18-600 Foundations of Computer Systems

Lecture 16:
“Dynamic Memory Allocation”

October 23, 2017

» Required Reading Assignment: {Ky Electrical & Computer

* Chapter 9 of CS:APP (3" edition) by Randy Bryant & Dave O’Hallaron E N G I N E E RI N G

10/23/2017 Lecture #16 Carnegie Mellon University 1

Socrative Experiment (Continuing)

e Pittsburgh Students (18600PGH): https://api.socrative.com/rc/icJVVC
* Silicon Valley Students (18600SV): https://api.socrative.com/rc/iez85z
* Microphone/Speak out/Raise Hand: Still G-R-E-A-T!

* Socrative:
* Let’s me open floor for electronic questions, putting questions into a visual queue so |
don’t miss any
* Let’s me do flash polls, etc.

* Prevents cross-talk and organic discussions in more generalized forums from pulling
coteries out of class discussion into parallel question space.
» Keeps focus and reduces distraction while adding another vehicle for classroom interactivity.
 Won’t allow more than 150 students per “room”

* So, | created one room per campus
* May later try random assignment to a room, etc.

10/23/2017 Lecture #16 Carnegie Mellon University 2

https://api.socrative.com/rc/icJVVC
https://api.socrative.com/rc/iez85z

Accessing the TLB

* MMU uses the VPN portion of the virtual address to access the TLB:

T =2t sets
VPN
TLBT matches tag of — — —~
line within set n-1 p+t p+t-1 p p-1 0

TLB tag (TLBT) | TLB index (TLBI) VPO

Set O Y tdg PTE Y tag PTE
TLBI selects the set
\ 4
Set 1 v tag PTE v tag PTE PE—
Set T-1 Vv tag PTE v tag PTE

Carnegie Mellon University 3

Translating with a k-level Page Table

Page table
base register
(PTBR)
VIRTUAL ADDRESS
n-1 p-1 0
VPN 1 VPN 2 VPN k VPO
Level 1 Level 2 Level k
page table page table page table
> > >
: PPN} —
m-1 l p-1 |} 0
PPN PPO

PHYSICAL ADDRESS

10/23/2017

Lecture #16 Carnegie Mellon University 4

Intel Core i7 Memory System

Processor package

Core x4
Registers Instruction MMU
8 fetch (addr translation)
L1 d-cache L1 i-cache L1 d-TLB L1i-TLB
32 KB, 8-way 32 KB, 8-way 64 entries, 4-way 128 entries, 4-way

\ 4

\ 4

L2 unified cache
256 KB, 8-way

A\ 4

A\ 4

L2 unified TLB
512 entries, 4-way

A

A

y

L3 unified cache
8 MB, 16-way
(shared by all cores)

\ 4

» 10 other
QuickPath interconnect > cores
4 links @ 25.6 GB/s each | . To /O
bridge

A

g 3 x 64 bit @ 10.66 GB/s
32 GB/s total (shared by all cores)

DDR3 Memory controller

Main memory

10/23/2017

Lecture #16

Carnegie Mellon University 5

Cute Trick for Speedmg Up L1 Access

Tag Check

Physical
address <

..

(PA)

Virtual
address
(VA)

e Observation
* Bits that determine Cl identical in virtual and physical address
* Canindex into cache while address translation taking place

40 6 6
CTé |[cCl|co
PPN PPO
Address No
Translation Change .
< Cl
)\ S
VPN VPO ¢
36 12

1

I |

L1 Cache

Generally we hit in TLB, so PPN bits (CT bits) available next
“Virtually indexed, physically tagged”
Cache carefully sized to make this possible

10/23/2017

Lecture #16

Carnegie Mellon University ¢

Process

\ —™ [M\ /\'ﬁ i
Vi EU@‘ A@dl@%% SdeC‘ Ul d

I LI\ L I\/
Nin
~
Process-specific data)
. < structs (ptables,
Different for
task and mm structs,
each process Kernel
kernel stack))
~ > virtual
Identical for Physical memory memory
each process
P Kernel code and data)
User stack \
NrSpP — ‘
Memory mapped region
for shared libraries
Process
brk —, t > virtual
Runtime heap (malloc) memory
Uninitialized data (.bss)
Initialized data (.data)
000400000 —,_ Program text (.text)

