
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 13:
“Exceptional Control Flow II:
Signals and Nonlocal Jumps”

October 11, 2017

18-600 Foundations of Computer Systems

➢ Required Reading Assignment:
• Chapter 8 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

10/11/2017 18-600 Lecture #13 1

SE
18-600

PL
OS
CA

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Socrative Experiment (Continuing)

➢ Pittsburgh Students (18600PGH): https://api.socrative.com/rc/icJVVC

➢ Silicon Valley Students (18600SV): https://api.socrative.com/rc/iez85z

➢Microphone/Speak out/Raise Hand: Still G-R-E-A-T!

➢ Socrative:
• Let’s me open floor for electronic questions, putting questions into a visual queue so I

don’t miss any

• Let’s me do flash polls, etc.

• Prevents cross-talk and organic discussions in more generalized forums from pulling
coteries out of class discussion into parallel question space.
• Keeps focus and reduces distraction while adding another vehicle for classroom interactivity.

• Won’t allow more than 150 students per “room”
• So, I created one room per campus

• May later try random assignment to a room, etc.

10/11/2017 18-600 Lecture #13 2

https://api.socrative.com/rc/icJVVC
https://api.socrative.com/rc/iez85z

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reaping Child Processes
➢ Idea

• When process terminates, it still consumes system resources
• Examples: Exit status, various OS tables

• Called a “zombie”
• Living corpse, half alive and half dead

➢ Reaping
• Performed by parent on terminated child (using wait or waitpid)
• Parent is given exit status information
• Kernel then deletes zombie child process

➢What if parent doesn’t reap?
• If any parent terminates without reaping a child, then the orphaned child will be

reaped by init process (pid == 1)
• So, only need explicit reaping in long-running processes

• e.g., shells and servers

10/11/2017 18-600 Lecture #13 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6639 ttyp9 00:00:03 forks

6640 ttyp9 00:00:00 forks <defunct>

6641 ttyp9 00:00:00 ps

linux> kill 6639

[1] Terminated

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6642 ttyp9 00:00:00 ps

Zombie
Example

➢ ps shows child process as
“defunct” (i.e., a zombie)

➢ Killing parent allows child to be
reaped by init

void fork7() {
if (fork() == 0) {

/* Child */
printf("Terminating Child, PID = %d\n", getpid());
exit(0);

} else {
printf("Running Parent, PID = %d\n", getpid());
while (1)

; /* Infinite loop */
}

} forks.c

10/11/2017 18-600 Lecture #13 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

linux> ./forks 8

Terminating Parent, PID = 6675

Running Child, PID = 6676

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6676 ttyp9 00:00:06 forks

6677 ttyp9 00:00:00 ps

linux> kill 6676

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6678 ttyp9 00:00:00 ps

Non-
terminating
Child Example

➢ Child process still active even though
parent has terminated

➢ Must kill child explicitly, or else will
keep running indefinitely

void fork8()
{

if (fork() == 0) {
/* Child */
printf("Running Child, PID = %d\n",

getpid());
while (1)

; /* Infinite loop */
} else {

printf("Terminating Parent, PID = %d\n",
getpid());

exit(0);
}

} forks.c

10/11/2017 18-600 Lecture #13 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children

➢ Parent reaps a child by calling the wait function

➢int wait(int *child_status)

• Suspends current process until one of its children terminates

• Return value is the pid of the child process that terminated

• If child_status != NULL, then the integer it points to will be set to a value
that indicates reason the child terminated and the exit status:

• Checked using macros defined in wait.h

• WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG,
WIFSTOPPED, WSTOPSIG, WIFCONTINUED

• See textbook for details

10/11/2017 18-600 Lecture #13 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children

void fork9() {
int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");

exit(0);
} else {

printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n");

}

printf wait printffork

printf

exit

HP

HC

CT

Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

10/11/2017 18-600 Lecture #13 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another wait Example
➢ If multiple children completed, will take in arbitrary order

➢ Can use macros WIFEXITED and WEXITSTATUS to get information about exit status

void fork10() {
pid_t pid[N];
int i, child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {

exit(100+i); /* Child */
}

for (i = 0; i < N; i++) { /* Parent */
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminate abnormally\n", wpid);

