY TIME CMD
24788 Pts/2 00:00:00 tecsh

24818 pts/2 00:00:02 forks

24819 pts/2 00:00:02 forks

24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>
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Sending Signals from the Keyboard

m Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every job in the
foreground process group.

" S|IGINT — default action is to terminate each process
= S|GTSTP — default action is to stop (suspend) each process

pid=20

L pid=40
Pgid=20 pgid=40
Background Background
process group 32 process group 40

pid=21 pid=22
pgid=20 pgid=20
Foreground

process group 20 Carnegie Mellon University 23



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of ctrl-c and ctrl-z

bluefish> ./forks 17
Child: pid=28108 pgrp=28107

Parent: pid=28107 pgrp=28107

<types ctrl-z>
Suspended
bluefish> ps w
PID TTY
27699 pts/8
28107 pts/8
28108 pts/8
28109 pts/8
bluefish> fqg
./forks 17
<types ctrl-c>
bluefish> ps w
PID TTY
27699 pts/8
28110 pts/8

STAT
Ss

H

R+

STAT
Ss
R+

TIME
0:00
0:01
0:01
0:00

TIME
0:00
0:00

COMMAND
-tcsh
./ forks
./forks
ps w

COMMAND
-tcsh
pPsS W

17
17

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader

+: foreground proc group

See “man ps” for more details
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Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with kill Function

void fork12()
{

pid_t pid[N];
inti;
int child_status;

for (i=0;i<N;i++)
if ((pid[i] = fork()) == 0) {
/* Child: Infinite Loop */
while(1)

}
for (i=0;i<N;i++){
printf("Killing process %d\n", pid[i]);

kill(pid[i], SIGINT);
}

for (i=0;i<N;i++){
pid _t wpid = wait(&child_status);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminated abnormally\n", wpid);

} forks.c

Carnegie Mellon University 3




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Receiving Signals

m Suppose kernel is returning from an exception handler and is ready to

pass control to process p

Process A

Time

Process B

user code
kernel code } context switch
user code
kernel code } context switch
user code
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Receiving Signals

m Suppose kernel is returning from an exception handler and is ready to
pass control to process p

m Kernel computes pnb = pending & ~blocked
" The set of pending nonblocked signals for process p

m If (pnb == 0)
= Pass control to next instruction in the logical flow for p
m Else
" Choose least nonzero bit kin pnb and force process p to receive signal k

" The receipt of the signal triggers some action by p
= Repeat for all nonzero k in pnb

" Pass control to next instruction in logical flow for p
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Default Actions

m Each signal type has a predefined default action, which is one of:
" The process terminates
" The process stops until restarted by a SIGCONT signal
" The process ignores the signal
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Installing Signal Handlers

m The signal function modifies the default action associated with the
receipt of signhal signum:

" handler t *signal(int signum, handler t *handler)

m Different values for handler:
= SIG_IGN: ignore signals of type signum
= SIG_DFL: revert to the default action on receipt of signals of type signum
= Otherwise, handler is the address of a user-level signal handler
= Called when process receives signal of type signum
= Referred to as “installing” the handler
= Executing handler is called “catching” or “handling” the signal

= When the handler executes its return statement, control passes back to instruction
in the control flow of the process that was interrupted by receipt of the signal
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Signal Handling Example

void sigint_handler(int sig) /* SIGINT handler */
{

sleep(2);
printf("Well...");
fflush(stdout);
sleep(1);
printf("OK. :-)\n");
exit(0);

}

int main()

{
/* Install the SIGINT handler */

if (signal(SIGINT, sigint_handler) == SIG_ERR)
unix_error("signal error");

/* Wait for the receipt of a signal */
pause();

return O;

printf("So you think you can stop the bomb with ctrl-c, do you?\n");

sigint.c
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Signals Handlers as Concurrent Flows

m Asignal handler is a separate logical flow (not process) that runs
concurrently with the main program