10/23/2017

(@]

Lecture #16

Carnegie Mellon University 7

AT

mm —— | pgd

vm_area_struct

[
»

vm_end
vm_start
vm_prot
vm_flags

* pgd:
* Page global directory address
* Points to L1 page table

* vm_prot:

* Read/write permissions for
this area

 vm_flags
e Pages shared with other

processes or private to this
process

A 4

vm_end
vm_start
vm_prot
vm_flags

A 4

vm_end
vm_start

.|_
L

N\ N
Ul Ul

Process virtual memory

Shared libraries

Data

Text

vm_prot
vm_flags
vm_next

A 4

10/23/2017

Lecture #16

Carnegie Mellon University s

Linux Page Fault Handling

vm_area_struct Process virtual memory

vm_end
vm_start
vm_prot
vm_flags
shared libraries
rg Segmentation fault:

R) accessing a non-existing page
vm_end
vm_start > o
vm_prot data read
vm_flags < Normal page fault

text o Protection exception:

o o . Write e.g., violating permission by
vm start ——— writing to a read-only page (Linux
vm_prot reports as Segmentation fault)
vm_flags
vm_next

10/23/2017 Lecture #16 Carnegie Mellon University ¢

Memory Mapping

* VM areas initia

ized by associating them with disk objects.

* Process is known as memory mapping.

* Area can be backed by (i.e., get its initial values from) :
* Regular file on disk (e.g., an executable object file)
* |nitial page bytes come from a section of a file
* Anonymous file (e.g., nothing)
* First fault will allocate a physical page full of O's (demand-zero page)
* Once the page is written to (dirtied), it is like any other page

* Dirty pages are copied back and forth between memory and a special swap

file.

10/23/2017

Lecture #16 Carnegie Mellon University 10

Sharing Revisited: Shared Objects

Physical P 2
 Process 1 y>Iea _roress * Process 1 maps the
virtual memory memory virtual memory :
shared object.
Shared
object

10/23/2017 Lecture #16 Carnegie Mellon University 11

Sharing Revisited: Shared Objects

Process 1
virtual memory

Physical
memory

Shared
object

Process 2

virtual memory m Process 2 maps the

shared object.

m Notice how the virtual
addresses can be
different.

10/23/2017

Lecture #16 Carnegie Mellon University 12

Sharing Reuvisited:
Private Copy-on-write (COW) Objects
Process 1 Physical Process 2 . .
virtual memory memory virtual memory TVYO ProCesses map,pmg d
private copy-on-write (COW)
object.
L | * Area flagged as private
} Private. copy-on-write
NN copy-on-write
area * PTEs in private areas are
flagged as read-only
Private

copy-on-write object

10/23/2017

Lecture #16 Carnegie Mellon University 13

naring Revisited:
rivate Copy-on-write (COW) Objects

O N

Process 1 Physical Process 2 * Instruction writing to private
Virtualmemory Memory virtualmemory page triggers protection fault
* Handler creates new R/W
’ \ﬂpv—o\rjx—y\\/rlte page .
’ " * Instruction restarts upon
v N L |- R ite t ivat
T el | WTRETOPIVERE handler return.
copy-on-write
page * Copying deferred as long as
possible!
Private

copy-on-write object

10/23/2017 Lecture #16 Carnegie Mellon University 14

The -

“ork Function Revisited

* VM and memory mapping explain how fork provides private address space
for each process.

* To create virtual address for new new process
* Create exact copies of currentmm_struct, vim area struct, and page tables.
* Flag each page in both processes as read-only
* Flageach vim _area struct inboth processes as private COW

* On return, each process has exact copy of virtual memory

e Subsequent writes create new pages using COW mechanism.

