18-600 Foundations of Computer Systems

Lecture 13:
“Exceptional Control Flow Il
Signals and Nonlocal Jumps”

October 11, 2017

» Required Reading Assignment: {Ky Electrical & Computer

» Chapter 8 of CS:APP (3" edition) by Randy Bryant & Dave O’Hallaron. E N G I N E E RI N G

10/11/2017 18-600 Lecture #13 Carnegie Mellon University 1

Socrative Experiment (Continuing)

» Pittsburgh Students (18600PGH): https://api.socrative.com/rc/icJVVC
» Silicon Valley Students (18600SV): https://api.socrative.com/rc/iez85z
» Microphone/Speak out/Raise Hand: Still G-R-E-A-T!

> Socrative:

* Let’s me open floor for electronic questions, putting questions into a visual queue so |
don’t miss any

* Let’s me do flash polls, etc.

* Prevents cross-talk and organic discussions in more generalized forums from pulling
coteries out of class discussion into parallel question space.
» Keeps focus and reduces distraction while adding another vehicle for classroom interactivity.
 Won’t allow more than 150 students per “room”

* So, | created one room per campus
* May later try random assignment to a room, etc.

10/11/2017 18-600 Lecture #13 Carnegie Mellon University 2

https://api.socrative.com/rc/icJVVC
https://api.socrative.com/rc/iez85z

Reaping Child Processes

> ldea
* When process terminates, it still consumes system resources
* Examples: Exit status, various OS tables
e Called a “zombie”
* Living corpse, half alive and half dead

» Reaping
* Performed by parent on terminated child (using wait or waitpid)

e Parent is given exit status information
e Kernel then deletes zombie child process

» What if parent doesn’t reap?
* |f any parent terminates without reaping a child, then the orphaned child will be
reaped by init process (pid == 1)
* So, only need explicit reaping in long-running processes
* e.g., shells and servers

10/11/2017 18-600 Lecture #13 Carnegie Mellon University 3

/* Child */
printf("Terminating Child, PID = %d\n", getpid());
Example o)
} else {
printf("Running Parent, PID = %d\n", getpid());

)

linux> ./forks 7 & }

void fork7() {

ZOm b|e if (fork() == 0) {

while (1)

/* Infinite loop */

(1] 6639 } forks.c
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
PID TTY TIME CMD
ooe9 teeype) WUsRIEE0 eekl > ps shows child process as
6639 ttyp9 00:00:03 forks udefunctn (i.e., 3 Zombie)
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps
l[imp];;iiigjijd > Killing parept gllows child to be
linux> ps <— reaped by init
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

10/11/2017

18-600 Lecture #13 Carnegie Mellon University 4

void fork8()
{

N OoOn- i (fork() == 0) {

/* Child */

-:e rMinN atl N g printf("Running Child, PID = %d\n",

getpid());
. while (1)
Child Example ' ninte loop *
}else {
printf("Terminating Parent, PID = %d\n",
getpid());

exit(0);
}
./forks 8 } forks.c

linux>
Terminating Parent, PID = 6675
Running Child, PID = 6676

» Child process still active even though

linux> ps parent has terminated
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 fork » Must kill child explicitly, or else will

6677 ttyp9 00:00:00 keep running indefinitely
linux> kill 6676

linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh

6678 ttyp9 00:00:00 ps
10/11/2017 18-600 Lecture #13 Carnegie Mellon University s

wait: Synchronizing with Children

» Parent reaps a child by calling the wait function

» int wait (int *child status)
e Suspends current process until one of its children terminates
* Return value is the pid of the child process that terminated

* Ifchild status !'= NULL, then the integer it points to will be set to a value
that indicates reason the child terminated and the exit status:

* Checked using macros defined in wait.h

* WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG,
WIFSTOPPED, WSTOPSIG, WIFCONTINUED

e See textbook for details

10/11/2017 18-600 Lecture #13 Carnegie Mellon University ¢

wait: Synchronizing with Children

void fork9() {
int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");
exit(0);
} else {
printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n");