}
} forks.c

10/11/2017 18-600 Lecture #13 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

waitpid: Waiting for a Specific Process
➢ pid_t waitpid(pid_t pid, int &status, int options)

• Suspends current process until specific process terminates

• Various options (see textbook)

void fork11() {
pid_t pid[N];
int i;
int child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)

exit(100+i); /* Child */
for (i = N-1; i >= 0; i--) {

pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminate abnormally\n", wpid);

}
} forks.c

10/11/2017 18-600 Lecture #13 9

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve: Loading and Running Programs
➢ int execve(char *filename, char *argv[], char *envp[])

➢ Loads and runs in the current process:
• Executable file filename

• Can be object file or script file beginning with #!interpreter
(e.g., #!/bin/bash)

• …with argument list argv
• By convention argv[0]==filename

• …and environment variable list envp

• “name=value” strings (e.g., USER=droh)
• getenv, putenv, printenv

➢Overwrites code, data, and stack
• Retains PID, open files and signal context

➢ Called once and never returns
• …except if there is an error

10/11/2017 18-600 Lecture #13 10

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structure of
the stack when a
new program
starts

Null-terminated
environment variable strings

Null-terminated
command-line arg strings

envp[n] == NULL

envp[n-1]

...
envp[0]

argv[argc] = NULL

argv[argc-1]

...
argv[0]

Future stack frame for
main

environ

(global var)

Bottom of stack

Top of stack

argv

(in %rsi)

envp

(in %rdx)

Stack frame for
libc_start_main

argc

(in %rdi)

10/11/2017 18-600 Lecture #13 11

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve Example

envp[n] = NULL

envp[n-1]

envp[0]

…

myargv[argc] = NULL

myargv[2]

myargv[0]

myargv[1]

“/bin/ls”

“-lt”

“/usr/include”

“USER=droh”

“PWD=/usr/droh”

environ

myargv

if ((pid = Fork()) == 0) { /* Child runs program */
if (execve(myargv[0], myargv, environ) < 0) {

printf("%s: Command not found.\n", myargv[0]);
exit(1);

}
}

 Executes “/bin/ls –lt /usr/include” in child process using current
environment:

(argc == 3)

10/11/2017 18-600 Lecture #13 12

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Foundations of Computer Systems

Lecture 13:
“Exceptional Control Flow II:
Signals and Nonlocal Jumps”

 Shells

 Signals

 Nonlocal jumps

10/11/2017 18-600 Lecture #13 13

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ECF Exists at All Levels of a System

 Exceptions

▪ Hardware and operating system kernel software

 Process Context Switch

▪ Hardware timer and kernel software

 Signals

▪ Kernel software and application software

 Nonlocal jumps

▪ Application code

Previous Lecture

This Lecture

Textbook and
supplemental slides

10/11/2017 18-600 Lecture #13 14

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linux Process Hierarchy

Login shell

ChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

Login shell

Child

…

Note: you can view the
hierarchy using the Linux
pstree command

10/11/2017 18-600 Lecture #13 15

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shell Programs
 A shell is an application program that runs programs on behalf of the user.

▪ sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)

▪ csh/tcsh BSD Unix C shell

▪ bash “Bourne-Again” Shell (default Linux shell)

int main()
{

char cmdline[MAXLINE]; /* command line */

while (1) {
/* read */
printf("> ");
Fgets(cmdline, MAXLINE, stdin);
if (feof(stdin))

exit(0);

/* evaluate */
eval(cmdline);

}
}

Execution is a
sequence of
read/evaluate
steps

shellex.c

10/11/2017 18-600 Lecture #13 16

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

10/11/2017 18-600 Lecture #13 17

Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return; /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

} shellex.c

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Problem with Simple Shell Example

 Our example shell correctly waits for and reaps foreground jobs

 But what about background jobs?

▪ Will become zombies when they terminate

▪ Will never be reaped because shell (typically) will not terminate

▪ Will create a memory leak that could run the kernel out of memory

10/11/2017 18-600 Lecture #13 18

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ECF to the Rescue!