Process A Process A Process B

while (1) handler () {

}

Time

Carnegie Mellon University 3
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Another View of Signal Handlers as Concurrent Flows

|
Process A I Process B
|
|
|
Signal delivered —> |y : user code (main)
|
to process A kernel code } context switch
|
|
I user code (main)
|
I .
kernel code } context switch
Signal received —> :
by process A : user code (handler)
|
: kernel code
¢ !
next : user code (main)
A 4 I
|
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Nested Signal Handlers

m Handlers can be interrupted by other handlers

Main program Handler S Handler T

(2) Control passes
(1) Program | to handler S
curr

catches signal s (4) Control passes
(3) Program to handler T

(7) Main program  lnext catches signal t .
resumes \‘\J
v (5) Handler T

J (6) Handler S
returns to
main program

returns to
handler S
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Blocking and Unblocking Signals

m Implicit blocking mechanism
= Kernel blocks any pending signals of type currently being handled.
= E.g., ASIGINT handler can’t be interrupted by another SIGINT

m Explicit blocking and unblocking mechanism

" sigprocmask function

m Supporting functions
" sigemptyset — Create empty set
" sigfillset —Add everysignal number to set
" sigaddset — Add signal number to set
" sigdelset — Delete signal number from set

Carnegie Mellon University 3
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Temporarily Blocking Signals

sigset_t mask, prev_mask;

Sigemptyset(&mask);
Sigaddset(&mask, SIGINT);

/* Block SIGINT and save previous blocked set */
Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

/’E Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask(SIG_SETMASK, &prev_mask, NULL);

Carnegie Mellon University 4o
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Safe Signal Handling

m Handlers are tricky because they are concurrent with main program
and share the same global data structures.

= Shared data structures can become corrupted.
m We'll explore concurrency issues later in the term.

m For now here are some guidelines to help you avoid trouble.

Carnegie Mellon University 4
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Guidelines for Writing Safe Handlers

m GO: Keep your handlers as simple as possible
= e.g., Set a global flag and return

m G1: Call only async-signal-safe functions in your handlers
" printf, sprintf, malloc, and exit are not safe!

m G2: Save and restore errno on entry and exit
= So that other handlers don’t overwrite your value of errno
m G3: Protect accesses to shared data structures by temporarily blocking
all signals.
" To prevent possible corruption
m G4: Declare global variables as volatile
= To prevent compiler from storing them in a register
m Gb5: Declare global flags as volatile sig atomic t

= flag: variable that is only read or written (e.g. flag = 1, not flag++)
= Flag declared this way does not need to be protected like other globals
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Async-Signal-Safety

m Function is async-signal-safe if either reentrant (e.g., all variables stored
on stack frame, CS:APP3e 12.7.2) or non-interruptible by signals.

m Posix guarantees 117 functions to be async-signal-safe
= Source: “man 7 signal”
= Popular functions on the list:
= ex1lt, write, wait, wailitpid, sleep, kill
= Popular functions that are not on the list:
» printf, sprintf, malloc, exit
= Unfortunate fact: write is the only async-signal-safe output function
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Safely Generating Formatted Output

m Use the reentrant SIO (Safe 1/0 library) from csapp . cin your
handlers.
" ssize t sio puts(char s[]) /* Put string */
" ssize t sio putl(long v) /* Put long */

" void sio error(char s[]) /* Put msg & exit */

void sigint_handler(int sig) /* Safe SIGINT handler */

{
Sio_puts("So you think you can stop the bomb with ctrl-c, do you?\n");
sleep(2);
Sio_puts("Well...");
sleep(1);
Sio_puts("OK. :-)\n");
_exit(0);

}

sigintsafe.c
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int ccount =0;

void child_handler(int sig) {
int olderrno = errno;
pid_t pid;
if ((pid = wait(NULL)) < 0)

Sio_error("wait error");

ccount--;
Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio_puts(" \n");
sleep(1);
errno = olderrno;

}

void fork14() {
pid_t pid[N];
int i;
ccount = N;
Signal(SIGCHLD, child_handler);

for (i=0;i<N;i++){
if ((pid[i] = Fork()) == 0) {
Sleep(1);
exit(0); /* Child exits */
}
}

while (ccount > 0) /* Parent spins */

Correct Signal Handling

m Pending signals are not
queued

" For each signal type, one bit
indicates whether or not
signal is pending...