}

HC exit
o ’ﬁ
printf
CT
>@ :.v >®

®
fork printf wait printf

forks.c

Feasible output:
HC

HP

CT

Bye

Infeasible output:
HP

CT

Bye

HC

Carnegie Mellon University 7

Another wait Example

» If multiple children completed, will take in arbitrary order
» Can use macros WIFEXITED and WEXITSTATUS to get information about exit status

void fork10() {
pid_t pid[N];
int i, child_status;

for (i=0;i<N;i++)
if ((pid[i] = fork()) ==0) {
exit(100+i); /* Child */
}
for (i=0; i< N; i++) { /* Parent */
pid t wpid = wait(&child_status);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminate abnormally\n", wpid);

} forks.c

10/11/2017 18-600 Lecture #13 Carnegie Mellon University s

waitpid: Waiting for a Specific Process

» pid t waitpid(pid t pid, int &status, int options)
* Suspends current process until specific process terminates
 Various options (see textbook)

void fork11() {
pid_t pid[N];
inti;
int child_status;

for (i=0;i<N;i++)
if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */
for (i=N-1;i>=0; i--) {
pid t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminate abnormally\n", wpid);

forks.c

10/11/2017 18-600 Lecture #13 Carnegie Mellon University ¢

execve: Loading and Running Programs

» int execve (char *filename, char *argv[], char *envp[])
» Loads and runs in the current process:
e Executable file £filename

* Can be object file or script file beginning with #! interpreter
(e.g., #! /bin/bash)

* ..with argument list argv
* By convention argv[0]==filename
* ..and environment variable list envp
* “name=value” strings (e.g., USER=droh)
* getenv, putenv, printenv
» Overwrites code, data, and stack
* Retains PID, open files and signal context
» Called once and never returns
e ...except if thereis an error

10/11/2017

18-600 Lecture #13 Carnegie Mellon University 10

a Null-terminated Bottom of stack

StrUCture O- environment variable strings |
the stack when a | commandinesrgstrngs
new program

envp[n] == NULL

Sta rtS E envp [n-1] environ
i |.(global var)
| envp [0] ";_'_'_'_'__<;:\

i argv[argc] = NULL 1 envp
argv[argc—-1] (in $rdx)
argv. | e argv[0]
(In $rsi)
argc Stack frame for
in <rd; libc start main
Jln &icekh = — Top of stack

Future stack frame for
main

10/11/2017 18-600 Lecture #13 Carnegie Mellon University 1

execve Example

m Executes “/bin/ls -1t /usr/include” in child process using current

environment:
myargv[argc] = NULL
(argc == 3) myargv [2] > “/usr/include”
myargv[1l] I W,
myargv ——> myargv (0] —> “/bin/1s”
envp[n] = NULL
envp [n-1] ——> “PWD=/usr/droh”
, envp [0] —> “USER=droh”
environ >

if ((pid = Fork()) ==0){ /* Child runs program */
if (execve(myargv[0], myargy, environ) < 0) {
printf("%s: Command not found.\n", myargv[0]);
exit(1);
}
}

10/11/2017 18-600 Lecture #13 Carnegie Mellon University 12

18-600 Foundations of Computer Systems

Lecture 13:
“Exceptional Control Flow lI:
Signals and Nonlocal Jumps”

m Shells
m Signals
m Nonlocal jumps

ectrical & Computer
{y ENtGIII\IE(I:ERINtG

10/11/2017 18-600 Lecture #13 Carnegie Mellon University 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ECF Exists at All Levels of a System

m Exceptions \

®" Hardware and operating system kernel software

. Previous Lecture
m Process Context Switch >

" Hardware timer and kernel software y,
m Signals
= Kernel software and application software } This Lecture
m Nonlocal jumps
. Anplicati 4 Textbook and
pplication code supplemental slides

Carnegie Mellon University 14

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linux Process Hierarchy

Login shell
Child

Note: you can view the

w w hierarchy using the Linux

pstree command

Carnegie Mellon University 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shell Programs

m Ashellis an application program that runs programs on behalf of the user.

= sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
" csh/tesh BSD Unix C shell
= bash “Bourne-Again” Shell (default Linux shell)
int main()
{ Execution is a
char cmdline[MAXLINE]; /* command line */ sequence of
while (1) { read/evaluate
/* read */ steps
printf(">");

Fgets(cmdline, MAXLINE, stdin);
if (feof(stdin))
exit(0);

/* evaluate */
eval(cmdline);

}

} shellex.c

Carnegie Mellon University 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function

void eval(char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */

pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin_command(argv)) {
if ((pid = Fork()) ==0) { /* Child runs user job */
if (execve(argv[0], argy, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);

exit(0);
}
}
/* Parent waits for foreground job to terminate */
if ('bg) {
int status;
if (waitpid(pid, &status, 0) < 0)
unix_error("waitfg: waitpid error");
}
else

printf("%d %S”, p|d’ Cmd“ne);

return;

} Shellex.c FlUniversity 17

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Problem with Simple Shell Example

m Our example shell correctly waits for and reaps foreground jobs

m But what about background jobs?
= Will become zombies when they terminate
= Will never be reaped because shell (typically) will not terminate
= Will create a memory leak that could run the kernel out of memory

Carnegie Mellon University 18

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ECF to the Rescue!

m Solution: Exceptional control flow

" The kernel will interrupt regular processing to alert us when a
background process completes

" |n Unix, the alert mechanism is called a signal

Carnegie Mellon University 19

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Foundations of Computer Systems

Lecture 13:
“Exceptional Control Flow II:
Signals and Nonlocal Jumps”

m Shells
m Signals
m Nonlocal jumps

10/11/2017 18-600 Lecture #13 Carnegie Mellon University 2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals

m Asignalis a small message that notifies a process that an event of
some type has occurred in the system
= Akin to exceptions and interrupts
= Sent from the kernel (sometimes at the request of another process) to a process
= Signal type is identified by small integer ID’s (1-30)
" Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event

2 SIGINT Terminate User typed ctrl-c

9 SIGKILL Terminate Kill program (cannot override or ignore)
11 SIGSEGV Terminate Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

Carnegie Mellon University 2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

m Kernel sends (delivers) a signal to a destination process by updating
some state in the context of the destination process

m Kernel sends a signal for one of the following reasons:

= Kernel has detected a system event such as divide-by-zero (SIGFPE) or the
termination of a child process (SIGCHLD)
= Another process has invoked the kill system call to explicitly request the

kernel to send a signal to the destination process

Carnegie Mellon University 22

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Receiving a Signal
m A destination process receives a signal when it is forced by the kernel to
react in some way to the delivery of the signal

m Some possible ways to react:
= Jgnore the signal (do nothing)
" Terminate the process (with optional core dump)
" Catch the signal by executing a user-level function called signal handler

= Akin to a hardware exception handler being called in response to an asynchronous

interrupt:
(1) Signal received (2) Control passes
by process | to signal handler

curr v >
lnext (3) Signal
handler runs

(4) Signal handler
returns to
next instruction

Carnegie Mellon University 23

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending and Blocked Signals

m Asignalis pending if sent but not yet received
" There can be at most one pending signal of any particular type
" |mportant: Signals are not queued

= |f a process has a pending signal of type k, then subsequent signals of type k that
are sent to that process are discarded

m A process can block the receipt of certain signals
= Blocked sighals can be delivered, but will not be received until the signal is unblocked

m A pending signal is received at most once

Carnegie Mellon University 24

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending/Blocked Bits

m Kernel maintains pending and blocked bit vectors in the context of
each process
®" pending: represents the set of pending signals
= Kernel sets bit k in pending when a signal of type k is delivered
= Kernel clears bit k in pending when a signal of type k is received

" blocked: represents the set of blocked signals
= Can be set and cleared by using the sigprocmask function

= Also referred to as the signal mask.