10/23/2017

Lecture #16

Carnegie Mellon University 15

The execve Function Revisited

libc.so

User stack

!
1

.data

text

a.out

Memory mapped region
for shared libraries

1

Runtime heap (via malloc)

Uninitialized data (.bss)

.data

Initialized data (.data)

text

Program text (.text)

} Private, demand-zero

} Shared, file-backed

} Private, demand-zero

} Private, demand-zero

} Private, file-backed

* To load and run a new program
a.out in the current process using
execve:

* Ffree vm area struct’sand
page tables for old areas

* Create vim_area struct’sand
page tables for new areas

* Programs and initialized data backed
by object files.

* .bss and stack backed by
anonymous files .

* Set PCto entry pointin . text
 Linux will fault in code and data pages

10/23/2017

Lecture #16

d> neede %’arnegie Mellon University 16

User-Level Memory Mapping

vold *mmap (void *start, 1int len,
int prot, int flags, int fd, int offset)

* Map len bytes starting at offset of£set of the file specified by file
description £d, preferably at address start

 start: may be 0 for “pick an address”
 prot: PROT_READ, PROT_WRITE, ...
« flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

e Return a pointer to start of mapped area (may not be start)

10/23/2017 Lecture #16 Carnegie Mellon University 17

User-Level Memory Mapping

void *mmap (void *start, 1int len,
int prot, int flags, int fd, int offset)

............................. 2
.. | Len bytes
___ /
(T < start
__ o audrens
len bytes < | | 7 chosen by fomel)
offset N I
(bytes)
0 0
Disk file specified by Process virtual memory

file descriptor £d

10/23/2017 Lecture #16 Carnegie Mellon University 18

Example: Using mmap to Copy Files

m Copying afile to stdout without transferring data to user space.

#include "csapp.h"

void mmapcopy(int fd, int size)

{

/* Ptr to memory mapped area */
char *bufp;

bufp = Mmap(NULL, size,
PROT_READ,
MAP_PRIVATE,
fd, 0);

Write(1, bufp, size);

return;

mmapcopy.c

{

}

/* mmapcopy driver */
int main(int argc, char **argv)

struct stat stat;
int fd;

/* Check for required cmd line arg */
if (arge 1=2) {
printf("usage: %s <filename>\n",
argv[0]);
exit(0);
}

/* Copy input file to stdout */

fd = Open(argv[1], O_RDONLY, 0);
Fstat(fd, &stat);

mmapcopy(fd, stat.st_size);
exit(0);

mmapcopy.c

10/23/2017

Lecture #16

Carnegie Mellon University 19

Today: User-Level Memory Allocation

* Basic concepts

* Implicit free lists

* Explicit free lists

* Segregated free lists

10/23/2017 Lecture #16 Carnegie Mellon University 2

Dynamic Memory Allocation

* Programmers use dynamic memory allocators
(such asmalloc) to acquire VM at run time.

* For data structures whose size is only known at
runtime.

* Dynamic memory allocators manage an area of
process virtual memory known as the heap.

* Allocator maintains heap as collection of variable
sized blocks, which are either allocated or free

* Types of allocators

* Explicit allocator: application allocates and
frees space
e E.g., mallocand freeinC
* Implicit allocator: application allocates, but
does not free space

 E.g. inJava, ML, and Lisp 0

Application

Dynamic Memory Allocator

Heap

User stack

> @

Heap (viamalloc)

Top of heap
(brk ptr)

Uninitialized data (.bss)

Initialized data (. data)

Program text (. text)

10/23/2017 Lecture #16 Carnegie Mellon University 21

The malloc Package

#include <stdlib.h>

void *malloc(size t size)

e Successful:

e Returns a pointer to a memory block of at least size bytes
aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

e |fsize == 0, returns NULL
e Unsuccessful: returns NULL (0) and sets errno

vold free(void *p)
* Returns the block pointed at by p to pool of available memory
* p must come from a previous call tomalloc or realloc

Other functions
* calloc: Version of malloc that initializes allocated block to zero.
« realloc: Changes the size of a previously allocated block.
* sbrk: Used internally by allocators to grow or shrink the heap