= ..thus at most one pending
signal of any particular type.

m You can’t use signals to
count events, such as
children terminating.

whaleshark> ./forks 14
Handler reaped child 23240
Handler reaped child 23241

forks.c
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Correct Signal Handling

m Must wait for all terminated child processes
" Put wait inaloop to reap all terminated children

void child_handler2(int sig)

{
int olderrno = errno;
pid_t pid;
while ((pid = wait(NULL)) > 0) {
ccount--;

Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio_puts(" \n");

}
if (errno != ECHILD)

Sio_error("wait error");

} SRS whaleshark> ./forks 15

Handler reaped child 23246
Handler reaped child 23247
Handler reaped child 23248
Handler reaped child 23249
Handler reaped child 23250
whaleshark>
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Portable Signal Handling

m Ugh! Different versions of Unix can have different signal handling
semantics

" Some older systems restore action to default after catching signal
" Some interrupted system calls can return with errno == EINTR
= Some systems don’t block signals of the type being handled

m Solution: sigaction

handler_t *Signal(int signum, handler_t *handler)

{

struct sigaction action, old_action;

action.sa_handler = handler;

sigemptyset(&action.sa_mask); /* Block sigs of type being handled */
action.sa_flags = SA_RESTART,; /* Restart syscalls if possible */

if (sigaction(signum, &action, &old_action) < 0)
unix_error("Signal error");
return (old_action.sa_handler);

} csapp.c
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Synchronizing Flows to Avoid Races

m Simple shell with a subtle synchronization error because it assumes
parent runs before child.

{

int main(int argc, char **argv)

int pid;
sigset_t mask_all, prev_all;

Sigfillset(&mask_all);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (1) {
if ((pid = Fork()) == 0) { /* Child */
Execve("/bin/date", argv, NULL);
}
Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); /* Parent */
addjob(pid); /* Add the child to the job list */
Sigprocmask(SIG_SETMASK, &prev_all, NULL);

}
exit(0);

procmaskl.c
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Synchronizing Flows to Avoid Races

m SIGCHLD handler for a simple shell

{

void handler(int sig)

int olderrno = errno;
sigset_t mask_all, prev_all;
pid_t pid;

Sigfillset(&mask_all);

while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */
Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
deletejob(pid); /* Delete the child from the job list */
Sigprocmask(SIG_SETMASK, &prev_all, NULL);

}

if (errno != ECHILD)
Sio_error("waitpid error");

errno = olderrno;

procmaskl.c
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Corrected Shell Program without Race

int main(int argc, char **argv)
{
int pid;
sigset_t mask_all, mask_one, prev_one;

Sigfillset(&mask_all);
Sigemptyset(&mask_one);
Sigaddset(&mask_one, SIGCHLD);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (1) {
Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */
if ((pid = Fork()) == 0) { /* Child process */
Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
Execve("/bin/date", argv, NULL);
}
Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */
addjob(pid); /* Add the child to the job list */
Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

}
exit(0);

procmask2.c
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Explicitly Waiting for Signals

m Handlers for program explicitly waiting for SIGCHLD to arrive.

volatile sig_atomic_t pid;

void sigchld_handler(int s)
{

int olderrno = errno;
pid = Waitpid(-1, NULL, 0); /* Main is waiting for nonzero pid */
errno = olderrno;

}

void sigint_handler(int s)

{
}

waitforsignal.c

Carnegie Mellon University 51




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals

int main(int argc, char **argv) {
sigset_t mask, prev;

Similar to a shell waiting
for a foreground job to

Signal(SIGCHLD, sigchld_handler); terminate.

Signal(SIGINT, sigint_handler);
Sigemptyset(&mask);
Sigaddset(&mask, SIGCHLD);

while (1) {
Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */
exit(0);
/* Parent */
pid = 0;
Sigprocmask(SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

/* Wait for SIGCHLD to be received (wasteful!) */
while (!pid)
/* Do some work after receiving SIGCHLD */
printf(".");
}
exit(0);

waitforsignal.c
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Explicitly Waiting for Signals

m Program s correct, but very wasteful

m Other options:

while (!pid)
pause () ;

/*

Race! */

while (!pid) /* Too slow! */
sleep(1);

m Solution: sigsuspend
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Waiting for Signals with sigsuspend

m int sigsuspend(const sigset t *mask)

m Equivalent to atomic (uninterruptable) version of:

sigprocmask (SIG BLOCK, é&mask, &prev);
pause () ;
sigprocmask (SIG SETMASK, é&prev, NULL);
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Waiting for Signals with sigsuspend

int main(int argc, char **argv) {
sigset t mask, prev;
Signal (SIGCHLD, sigchld handler);
Signal (SIGINT, sigint handler);
Sigemptyset (&mask) ;
Sigaddset (&mask, SIGCHLD) ;

while (1) {
Sigprocmask (SIG BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */
exit (0) ;

/* Wait for SIGCHLD to be received */
pid = 0;
while (!pid)

Sigsuspend (&prev) ;

