
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 16:
“Dynamic Memory Allocation”

October 23, 2017

18-600 Foundations of Computer Systems

➢ Required Reading Assignment:
• Chapter 9 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron

SE
18-600

PL
OS
CA

10/23/2017 Lecture #16 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Socrative Experiment (Continuing)

• Pittsburgh Students (18600PGH): https://api.socrative.com/rc/icJVVC

• Silicon Valley Students (18600SV): https://api.socrative.com/rc/iez85z

• Microphone/Speak out/Raise Hand: Still G-R-E-A-T!

• Socrative:
• Let’s me open floor for electronic questions, putting questions into a visual queue so I

don’t miss any

• Let’s me do flash polls, etc.

• Prevents cross-talk and organic discussions in more generalized forums from pulling
coteries out of class discussion into parallel question space.
• Keeps focus and reduces distraction while adding another vehicle for classroom interactivity.

• Won’t allow more than 150 students per “room”
• So, I created one room per campus

• May later try random assignment to a room, etc.

10/23/2017 Lecture #16 2

https://api.socrative.com/rc/icJVVC
https://api.socrative.com/rc/iez85z

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Accessing the TLB

• MMU uses the VPN portion of the virtual address to access the TLB:

TLB tag (TLBT) TLB index (TLBI)

0p-1pn-1

VPO

VPN

p+t-1p+t

PTEtagv

…

PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet T-1

T = 2t sets

TLBI selects the set

TLBT matches tag of
line within set

10/23/2017 Lecture #16 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Translating with a k-level Page Table

Page table
base register

(PTBR)

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1

PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

Level 1
page table

Level 2
page table

Level k
page table

10/23/2017 Lecture #16 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel Core i7 Memory System

L1 d-cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way

(shared by all cores)

Main memory

Registers

L1 d-TLB
64 entries, 4-way

L1 i-TLB
128 entries, 4-way

L2 unified TLB
512 entries, 4-way

L1 i-cache
32 KB, 8-way

MMU
(addr translation)

Instruction
fetch

Core x4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect
4 links @ 25.6 GB/s each

To other
cores

To I/O
bridge

10/23/2017 Lecture #16 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cute Trick for Speeding Up L1 Access

• Observation
• Bits that determine CI identical in virtual and physical address

• Can index into cache while address translation taking place

• Generally we hit in TLB, so PPN bits (CT bits) available next

• “Virtually indexed, physically tagged”

• Cache carefully sized to make this possible

Physical

address

(PA)

CT CO

40 6

CI

6

Virtual

address

(VA)
VPN VPO

36 12

PPOPPN

Address

Translation

No

Change

CI

L1 Cache

CT Tag Check

10/23/2017 Lecture #16 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Address Space of a Linux
Process

Kernel code and data

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process
virtual
memory

brk

Physical memoryIdentical for
each process

Process-specific data
structs (ptables,

task and mm structs,
kernel stack)

Kernel
virtual
memory

0x00400000

Different for
each process

10/23/2017 Lecture #16 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

vm_next

vm_next

Linux Organizes VM as Collection of
“Areas”

task_struct
mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

• pgd:
• Page global directory address
• Points to L1 page table

• vm_prot:
• Read/write permissions for

this area

• vm_flags
• Pages shared with other

processes or private to this
process

vm_flags

vm_flags

vm_flags

10/23/2017 Lecture #16 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linux Page Fault Handling

read
1

write

2

read

3

vm_next

vm_next

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries

vm_flags

vm_flags

vm_flags

Segmentation fault:
accessing a non-existing page

Normal page fault

Protection exception:
e.g., violating permission by
writing to a read-only page (Linux
reports as Segmentation fault)

10/23/2017 Lecture #16 9

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Mapping
• VM areas initialized by associating them with disk objects.

• Process is known as memory mapping.

• Area can be backed by (i.e., get its initial values from) :
• Regular file on disk (e.g., an executable object file)

• Initial page bytes come from a section of a file

• Anonymous file (e.g., nothing)

• First fault will allocate a physical page full of 0's (demand-zero page)

• Once the page is written to (dirtied), it is like any other page

• Dirty pages are copied back and forth between memory and a special swap
file.

10/23/2017 Lecture #16 10

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sharing Revisited: Shared Objects

• Process 1 maps the
shared object.

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

10/23/2017 Lecture #16 11

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sharing Revisited: Shared Objects

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory  Process 2 maps the

shared object.

 Notice how the virtual
addresses can be
different.

10/23/2017 Lecture #16 12

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sharing Revisited:
Private Copy-on-write (COW) Objects

• Two processes mapping a
private copy-on-write (COW)
object.

• Area flagged as private
copy-on-write

• PTEs in private areas are
flagged as read-only

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Private
copy-on-write
area

10/23/2017 Lecture #16 13

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sharing Revisited:
Private Copy-on-write (COW) Objects

• Instruction writing to private
page triggers protection fault.