10/23/2017 Lecture #16 Carnegie Mellon University 22

malloc Example

#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
inti, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {
perror("malloc");
exit(0);
}

/* Initialize allocated block */
for (i=0; i<n; i++)
p[i] = i;

/* Return allocated block to the heap */
free(p);

}

10/23/2017 Lecture #16 Carnegie Mellon University 23

Allocation Example

pl malloc (4)

malloc (5)

'O
N
Il

p3 = malloc(6)

free (p2)

p4 = malloc(2)

* Assumption

* Memory is word addressed.
 Words are int-sized.

10/23/2017

Lecture #16

Carnegie Mellon University 24

Constraints

Applications
e Canissue arbitrary sequence of malloc and £ree requests
 free request must betoamalloc’d block

Allocators
e Can’t control number or size of allocated blocks

Must respond immediately tomalloc requests
e j.e., can’t reorder or buffer requests

Must allocate blocks from free memory
* j.e., can only place allocated blocks in free memory

Must align blocks so they satisfy all alignment requirements
» 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes

Can manipulate and modify only free memory

Can’t move the allocated blocks once they are malloc’d
* j.e., compaction is not allowed

10/23/2017

Lecture #16

Carnegie Mellon University 2

Performance Goal: Throughput

* Given some sequence of malloc and free requests:
* Ry R, ... Ry, ..., R,

* Goals: maximize throughput and peak memory utilization
* These goals are often conflicting

* Throughput:
* Number of completed requests per unit time

* Example:
5000 malloc calls and 5,000 £ree calls in 10 seconds
* Throughput is 1,000 operations/second

10/23/2017 Lecture #16 Carnegie Mellon University 26

Performance Goal: Peak Memory Utilization

* Given some sequence of malloc and free requests:
* Ry R, ... Ry, ..., R, ;

* Def: Aggregate payload P,
* malloc (p) resultsin a block with a payload of p bytes
* After request R, completed, the aggregate payload P, is the sum of currently allocated payloads

* Def: Current heap size H,

* Assume H, is monotonically nondecreasing
* i.e., heap only grows when allocator uses sbrk

* Def: Peak memory utilization after k+1 requests
* Uy=(max. P;) / H,

* Poor memory utilization caused by fragmentation: internal fragmentation and
external fragmentation

10/23/2017 Lecture #16 Carnegie Mellon University 27

Internal Fragmentation

* For a given block, internal fragmentation occurs if payload is smaller than

Internal

fragmentation

block size
Block
A
o N
Internal - Payload
fragmentation
e Caused by

* Overhead of maintaining heap data structures
* Padding for alignment purposes

* Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

* Depends only on the pattern of previous requests
* Thus, easy to measure

10/23/2017 Lecture #16

Carnegie Mellon University 2

External Fragmentation

* Occurs when there is enough aggregate heap memory, but no single free block
is large enough

pl = malloc (4)

malloc (5)

'O
N
Il

p3 = malloc(6)

free (p2)

Oops! (what would happen now?)

p4 = malloc (6)

* Depends on the pattern of future requests
e Thus, difficult to measure

10/23/2017 Lecture #16 Carnegie Mellon University 29

Implementation lssues

* How do we know how much memory to free given just a pointer?
* How do we keep track of the free blocks?

 What do we do with the extra space when allocating a structure that is smaller
than the free block it is placed in?

* How do we pick a block to use for allocation -- many might fit?

e How do we reinsert freed block?