 Solution: Exceptional control flow

▪ The kernel will interrupt regular processing to alert us when a
background process completes

▪ In Unix, the alert mechanism is called a signal

10/11/2017 18-600 Lecture #13 19

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Foundations of Computer Systems

Lecture 13:

“Exceptional Control Flow II:

Signals and Nonlocal Jumps”

 Shells

 Signals

 Nonlocal jumps

10/11/2017 18-600 Lecture #13 20

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals
 A signal is a small message that notifies a process that an event of

some type has occurred in the system

▪ Akin to exceptions and interrupts

▪ Sent from the kernel (sometimes at the request of another process) to a process

▪ Signal type is identified by small integer ID’s (1-30)

▪ Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event

2 SIGINT Terminate User typed ctrl-c

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

10/11/2017 18-600 Lecture #13 21

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

 Kernel sends (delivers) a signal to a destination process by updating
some state in the context of the destination process

 Kernel sends a signal for one of the following reasons:

▪ Kernel has detected a system event such as divide-by-zero (SIGFPE) or the
termination of a child process (SIGCHLD)

▪ Another process has invoked the kill system call to explicitly request the
kernel to send a signal to the destination process

10/11/2017 18-600 Lecture #13 22

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Receiving a Signal
 A destination process receives a signal when it is forced by the kernel to

react in some way to the delivery of the signal

 Some possible ways to react:

▪ Ignore the signal (do nothing)

▪ Terminate the process (with optional core dump)

▪ Catch the signal by executing a user-level function called signal handler

▪ Akin to a hardware exception handler being called in response to an asynchronous
interrupt:

(2) Control passes

to signal handler

(3) Signal

handler runs
(4) Signal handler

returns to

next instruction

Icurr
Inext

(1) Signal received

by process

10/11/2017 18-600 Lecture #13 23

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending and Blocked Signals

 A signal is pending if sent but not yet received

▪ There can be at most one pending signal of any particular type

▪ Important: Signals are not queued

▪ If a process has a pending signal of type k, then subsequent signals of type k that
are sent to that process are discarded

 A process can block the receipt of certain signals

▪ Blocked signals can be delivered, but will not be received until the signal is unblocked

 A pending signal is received at most once

10/11/2017 18-600 Lecture #13 24

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending/Blocked Bits

 Kernel maintains pending and blocked bit vectors in the context of
each process
▪ pending: represents the set of pending signals

▪ Kernel sets bit k in pending when a signal of type k is delivered

▪ Kernel clears bit k in pending when a signal of type k is received

▪ blocked: represents the set of blocked signals

▪ Can be set and cleared by using the sigprocmask function

▪ Also referred to as the signal mask.

10/11/2017 18-600 Lecture #13 25

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals: Process Groups

 Every process belongs to exactly one process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10

pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

getpgrp()

Return process group of current process

setpgid()

Change process group of a process (see text
for details)

10/11/2017 18-600 Lecture #13 26

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with /bin/kill Program

 /bin/kill program sends
arbitrary signal to a process or
process group

 Examples
▪ /bin/kill –9 24818

Send SIGKILL to process 24818

▪ /bin/kill –9 –24817

Send SIGKILL to every process in
process group 24817

linux> ./forks 16

Child1: pid=24818 pgrp=24817

Child2: pid=24819 pgrp=24817

linux> ps

PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24818 pts/2 00:00:02 forks

24819 pts/2 00:00:02 forks

24820 pts/2 00:00:00 ps

linux> /bin/kill -9 -24817

linux> ps

PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24823 pts/2 00:00:00 ps

linux>

10/11/2017 18-600 Lecture #13 27

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals from the Keyboard
 Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every job in the

foreground process group.

▪ SIGINT – default action is to terminate each process

▪ SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10

pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

10/11/2017 18-600 Lecture #13 28

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of ctrl-c and ctrl-z
bluefish> ./forks 17

Child: pid=28108 pgrp=28107

Parent: pid=28107 pgrp=28107

<types ctrl-z>

Suspended

bluefish> ps w

PID TTY STAT TIME COMMAND

27699 pts/8 Ss 0:00 -tcsh

28107 pts/8 T 0:01 ./forks 17

28108 pts/8 T 0:01 ./forks 17

28109 pts/8 R+ 0:00 ps w

bluefish> fg

./forks 17

<types ctrl-c>

bluefish> ps w

PID TTY STAT TIME COMMAND

27699 pts/8 Ss 0:00 -tcsh

28110 pts/8 R+ 0:00 ps w

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more details

10/11/2017 18-600 Lecture #13 29

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with kill Function
void fork12()
{

pid_t pid[N];
int i;
int child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {

/* Child: Infinite Loop */
while(1)

;
}

for (i = 0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

}

for (i = 0; i < N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}
} forks.c

10/11/2017 18-600 Lecture #13 30

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Receiving Signals
 Suppose kernel is returning from an exception handler and is ready to

pass control to process p

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

10/11/2017 18-600 Lecture #13 31

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Receiving Signals
 Suppose kernel is returning from an exception handler and is ready to

pass control to process p

 Kernel computes pnb = pending & ~blocked

▪ The set of pending nonblocked signals for process p

 If (pnb == 0)
▪ Pass control to next instruction in the logical flow for p

 Else
▪ Choose least nonzero bit k in pnb and force process p to receive signal k

▪ The receipt of the signal triggers some action by p

▪ Repeat for all nonzero k in pnb

▪ Pass control to next instruction in logical flow for p

10/11/2017 18-600 Lecture #13 32

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Default Actions

 Each signal type has a predefined default action, which is one of:

▪ The process terminates

▪ The process stops until restarted by a SIGCONT signal

▪ The process ignores the signal

10/11/2017 18-600 Lecture #13 33

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Installing Signal Handlers
 The signal function modifies the default action associated with the

receipt of signal signum:

▪ handler_t *signal(int signum, handler_t *handler)

 Different values for handler:

▪ SIG_IGN: ignore signals of type signum

▪ SIG_DFL: revert to the default action on receipt of signals of type signum

▪ Otherwise, handler is the address of a user-level signal handler

▪ Called when process receives signal of type signum

▪ Referred to as “installing” the handler

▪ Executing handler is called “catching” or “handling” the signal

▪ When the handler executes its return statement, control passes back to instruction
in the control flow of the process that was interrupted by receipt of the signal

10/11/2017 18-600 Lecture #13 34

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Handling Example
void sigint_handler(int sig) /* SIGINT handler */
{

printf("So you think you can stop the bomb with ctrl-c, do you?\n");
sleep(2);
printf("Well...");
fflush(stdout);
sleep(1);
printf("OK. :-)\n");
exit(0);

}

int main()
{

/* Install the SIGINT handler */
if (signal(SIGINT, sigint_handler) == SIG_ERR)

unix_error("signal error");

/* Wait for the receipt of a signal */
pause();

return 0;
} sigint.c

10/11/2017 18-600 Lecture #13 35

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals Handlers as Concurrent Flows

 A signal handler is a separate logical flow (not process) that runs
concurrently with the main program

Process A

while (1)

;

Process A

handler(){

…

}

Process B

Time

10/11/2017 18-600 Lecture #13 36

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another View of Signal Handlers as Concurrent Flows

Signal delivered
to process A

Signal received
by process A

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

10/11/2017 18-600 Lecture #13 37

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nested Signal Handlers

 Handlers can be interrupted by other handlers

(2) Control passes

to handler S

Main program

(5) Handler T

returns to

handler S

Icurr

Inext

(1) Program

catches signal s

Handler S Handler T

(3) Program

catches signal t

(4) Control passes

to handler T

(6) Handler S

returns to

main program

(7) Main program

resumes

10/11/2017 18-600 Lecture #13 38

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking and Unblocking Signals

 Implicit blocking mechanism

▪ Kernel blocks any pending signals of type currently being handled.

▪ E.g., A SIGINT handler can’t be interrupted by another SIGINT

 Explicit blocking and unblocking mechanism
▪ sigprocmask function

 Supporting functions
▪ sigemptyset – Create empty set

▪ sigfillset – Add every signal number to set

▪ sigaddset – Add signal number to set

▪ sigdelset – Delete signal number from set

10/11/2017 18-600 Lecture #13 39

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Temporarily Blocking Signals

sigset_t mask, prev_mask;

Sigemptyset(&mask);
Sigaddset(&mask, SIGINT);

/* Block SIGINT and save previous blocked set */
Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

/* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask(SIG_SETMASK, &prev_mask, NULL);

…

10/11/2017 18-600 Lecture #13 40

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safe Signal Handling

 Handlers are tricky because they are concurrent with main program
and share the same global data structures.

▪ Shared data structures can become corrupted.