Carnegie Mellon University 2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals: Process Groups

m Every process belongs to exactly one process group

pid=20

i pid=40
pgid=20

pgid=40

Background Background
process group 32 process group 40
. . getpgrp ()
pid=21 pid=22
pgid=20 pgid=20 Return process group of current process
Foreground setpgid()
process group 20 Change process group of a process (see text

for details)

Carnegie Mellon University 26

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with /bin/kill Program

m /bin/kill program sends
arbitrary signal to a process or
process group

m Examples

"= /bin/kill -9 24818
Send SIGKILL to process 24818

= /bin/kill -9 -24817
Send SIGKILL to every process in
process group 24817

linux> ./forks 16
Childl: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
PID TTY TIME CMD
24788 Pts/2 00:00:00 tecsh

24818 pts/2 00:00:02 forks

24819 pts/2 00:00:02 forks

24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Carnegie Mellon University 27

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals from the Keyboard

m Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every job in the
foreground process group.

" S|IGINT — default action is to terminate each process
= S|GTSTP — default action is to stop (suspend) each process

pid=20

L pid=40
Pgid=20 pgid=40
Background Background
process group 32 process group 40

pid=21 pid=22
pgid=20 pgid=20
Foreground

process group 20 Carnegie Mellon University 23

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of ctrl-c and ctrl-z

bluefish> ./forks 17
Child: pid=28108 pgrp=28107

Parent: pid=28107 pgrp=28107

<types ctrl-z>
Suspended
bluefish> ps w
PID TTY
27699 pts/8
28107 pts/8
28108 pts/8
28109 pts/8
bluefish> fqg
./forks 17
<types ctrl-c>
bluefish> ps w
PID TTY
27699 pts/8
28110 pts/8

STAT
Ss

H

R+

STAT
Ss
R+

TIME
0:00
0:01
0:01
0:00

TIME
0:00
0:00

COMMAND
-tcsh
./ forks
./forks
ps w

COMMAND
-tcsh
pPsS W

17
17

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader

+: foreground proc group

See “man ps” for more details

Carnegie Mellon University 20

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with kill Function

void fork12()
{

pid_t pid[N];
inti;
int child_status;

for (i=0;i<N;i++)
if ((pid[i] = fork()) == 0) {
/* Child: Infinite Loop */
while(1)

}
for (i=0;i<N;i++){
printf("Killing process %d\n", pid[i]);

kill(pid[i], SIGINT);
}

for (i=0;i<N;i++){
pid _t wpid = wait(&child_status);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminated abnormally\n", wpid);

} forks.c

Carnegie Mellon University 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Receiving Signals

m Suppose kernel is returning from an exception handler and is ready to

pass control to process p

Process A

Time

Process B

user code
kernel code } context switch
user code
kernel code } context switch
user code

Carnegie Mellon University 31

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Receiving Signals

m Suppose kernel is returning from an exception handler and is ready to
pass control to process p

m Kernel computes pnb = pending & ~blocked
" The set of pending nonblocked signals for process p

m If (pnb == 0)
= Pass control to next instruction in the logical flow for p
m Else
" Choose least nonzero bit kin pnb and force process p to receive signal k

" The receipt of the signal triggers some action by p
= Repeat for all nonzero k in pnb

" Pass control to next instruction in logical flow for p

Carnegie Mellon University 32

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Default Actions

m Each signal type has a predefined default action, which is one of:
" The process terminates
" The process stops until restarted by a SIGCONT signal
" The process ignores the signal