10/23/2017 Lecture #16 Carnegie Mellon University 20

Knowing How Much to Free

e Standard method

* Keep the length of a block in the word preceding the block.
* This word is often called the header field or header

* Requires an extra word for every allocated block

p10
pO0 = malloc (4) fS W
block size payload
free (p0)

10/23/2017 Lecture #16 Carnegie Mellon University 31

Keeping Track of Free Blocks

* Method 1: Implicit list using length—Ilinks all blocks

5 4 6 2

 Method 2: Explicit list among the free blocks using pointers

T

5 — 4 6 2
 Method 3: Segregated free list

e Different free lists for different size classes

* Method 4: Blocks sorted by size

e Can use a balanced tree (e.g. Red-Black tree) with pointers within each free block, and the
length used as a key

10/23/2017 Lecture #16 Carnegie Mellon University 32

Today

* Basic concepts

* Implicit free lists

* Explicit free lists

* Segregated free lists

10/23/2017

Lecture #16

Carnegie Mellon University 33

Method 1. Implicit List

* For each block we need both size and allocation status
e Could store this information in two words: wasteful!

e Standard trick

* |f blocks are aligned, some low-order address bits are always O
* Instead of storing an always-0 bit, use it as a allocated/free flag

* When reading size word, must mask out this bit

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

1 word
A
o N
Size a
Format of
allocated and Payload
free blocks
Optional
padding
10/23/2017 Lecture #16

Carnegie Mellon University 34

Detailed Implicit Free List Example

Start Unused /\ /\/\ /\

of ‘ 8/0 ‘16/1 ‘32/0 16/1 ‘ 0/1|l
heap
. Double-word Allocated blocks: shaded
. aligned Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit
10/23/2017 Lecture #16 Carnegie Mellon University 35

Implicit List: Finding a Free Block

* First fit:

e Search list from beginning, choose first free block that fits:

p = start;
while ((p < end) && \\ not passed end
((*p & 1) || \\ already allocated
(*p <= len))) \\ too small
p=p+ (*p & -2); \\ goto next block (word addressed)

* Can take linear time in total number of blocks (allocated and free)

* In practice it can cause “splinters” at beginning of list

e Next fit:
» Like first fit, but search list starting where previous search finished

* Should often be faster than first fit: avoids re-scanning unhelpful blocks
* Some research suggests that fragmentation is worse

* Best fit:
e Search the list, choose the best free block: fits, with fewest bytes left over

» Keeps fragments small—usually improves memory utilization

° Y. WH | I ey | NN D N Sl oIy S o
ooV Ly picdily Tull S1IOwetr uialt Tirst i

10/23/2017 Lecture #16 Carnegie Mellon University 36

Implicit List: Allocating in Free Block

* Allocating in a free block: splitting

 Since allocated space might be smaller than free space, we might want to split the block

addblock (p, 4)

4 4 4 2 2
vold addblock (ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even
int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length
if (newsize < oldsize)
* (ptnewsize) = oldsize - newsize; // set length in remaining
} // part of block
10/23/2017 Lecture #16

Carnegie Mellon University 37

Implicit List: Freeing a Block

 Simplest implementation:
* Need only clear the “allocated” flag

void free block(ptr p) { *p = *p & -2 }

* But can lead to “false fragmentation”

T T~ T~ T~

4

4

2

free (p)

4

malloc (5) Oops!

There is enough free space, but the allocator won’t be able to find it

10/23/2017

Lecture #16

Carnegie Mellon University 3s

Implicit List: Coalescing

* Join (coalesce) with next/previous blocks, if they are free

* Coalescing with next block

4

- b
N

logically

free (p) ////,__\\\\////,_‘\\\i1//”_____§z:><::,,///"gone

4

vold free block(ptr p)
P = *p & —2;
next = p + *p;

1f ((*next & 1) ==

*Pp = *p + *next;

}

// clear allocated flag

// find next block

// add to this block if

// not allocated

* But how do we coalesce with previous block?

10/23/2017

Lecture #16

Carnegie Mellon University 3

Implicit List: Bidirectional Coalescing

* Boundary tags [Knuth73]

* Replicate size/allocated word at “bottom” (end) of free blocks

* Allows us to traverse the “list” backwards, but requires extra space

* Important and general technique!