/* Optionally unblock SIGCHLD */
Sigprocmask (SIG_SETMASK, é&prev, NULL);
/* Do some work after receiving SIGCHLD */
printf (".");

}

ex1t (0);

sigsuspend.c
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18-600 Foundations of Computer Systems

Lecture 13:
“Exceptional Control Flow II:
Signals and Nonlocal Jumps”

m Shells
m Signals
m Nonlocal jumps

= Consult your textbook and additional slides
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Summary

m Signals provide process-level exception handling
= Can generate from user programs
" Can define effect by declaring signal handler
= Be very careful when writing signal handlers

m Nonlocal jumps provide exceptional control flow within process
= Within constraints of stack discipline
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Nonlocal Jumps: setjmp/longjmp

m Powerful (but dangerous) user-level mechanism for transferring control
to an arbitrary location

= Controlled to way to break the procedure call / return discipline
= Useful for error recovery and signal handling

m int setjmp (jmp buf j)
" Must be called before longjmp
" |dentifies a return site for a subsequent longjmp
= Called once, returns one or more times

m Implementation:

= Remember where you are by storing the current register context, stack pointer,
and PCvalue in jmp buf

® ReturnO
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setjmp/longjmp (cont)

m void longjmp (Jjmp buf j, int 1)
" Meaning:
= return from the setjmp remembered by jump buffer j again ...
= ... this time returning i instead of O
= Called after setjmp

= Called once, but never returns

m longjmp Implementation:
= Restore register context (stack pointer, base pointer, PC value) from jump buffer j
= Set $eax (thereturnvalue)to i
= Jump to the location indicated by the PC stored in jump buf j

Carnegie Mellon University 5




Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

setjmp/longjmp Example

m Goal: return directly to original caller from a deeply-nested function

/* Deeply nested function foo */
void foo(void)
{
if (errorl)
longjmp(buf, 1);
bar();
}

void bar(void)

{

if (error2)
longjmp(buf, 2);
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jmp_buf buf;

int errorl =0;
int error2 =1;

void foo(void), bar(void);

int main()
{
switch(setjmp(buf)) {
case O:
foo();
break;
case 1:
printf("Detected an errorl condition in foo\n");
break;
case 2:
printf("Detected an error2 condition in foo\n");
break;
default:
printf("Unknown error condition in foo\n");

}
exit(0);

setjmp/longjmp
Example (cont)
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Limitations of Nonlocal Jumps

m Works within stack discipline

" Can only long jump to environment of function that has been called but

not yet completed Before longjmp  After longjmp
jmp buf env; env
........... > Pl Pl
P1()
{
if (setjmp(env)) { —
/* Long Jump to here */
} else {
P2(); P2
}
} P2
P2()
{ . . .P20); . . . P3(); } P3
P3()
{
longjmp (env, 1);
} Carnegie Mellon University 62
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Limitations of Long Jumps (cont.)

m Works within stack discipline

= Can only long jump to environment of function that has been called but not yet

completed

jmp buf env; Pl
P1O | P2
{ env
} P2(); P3(); At setjmp
P2 () Pl
{

if (setjmp(env)) ({ env

/* Long Jump to here */ | = ¥ | P2

}

} P2 returns Pl
env

?3() SR SN P3

longjmp (env, 1) ; At longjmp
} Carnegie Mellon University 63
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Putting It All Together: A Program
That Restarts Itself When etrl-c'd

#include "csapp.h"

sigimp_buf buf;
greatwhite> ./restart

void handler(int sig) starting
{ processing. ..

siglongjmp(buf, 1); processing. ..
) processing. ..
int main() restart%ng : Ctrl-c
{ processing. ..

if (!sigsetjimp(buf, 1)) { processing. ..

Signal(SIGINT, handler); restarting
Sio_puts("starting\n"); processing. . Ctrl-c
} processing. ..
else

' . processing. ..
Sio_puts("restarting\n");

while(1) {
Sleep(1);
Sio_puts("processing...\n");

}
exit(0); /* Control never reaches here */ restart.c

Carnegie Mellon University ¢4




18-600 Foundations of Computer Systems

Lecture 14:
“System Level 1/0O”

October 16, 2017

Next Time ...

» Required Reading Assignment: {Ky Electrical & Computer

* Chapter 10 of CS:APP (3™ edition) by Randy Bryant & Dave O’Hallaron. E N G I N E E RI N G

10/11/2017 18-600 Lecture #13 Carnegie Mellon University ¢s