Carnegie Mellon University 33

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Installing Signal Handlers

m The signal function modifies the default action associated with the
receipt of signhal signum:

" handler t *signal(int signum, handler t *handler)

m Different values for handler:
= SIG_IGN: ignore signals of type signum
= SIG_DFL: revert to the default action on receipt of signals of type signum
= Otherwise, handler is the address of a user-level signal handler
= Called when process receives signal of type signum
= Referred to as “installing” the handler
= Executing handler is called “catching” or “handling” the signal

= When the handler executes its return statement, control passes back to instruction
in the control flow of the process that was interrupted by receipt of the signal

Carnegie Mellon University 34

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Handling Example

void sigint_handler(int sig) /* SIGINT handler */
{

sleep(2);
printf("Well...");
fflush(stdout);
sleep(1);
printf("OK. :-)\n");
exit(0);

}

int main()

{
/* Install the SIGINT handler */

if (signal(SIGINT, sigint_handler) == SIG_ERR)
unix_error("signal error");

/* Wait for the receipt of a signal */
pause();

return O;

printf("So you think you can stop the bomb with ctrl-c, do you?\n");

sigint.c

Carnegie Mellon University 3s

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals Handlers as Concurrent Flows

m Asignal handler is a separate logical flow (not process) that runs
concurrently with the main program

Process A Process A Process B

while (1) handler () {

}

Time

Carnegie Mellon University 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another View of Signal Handlers as Concurrent Flows

|
Process A I Process B
|
|
|
Signal delivered —> |y : user code (main)
|
to process A kernel code } context switch
|
|
I user code (main)
|
I .
kernel code } context switch
Signal received —> :
by process A : user code (handler)
|
: kernel code
¢ !
next : user code (main)
A 4 I
|

Carnegie Mellon University 37

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nested Signal Handlers

m Handlers can be interrupted by other handlers

Main program Handler S Handler T

(2) Control passes
(1) Program | to handler S
curr

catches signal s (4) Control passes
(3) Program to handler T

(7) Main program lnext catches signal t .
resumes \‘\J
v (5) Handler T

J (6) Handler S
returns to
main program

returns to
handler S

Carnegie Mellon University 3s

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking and Unblocking Signals

m Implicit blocking mechanism
= Kernel blocks any pending signals of type currently being handled.
= E.g., ASIGINT handler can’t be interrupted by another SIGINT

m Explicit blocking and unblocking mechanism

" sigprocmask function

m Supporting functions
" sigemptyset — Create empty set
" sigfillset —Add everysignal number to set
" sigaddset — Add signal number to set
" sigdelset — Delete signal number from set

Carnegie Mellon University 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Temporarily Blocking Signals

sigset_t mask, prev_mask;

Sigemptyset(&mask);
Sigaddset(&mask, SIGINT);

/* Block SIGINT and save previous blocked set */
Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

/’E Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask(SIG_SETMASK, &prev_mask, NULL);

Carnegie Mellon University 4o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safe Signal Handling

m Handlers are tricky because they are concurrent with main program
and share the same global data structures.

= Shared data structures can become corrupted.
m We'll explore concurrency issues later in the term.

m For now here are some guidelines to help you avoid trouble.

Carnegie Mellon University 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Guidelines for Writing Safe Handlers

m GO: Keep your handlers as simple as possible
= e.g., Set a global flag and return

m G1: Call only async-signal-safe functions in your handlers
" printf, sprintf, malloc, and exit are not safe!

m G2: Save and restore errno on entry and exit
= So that other handlers don’t overwrite your value of errno
m G3: Protect accesses to shared data structures by temporarily blocking
all signals.
" To prevent possible corruption
m G4: Declare global variables as volatile
= To prevent compiler from storing them in a register
m Gb5: Declare global flags as volatile sig atomic t

= flag: variable that is only read or written (e.g. flag = 1, not flag++)
= Flag declared this way does not need to be protected like other globals