 We’ll explore concurrency issues later in the term.

 For now here are some guidelines to help you avoid trouble.

10/11/2017 18-600 Lecture #13 41

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Guidelines for Writing Safe Handlers
 G0: Keep your handlers as simple as possible

▪ e.g., Set a global flag and return

 G1: Call only async-signal-safe functions in your handlers
▪ printf, sprintf, malloc, and exit are not safe!

 G2: Save and restore errno on entry and exit
▪ So that other handlers don’t overwrite your value of errno

 G3: Protect accesses to shared data structures by temporarily blocking
all signals.
▪ To prevent possible corruption

 G4: Declare global variables as volatile
▪ To prevent compiler from storing them in a register

 G5: Declare global flags as volatile sig_atomic_t

▪ flag: variable that is only read or written (e.g. flag = 1, not flag++)

▪ Flag declared this way does not need to be protected like other globals

10/11/2017 18-600 Lecture #13 42

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Async-Signal-Safety

 Function is async-signal-safe if either reentrant (e.g., all variables stored
on stack frame, CS:APP3e 12.7.2) or non-interruptible by signals.

 Posix guarantees 117 functions to be async-signal-safe
▪ Source: “man 7 signal”

▪ Popular functions on the list:

▪ _exit, write, wait, waitpid, sleep, kill

▪ Popular functions that are not on the list:

▪ printf, sprintf, malloc, exit

▪ Unfortunate fact: write is the only async-signal-safe output function

10/11/2017 18-600 Lecture #13 43

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safely Generating Formatted Output
 Use the reentrant SIO (Safe I/O library) from csapp.c in your

handlers.
▪ ssize_t sio_puts(char s[]) /* Put string */

▪ ssize_t sio_putl(long v) /* Put long */

▪ void sio_error(char s[]) /* Put msg & exit */

void sigint_handler(int sig) /* Safe SIGINT handler */
{

Sio_puts("So you think you can stop the bomb with ctrl-c, do you?\n");
sleep(2);
Sio_puts("Well...");
sleep(1);
Sio_puts("OK. :-)\n");
_exit(0);

}
sigintsafe.c

10/11/2017 18-600 Lecture #13 44

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Pending signals are not
queued

▪For each signal type, one bit
indicates whether or not
signal is pending…

▪…thus at most one pending
signal of any particular type.

 You can’t use signals to
count events, such as
children terminating.

int ccount = 0;
void child_handler(int sig) {

int olderrno = errno;
pid_t pid;
if ((pid = wait(NULL)) < 0)

Sio_error("wait error");
ccount--;
Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio_puts(" \n");
sleep(1);
errno = olderrno;

}

void fork14() {
pid_t pid[N];
int i;
ccount = N;
Signal(SIGCHLD, child_handler);

for (i = 0; i < N; i++) {
if ((pid[i] = Fork()) == 0) {

Sleep(1);
exit(0); /* Child exits */

}
}
while (ccount > 0) /* Parent spins */

;
} forks.c

whaleshark> ./forks 14
Handler reaped child 23240
Handler reaped child 23241

Correct Signal Handling

10/11/2017 18-600 Lecture #13 45

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Correct Signal Handling

 Must wait for all terminated child processes
▪ Put wait in a loop to reap all terminated children

void child_handler2(int sig)
{

int olderrno = errno;
pid_t pid;
while ((pid = wait(NULL)) > 0) {

ccount--;
Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio_puts(" \n");

}
if (errno != ECHILD)

Sio_error("wait error");
errno = olderrno;

} whaleshark> ./forks 15
Handler reaped child 23246
Handler reaped child 23247
Handler reaped child 23248
Handler reaped child 23249
Handler reaped child 23250
whaleshark>

10/11/2017 18-600 Lecture #13 46

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Portable Signal Handling
 Ugh! Different versions of Unix can have different signal handling

semantics

▪ Some older systems restore action to default after catching signal

▪ Some interrupted system calls can return with errno == EINTR

▪ Some systems don’t block signals of the type being handled

 Solution: sigaction

handler_t *Signal(int signum, handler_t *handler)
{

struct sigaction action, old_action;

action.sa_handler = handler;
sigemptyset(&action.sa_mask); /* Block sigs of type being handled */
action.sa_flags = SA_RESTART; /* Restart syscalls if possible */

if (sigaction(signum, &action, &old_action) < 0)
unix_error("Signal error");

return (old_action.sa_handler);
} csapp.c

10/11/2017 18-600 Lecture #13 47

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Flows to Avoid Races
 Simple shell with a subtle synchronization error because it assumes

parent runs before child.