4 4 4

4

6

6 4 4

\/\/\/

Header ——— Size a a = 1: Allocated block
a = 0: Free block
Format of ond and
allocated and Payload an Size: Total block size
padding
free blocks
Payload: Application data
Boundary tag — Size a (allocated blocks only)
(footer)
10/23/2017 Lecture #16 Carnegie Mellon University 40

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4
. Allocated Allocated Free Free
Block being |
freed Allocated Free Allocated Free
10/23/2017 Lecture #16 Carnegie Mellon University 4

Constant Time Coalescing (Case 1)

ml

ml

m2

m2

ml

ml

m2

m2

10/23/2017

Lecture #16

Carnegie Mellon University 42

Constant Time Coalescing (Case 2)

ml

ml

ml

ml

n+m2

m2

m2

n+m2

10/23/2017

Lecture #16

Carnegie Mellon University 43

Constant Time Coalescing (Case 3)

ml

ml

m2

m2

n+tml

n+tml

m2

10/23/2017

Lecture #16

Carnegie Mellon University 44

Constant Time Coalescing (Case 4)

ml

ml

m2

m2

n+ml+m2

n+ml+m?2

10/23/2017

Lecture #16

Carnegie Mellon University 4

Disadvantages of Boundary Tags

* Internal fragmentation

* Can it be optimized?
 Which blocks need the footer tag? Only free blocks
 What does that mean? Use another free bits to indicate free/allocated blocks

10/23/2017 Lecture #16 Carnegie Mellon University 46

Summary of Key Allocator Policies

* Placement policy:
* First-fit, next-fit, best-fit, etc.
* Trades off lower throughput for less fragmentation

* Interesting observation: segregated free lists (next lecture) approximate a best fit placement
policy without having to search entire free list

* Splitting policy:
* When do we go ahead and split free blocks?
* How much internal fragmentation are we willing to tolerate?

* Coalescing policy:
* Immediate coalescing: coalesce each time £ree is called

* Deferred coalescing: try to improve performance of £ree by deferring coalescing until needed.
Examples:

e Coalesce as you scan the free list formalloc
* Coalesce when the amount of external fragmentation reaches some threshold

10/23/2017 Lecture #16 Carnegie Mellon University 47

Implicit Lists: Summary

Implementation: very simple

Allocate cost:
* |linear time worst case

Free cost:
e constant time worst case
= even with coalescing

Memory usage:
* will depend on placement policy
* First-fit, next-fit or best-fit

= used in many special purpose applications

Not used in practice formalloc/free because of linear-time allocation

However, the concepts of splitting and boundary tag coalescing are general to all allocators

10/23/2017 Lecture #16

Carnegie Mellon University <

Today

* Basic concepts

* Implicit free lists

* Explicit free lists

* Segregated free lists

10/23/2017

Lecture #16

Carnegie Mellon University 4

Keeping Track of Free Blocks

* Method 1: Implicit free list using length—Ilinks all blocks

 Method 2: Explicit free list among the free blocks using pointers

,/\

5 — 4 6

2

* Method 3: Segregated free list

e Different free lists for different size classes

* Method 4: Blocks sorted by size

e Can use a balanced tree (e.g. Red-Black tree) with pointers within each free block, and the length

used as a key

10/23/2017 Lecture #16

Carnegie Mellon University 5o

Explicit Free Lists

Allocated (as before)

Size a
Payload and

padding

Size a

Free
Size a

Next

Prev
Size a

* Maintain list(s) of free blocks, not all blocks
* The “next” free block could be anywhere

* So we need to store forward/back pointers, not just sizes

* Still need boundary tags for coalescing

* Luckily we track only free blocks, so we can use payload area

10/23/2017

Lecture #16

Carnegie Mellon University 51

Explicit Free Lists

* Logically:

* Physically: blocks can be in any order -

/ Forward (next) links
A ,///\\ B

4 — 4 4 4 6 / — 6 4 4 4 4

Back (prev) links

10/23/2017 Lecture #16 Carnegie Mellon University 52

Allocating From Explicit Free Lists

B
efore ®

i

conceptual graphic

After with splittin
f * @ ﬁ (’ g)
o @
= malloc(...)
10/23/2017 Lecture #16 Carnegie Mellon University 53