Carnegie Mellon University 42

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Async-Signal-Safety

m Function is async-signal-safe if either reentrant (e.g., all variables stored
on stack frame, CS:APP3e 12.7.2) or non-interruptible by signals.

m Posix guarantees 117 functions to be async-signal-safe
= Source: “man 7 signal”
= Popular functions on the list:
= ex1lt, write, wait, wailitpid, sleep, kill
= Popular functions that are not on the list:
» printf, sprintf, malloc, exit
= Unfortunate fact: write is the only async-signal-safe output function

Carnegie Mellon University 43

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safely Generating Formatted Output

m Use the reentrant SIO (Safe 1/0 library) from csapp . cin your
handlers.
" ssize t sio puts(char s[]) /* Put string */
" ssize t sio putl(long v) /* Put long */

" void sio error(char s[]) /* Put msg & exit */

void sigint_handler(int sig) /* Safe SIGINT handler */

{
Sio_puts("So you think you can stop the bomb with ctrl-c, do you?\n");
sleep(2);
Sio_puts("Well...");
sleep(1);
Sio_puts("OK. :-)\n");
_exit(0);

}

sigintsafe.c

Carnegie Mellon University 44

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int ccount =0;

void child_handler(int sig) {
int olderrno = errno;
pid_t pid;
if ((pid = wait(NULL)) < 0)

Sio_error("wait error");

ccount--;
Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio_puts(" \n");
sleep(1);
errno = olderrno;

}

void fork14() {
pid_t pid[N];
int i;
ccount = N;
Signal(SIGCHLD, child_handler);

for (i=0;i<N;i++){
if ((pid[i] = Fork()) == 0) {
Sleep(1);
exit(0); /* Child exits */
}
}

while (ccount > 0) /* Parent spins */

Correct Signal Handling

m Pending signals are not
queued

" For each signal type, one bit
indicates whether or not
signal is pending...

= ..thus at most one pending
signal of any particular type.

m You can’t use signals to
count events, such as
children terminating.

whaleshark> ./forks 14
Handler reaped child 23240
Handler reaped child 23241

forks.c

Carnegie Mellon University 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Correct Signal Handling

m Must wait for all terminated child processes
" Put wait inaloop to reap all terminated children

void child_handler2(int sig)

{
int olderrno = errno;
pid_t pid;
while ((pid = wait(NULL)) > 0) {
ccount--;

Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio_puts(" \n");

}
if (errno != ECHILD)

Sio_error("wait error");

} SRS whaleshark> ./forks 15

Handler reaped child 23246
Handler reaped child 23247
Handler reaped child 23248
Handler reaped child 23249
Handler reaped child 23250
whaleshark>

Carnegie Mellon University 46

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Portable Signal Handling

m Ugh! Different versions of Unix can have different signal handling
semantics

" Some older systems restore action to default after catching signal
" Some interrupted system calls can return with errno == EINTR
= Some systems don’t block signals of the type being handled

m Solution: sigaction

handler_t *Signal(int signum, handler_t *handler)

{

struct sigaction action, old_action;

action.sa_handler = handler;

sigemptyset(&action.sa_mask); /* Block sigs of type being handled */
action.sa_flags = SA_RESTART,; /* Restart syscalls if possible */

if (sigaction(signum, &action, &old_action) < 0)
unix_error("Signal error");
return (old_action.sa_handler);

} csapp.c
Carnegie Mellon University 47

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Flows to Avoid Races

m Simple shell with a subtle synchronization error because it assumes
parent runs before child.