procmask1.c

10/11/2017 18-600 Lecture #13 48

int main(int argc, char **argv)
{

int pid;
sigset_t mask_all, prev_all;

Sigfillset(&mask_all);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (1) {
if ((pid = Fork()) == 0) { /* Child */

Execve("/bin/date", argv, NULL);
}
Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); /* Parent */
addjob(pid); /* Add the child to the job list */
Sigprocmask(SIG_SETMASK, &prev_all, NULL);

}
exit(0);

}

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Flows to Avoid Races

void handler(int sig)
{

int olderrno = errno;
sigset_t mask_all, prev_all;
pid_t pid;

Sigfillset(&mask_all);
while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */

Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
deletejob(pid); /* Delete the child from the job list */
Sigprocmask(SIG_SETMASK, &prev_all, NULL);

}
if (errno != ECHILD)

Sio_error("waitpid error");
errno = olderrno;

}

 SIGCHLD handler for a simple shell

procmask1.c

10/11/2017 18-600 Lecture #13 49

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Corrected Shell Program without Race
int main(int argc, char **argv)
{

int pid;
sigset_t mask_all, mask_one, prev_one;

Sigfillset(&mask_all);
Sigemptyset(&mask_one);
Sigaddset(&mask_one, SIGCHLD);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (1) {
Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */
if ((pid = Fork()) == 0) { /* Child process */

Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
Execve("/bin/date", argv, NULL);

}
Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */

addjob(pid); /* Add the child to the job list */
Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

}
exit(0);

} procmask2.c

10/11/2017 18-600 Lecture #13 50

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals

volatile sig_atomic_t pid;

void sigchld_handler(int s)
{

int olderrno = errno;
pid = Waitpid(-1, NULL, 0); /* Main is waiting for nonzero pid */
errno = olderrno;

}

void sigint_handler(int s)
{
}

 Handlers for program explicitly waiting for SIGCHLD to arrive.

waitforsignal.c

10/11/2017 18-600 Lecture #13 51

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals

waitforsignal.c

10/11/2017 18-600 Lecture #13 52

int main(int argc, char **argv) {
sigset_t mask, prev;
Signal(SIGCHLD, sigchld_handler);
Signal(SIGINT, sigint_handler);
Sigemptyset(&mask);
Sigaddset(&mask, SIGCHLD);

while (1) {
Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */

exit(0);
/* Parent */
pid = 0;
Sigprocmask(SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

/* Wait for SIGCHLD to be received (wasteful!) */
while (!pid)

;
/* Do some work after receiving SIGCHLD */

printf(".");
}
exit(0);

}

Similar to a shell waiting
for a foreground job to
terminate.

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals

while (!pid) /* Race! */

pause();

 Program is correct, but very wasteful

 Other options:

 Solution: sigsuspend

while (!pid) /* Too slow! */
sleep(1);

10/11/2017 18-600 Lecture #13 53

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waiting for Signals with sigsuspend

sigprocmask(SIG_BLOCK, &mask, &prev);

pause();

sigprocmask(SIG_SETMASK, &prev, NULL);

 int sigsuspend(const sigset_t *mask)

 Equivalent to atomic (uninterruptable) version of:

10/11/2017 18-600 Lecture #13 54

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waiting for Signals with sigsuspend

10/11/2017 18-600 Lecture #13 55

int main(int argc, char **argv) {

sigset_t mask, prev;

Signal(SIGCHLD, sigchld_handler);

Signal(SIGINT, sigint_handler);

Sigemptyset(&mask);

Sigaddset(&mask, SIGCHLD);

while (1) {

Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */

if (Fork() == 0) /* Child */

exit(0);

/* Wait for SIGCHLD to be received */

pid = 0;

while (!pid)

Sigsuspend(&prev);

/* Optionally unblock SIGCHLD */

Sigprocmask(SIG_SETMASK, &prev, NULL);

/* Do some work after receiving SIGCHLD */

printf(".");

}

exit(0);