Freeing With Explicit Free Lists

* Insertion policy: Where in the free list do you put a newly freed block?
* LIFO (last-in-first-out) policy
* Insert freed block at the beginning of the free list

* Pro: simple and constant time

e Con: studies suggest fragmentation is worse than address ordered

* Address-ordered policy

* Insert freed blocks so that free list blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

* Con: requires search

* Pro: studies suggest fragmentation is lower than LIFO

10/23/2017 Lecture #16 Carnegie Mellon University 54

Freeing With a LIFO Policy (Case 1)

Before

free()
Root -/ ‘% @)

Insert the freed block at the root of the list

After

g «S | mmmm >
I

conceptual graphic

10/23/2017 Lecture #16 Carnegie Mellon University 55

Freeing With a LIFO Policy (Case 2)

Before

conceptual graphic

free()

Root I 1 LI S

* Splice out successor block, coalesce both memory blocks and insert the new block at
the root of the list

After

Root -/_\ O

10/23/2017 Lecture #16 UG LIUE U LV AULIULL WLLL VUL DILY 56

0 <«
>r—

Freeing With a LIFO Policy (Case 3)

Before

conceptual graphic

free()

Root ‘I I LI O

* Splice out predecessor block, coalesce both memory blocks, and insert the new block
at the root of the list

After

Root H

0 «—
—0

10/23/2017 Lecture #16 Carnegie Vlellon University 57

Before

Root

After

Root

10/23/2017

-

free()

Freeing With a LIFO Policy (Case 4)

conceptual graphic

!

!

I

!

LIO

* Splice out predecessor and successor blocks, coalesce all 3 memory blocks and insert
the new block at the root of the list

0 «—

—O

Lecture #16

0 «—

Carnegie Vlellon University 58

Explicit List Summary

 Comparison to implicit list:
* Allocate is linear time in number of free blocks instead of all blocks
* Much faster when most of the memory is full
 Slightly more complicated allocate and free since needs to splice blocks in and out of the list

* Some extra space for the links (2 extra words needed for each block)
* Does this increase internal fragmentation?

* Most common use of linked lists is in conjunction with segregated free lists
* Keep multiple linked lists of different size classes, or possibly for different types of objects

10/23/2017 Lecture #16 Carnegie Mellon University 59

Today

* Basic concepts

* Implicit free lists

* Explicit free lists

* Segregated free lists

10/23/2017

Lecture #16

Carnegie Mellon University 6o

Segregated List (Seqlist) Allocators

e Each size class of blocks has its own free list
1_2 > > > ——>

5-8 ’ —

9-inf —

e Often have separate classes for each small size

* For larger sizes: One class for each two-power size

10/23/2017 Lecture #16 Carnegie Mellon University s:

Seqglist Allocator

* Given an array of free lists, each one for some size class

* To allocate a block of size n:
e Search appropriate free list for block of size m > n

 |f an appropriate block is found:
* Split block and place fragment on appropriate list (optional)
* If no block is found, try next larger class

* Repeat until block is found

* If no block is found:
e Request additional heap memory from OS (using sbrk ())
 Allocate block of n bytes from this new memory
* Place remainder as a single free block in largest size class.

10/23/2017 Lecture #16

Carnegie Mellon University 62

Seqglist Allocator (cont.)

* To free a block:
* Coalesce and place on appropriate list

* Advantages of seglist allocators
* Higher throughput
* log time for power-of-two size classes
* Better memory utilization

 First-fit search of segregated free list approximates a best-fit search of entire heap.

* Extreme case: Giving each block its own size class is equivalent to best-fit.

10/23/2017 Lecture #16 Carnegie Mellon University 63

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

* Basic concepts

* Implicit free lists

* Explicit free lists

* Segregated free lists

10/23/2017

Lecture #16

Carnegie Mellon University 64

18-600 Foundations of Computer Systems

Lecture 17:
“Multicore Cache Coherence”
October 25, 2017

Next Time

Ky Electrical & Computer
ENGlNEERlNG

9090

10/23/2017 Lecture #16 Carnegie Mellon University ¢