{

int main(int argc, char **argv)

int pid;
sigset_t mask_all, prev_all;

Sigfillset(&mask_all);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (1) {
if ((pid = Fork()) == 0) { /* Child */
Execve("/bin/date", argv, NULL);
}
Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); /* Parent */
addjob(pid); /* Add the child to the job list */
Sigprocmask(SIG_SETMASK, &prev_all, NULL);

}
exit(0);

procmaskl.c

Carnegie Mellon University <

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Flows to Avoid Races

m SIGCHLD handler for a simple shell

{

void handler(int sig)

int olderrno = errno;
sigset_t mask_all, prev_all;
pid_t pid;

Sigfillset(&mask_all);

while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */
Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
deletejob(pid); /* Delete the child from the job list */
Sigprocmask(SIG_SETMASK, &prev_all, NULL);

}

if (errno != ECHILD)
Sio_error("waitpid error");

errno = olderrno;

procmaskl.c

Carnegie Mellon University 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Corrected Shell Program without Race

int main(int argc, char **argv)
{
int pid;
sigset_t mask_all, mask_one, prev_one;

Sigfillset(&mask_all);
Sigemptyset(&mask_one);
Sigaddset(&mask_one, SIGCHLD);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (1) {
Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */
if ((pid = Fork()) == 0) { /* Child process */
Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
Execve("/bin/date", argv, NULL);
}
Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */
addjob(pid); /* Add the child to the job list */
Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

}
exit(0);

procmask2.c

Carnegie Mellon University 5o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals

m Handlers for program explicitly waiting for SIGCHLD to arrive.

volatile sig_atomic_t pid;

void sigchld_handler(int s)
{

int olderrno = errno;
pid = Waitpid(-1, NULL, 0); /* Main is waiting for nonzero pid */
errno = olderrno;

}

void sigint_handler(int s)

{
}

waitforsignal.c

Carnegie Mellon University 51

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals

int main(int argc, char **argv) {
sigset_t mask, prev;

Similar to a shell waiting
for a foreground job to

Signal(SIGCHLD, sigchld_handler); terminate.

Signal(SIGINT, sigint_handler);
Sigemptyset(&mask);
Sigaddset(&mask, SIGCHLD);

while (1) {
Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */
exit(0);
/* Parent */
pid = 0;
Sigprocmask(SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

/* Wait for SIGCHLD to be received (wasteful!) */
while (!pid)
/* Do some work after receiving SIGCHLD */
printf(".");
}
exit(0);

waitforsignal.c

warnegie Mellon University s2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals

m Program s correct, but very wasteful

m Other options:

while (!pid)
pause () ;

/*

Race! */

while (!pid) /* Too slow! */
sleep(1);

m Solution: sigsuspend

Carnegie Mellon University 53

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waiting for Signals with sigsuspend

m int sigsuspend(const sigset t *mask)

m Equivalent to atomic (uninterruptable) version of:

sigprocmask (SIG BLOCK, é&mask, &prev);
pause () ;
sigprocmask (SIG SETMASK, é&prev, NULL);

Carnegie Mellon University 54

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waiting for Signals with sigsuspend

int main(int argc, char **argv) {
sigset t mask, prev;
Signal (SIGCHLD, sigchld handler);
Signal (SIGINT, sigint handler);
Sigemptyset (&mask) ;
Sigaddset (&mask, SIGCHLD) ;

while (1) {
Sigprocmask (SIG BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */
exit (0) ;

/* Wait for SIGCHLD to be received */
pid = 0;
while (!pid)

Sigsuspend (&prev) ;

/* Optionally unblock SIGCHLD */
Sigprocmask (SIG_SETMASK, é&prev, NULL);
/* Do some work after receiving SIGCHLD */
printf (".");

}

ex1t (0);

sigsuspend.c

7

University 55

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Foundations of Computer Systems

Lecture 13:
“Exceptional Control Flow II:
Signals and Nonlocal Jumps”

m Shells
m Signals
m Nonlocal jumps

= Consult your textbook and additional slides

Carnegie Mellon University 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

m Signals provide process-level exception handling
= Can generate from user programs
" Can define effect by declaring signal handler
= Be very careful when writing signal handlers

m Nonlocal jumps provide exceptional control flow within process
= Within constraints of stack discipline