} sigsuspend.c

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Foundations of Computer Systems

Lecture 13:

“Exceptional Control Flow II:

Signals and Nonlocal Jumps”

 Shells

 Signals

 Nonlocal jumps
▪ Consult your textbook and additional slides

10/11/2017 18-600 Lecture #13 56

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
 Signals provide process-level exception handling

▪ Can generate from user programs

▪ Can define effect by declaring signal handler

▪ Be very careful when writing signal handlers

 Nonlocal jumps provide exceptional control flow within process

▪ Within constraints of stack discipline

10/11/2017 18-600 Lecture #13 57

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nonlocal Jumps: setjmp/longjmp

 Powerful (but dangerous) user-level mechanism for transferring control
to an arbitrary location
▪ Controlled to way to break the procedure call / return discipline

▪ Useful for error recovery and signal handling

 int setjmp(jmp_buf j)

▪ Must be called before longjmp

▪ Identifies a return site for a subsequent longjmp

▪ Called once, returns one or more times

 Implementation:
▪ Remember where you are by storing the current register context, stack pointer,

and PC value in jmp_buf

▪ Return 0

10/11/2017 18-600 Lecture #13 58

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

setjmp/longjmp (cont)

 void longjmp(jmp_buf j, int i)

▪ Meaning:

▪ return from the setjmp remembered by jump buffer j again ...

▪ … this time returning i instead of 0

▪ Called after setjmp

▪ Called once, but never returns

 longjmp Implementation:

▪ Restore register context (stack pointer, base pointer, PC value) from jump buffer j

▪ Set %eax (the return value) to i

▪ Jump to the location indicated by the PC stored in jump buf j

10/11/2017 18-600 Lecture #13 59

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

setjmp/longjmp Example

 Goal: return directly to original caller from a deeply-nested function

/* Deeply nested function foo */
void foo(void)
{

if (error1)
longjmp(buf, 1);

bar();
}

void bar(void)
{

if (error2)
longjmp(buf, 2);

}

10/11/2017 18-600 Lecture #13 60

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

jmp_buf buf;

int error1 = 0;
int error2 = 1;

void foo(void), bar(void);

int main()
{

switch(setjmp(buf)) {
case 0:

foo();
break;

case 1:
printf("Detected an error1 condition in foo\n");
break;

case 2:
printf("Detected an error2 condition in foo\n");
break;

default:
printf("Unknown error condition in foo\n");

}
exit(0);

}

setjmp/longjmp

Example (cont)

10/11/2017 18-600 Lecture #13 61

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of Nonlocal Jumps
 Works within stack discipline

▪ Can only long jump to environment of function that has been called but
not yet completed

P1

P2

P2

P2

P3

env

P1

Before longjmp After longjmp

10/11/2017 18-600 Lecture #13 62

jmp_buf env;

P1()

{

if (setjmp(env)) {

/* Long Jump to here */

} else {

P2();

}

}

P2()

{ . . . P2(); . . . P3(); }

P3()

{

longjmp(env, 1);

}

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of Long Jumps (cont.)
 Works within stack discipline

▪ Can only long jump to environment of function that has been called but not yet
completed

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env

X

10/11/2017 18-600 Lecture #13 63

jmp_buf env;

P1()

{

P2(); P3();

}

P2()

{

if (setjmp(env)) {

/* Long Jump to here */

}

}

P3()

{

longjmp(env, 1);

}

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d

restart.c

greatwhite> ./restart

starting

processing...

processing...

processing...

restarting

processing...

processing...

restarting

processing...

processing...

processing...

Ctrl-c

Ctrl-c

10/11/2017 18-600 Lecture #13 64

#include "csapp.h"

sigjmp_buf buf;

void handler(int sig)
{

siglongjmp(buf, 1);
}

int main()
{

if (!sigsetjmp(buf, 1)) {
Signal(SIGINT, handler);

Sio_puts("starting\n");
}
else

Sio_puts("restarting\n");

while(1) {
Sleep(1);
Sio_puts("processing...\n");

}
exit(0); /* Control never reaches here */

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 14:
“System Level I/O”

October 16, 2017

10/11/2017 18-600 Lecture #13 65

18-600 Foundations of Computer Systems

➢ Required Reading Assignment:
• Chapter 10 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