Carnegie Mellon University 57

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nonlocal Jumps: setjmp/longjmp

m Powerful (but dangerous) user-level mechanism for transferring control
to an arbitrary location

= Controlled to way to break the procedure call / return discipline
= Useful for error recovery and signal handling

m int setjmp (jmp buf j)
" Must be called before longjmp
" |dentifies a return site for a subsequent longjmp
= Called once, returns one or more times

m Implementation:

= Remember where you are by storing the current register context, stack pointer,
and PCvalue in jmp buf

® ReturnO

Carnegie Mellon University 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

setjmp/longjmp (cont)

m void longjmp (Jjmp buf j, int 1)
" Meaning:
= return from the setjmp remembered by jump buffer j again ...
= ... this time returning i instead of O
= Called after setjmp

= Called once, but never returns

m longjmp Implementation:
= Restore register context (stack pointer, base pointer, PC value) from jump buffer j
= Set $eax (thereturnvalue)to i
= Jump to the location indicated by the PC stored in jump buf j

Carnegie Mellon University 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

setjmp/longjmp Example

m Goal: return directly to original caller from a deeply-nested function

/* Deeply nested function foo */
void foo(void)
{
if (errorl)
longjmp(buf, 1);
bar();
}

void bar(void)

{

if (error2)
longjmp(buf, 2);

Carnegie Mellon University 6o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

jmp_buf buf;

int errorl =0;
int error2 =1;

void foo(void), bar(void);

int main()
{
switch(setjmp(buf)) {
case O:
foo();
break;
case 1:
printf("Detected an errorl condition in foo\n");
break;
case 2:
printf("Detected an error2 condition in foo\n");
break;
default:
printf("Unknown error condition in foo\n");

}
exit(0);

setjmp/longjmp
Example (cont)

Carnegie Mellon University 61

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of Nonlocal Jumps

m Works within stack discipline

" Can only long jump to environment of function that has been called but

not yet completed Before longjmp After longjmp
jmp buf env; env
........... > Pl Pl
P1()
{
if (setjmp(env)) { —
/* Long Jump to here */
} else {
P2(); P2
}
} P2
P2()
{ . . .P20); . . . P3(); } P3
P3()
{
longjmp (env, 1);
} Carnegie Mellon University 62

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of Long Jumps (cont.)

m Works within stack discipline

= Can only long jump to environment of function that has been called but not yet

completed

jmp buf env; Pl
P1O | P2
{ env
} P2(); P3(); At setjmp
P2 () Pl
{

if (setjmp(env)) ({ env

/* Long Jump to here */ | = ¥ | P2

}

} P2 returns Pl
env

?3() SR SN P3

longjmp (env, 1) ; At longjmp
} Carnegie Mellon University 63

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Putting It All Together: A Program
That Restarts Itself When etrl-c'd

#include "csapp.h"

sigimp_buf buf;
greatwhite> ./restart

void handler(int sig) starting
{ processing. ..

siglongjmp(buf, 1); processing. ..
) processing. ..
int main() restart%ng : Ctrl-c
{ processing. ..

if (!sigsetjimp(buf, 1)) { processing. ..

Signal(SIGINT, handler); restarting
Sio_puts("starting\n"); processing. . Ctrl-c
} processing. ..
else

' . processing. ..
Sio_puts("restarting\n");

while(1) {
Sleep(1);
Sio_puts("processing...\n");

}
exit(0); /* Control never reaches here */ restart.c

Carnegie Mellon University ¢4

18-600 Foundations of Computer Systems

Lecture 14:
“System Level 1/0O”

October 16, 2017

Next Time ...

» Required Reading Assignment: {Ky Electrical & Computer

* Chapter 10 of CS:APP (3™ edition) by Randy Bryant & Dave O’Hallaron. E N G I N E E RI N G

10/11/2017 18-600 Lecture #13 Carnegie Mellon University ¢s