• Handler creates new R/W
page.

• Instruction restarts upon
handler return.

• Copying deferred as long as
possible!

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Copy-on-write

Write to private
copy-on-write

page

10/23/2017 Lecture #16 14

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The fork Function Revisited

• VM and memory mapping explain how fork provides private address space
for each process.

• To create virtual address for new new process
• Create exact copies of current mm_struct, vm_area_struct, and page tables.

• Flag each page in both processes as read-only

• Flag each vm_area_struct in both processes as private COW

• On return, each process has exact copy of virtual memory

• Subsequent writes create new pages using COW mechanism.

10/23/2017 Lecture #16 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The execve Function Revisited
• To load and run a new program
a.out in the current process using
execve:

• Free vm_area_struct’s and
page tables for old areas

• Create vm_area_struct’s and
page tables for new areas
• Programs and initialized data backed

by object files.
• .bss and stack backed by

anonymous files .

• Set PC to entry point in .text
• Linux will fault in code and data pages

as needed.

Memory mapped region
for shared libraries

Runtime heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Private, demand-zero

libc.so

.data

.text
Shared, file-backed

Private, demand-zero

Private, demand-zero

Private, file-backed

a.out

.data

.text

10/23/2017 Lecture #16 16

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

User-Level Memory Mapping
void *mmap(void *start, int len,

int prot, int flags, int fd, int offset)

• Map len bytes starting at offset offset of the file specified by file
description fd, preferably at address start
• start: may be 0 for “pick an address”

• prot: PROT_READ, PROT_WRITE, ...

• flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

• Return a pointer to start of mapped area (may not be start)

10/23/2017 Lecture #16 17

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

User-Level Memory Mapping
void *mmap(void *start, int len,

int prot, int flags, int fd, int offset)

len bytes

start

(or address
chosen by kernel)

Process virtual memoryDisk file specified by
file descriptor fd

len bytes

offset

(bytes)

0 0

10/23/2017 Lecture #16 18

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Using mmap to Copy Files

/* mmapcopy driver */
int main(int argc, char **argv)
{

struct stat stat;
int fd;

/* Check for required cmd line arg */
if (argc != 2) {

printf("usage: %s <filename>\n",
argv[0]);

exit(0);
}

/* Copy input file to stdout */
fd = Open(argv[1], O_RDONLY, 0);
Fstat(fd, &stat);
mmapcopy(fd, stat.st_size);
exit(0);

}

 Copying a file to stdout without transferring data to user space .

#include "csapp.h"

void mmapcopy(int fd, int size)
{

/* Ptr to memory mapped area */
char *bufp;

bufp = Mmap(NULL, size,
PROT_READ,
MAP_PRIVATE,
fd, 0);

Write(1, bufp, size);
return;

}

mmapcopy.c mmapcopy.c

10/23/2017 Lecture #16 19

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: User-Level Memory Allocation

• Basic concepts

• Implicit free lists

• Explicit free lists

• Segregated free lists

10/23/2017 Lecture #16 20

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation
• Programmers use dynamic memory allocators

(such as malloc) to acquire VM at run time.

• For data structures whose size is only known at
runtime.

• Dynamic memory allocators manage an area of
process virtual memory known as the heap.

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Top of heap
(brk ptr)

Application

Dynamic Memory Allocator

Heap

• Allocator maintains heap as collection of variable
sized blocks, which are either allocated or free

• Types of allocators

• Explicit allocator: application allocates and
frees space
• E.g., malloc and free in C

• Implicit allocator: application allocates, but
does not free space
• E.g. in Java, ML, and Lisp

10/23/2017 Lecture #16 21

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The malloc Package

#include <stdlib.h>

void *malloc(size_t size)

• Successful:
• Returns a pointer to a memory block of at least size bytes

aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

• If size == 0, returns NULL

• Unsuccessful: returns NULL (0) and sets errno

void free(void *p)

• Returns the block pointed at by p to pool of available memory

• p must come from a previous call to malloc or realloc

Other functions

• calloc: Version of malloc that initializes allocated block to zero.

• realloc: Changes the size of a previously allocated block.

• sbrk: Used internally by allocators to grow or shrink the heap
10/23/2017 Lecture #16 22

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

malloc Example

#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;

/* Return allocated block to the heap */
free(p);

}

10/23/2017 Lecture #16 23

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

• Assumption
• Memory is word addressed.

• Words are int-sized.
10/23/2017 Lecture #16 24

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constraints

• Applications
• Can issue arbitrary sequence of malloc and free requests

• free request must be to a malloc’d block

• Allocators
• Can’t control number or size of allocated blocks

• Must respond immediately to malloc requests
• i.e., can’t reorder or buffer requests

• Must allocate blocks from free memory
• i.e., can only place allocated blocks in free memory

• Must align blocks so they satisfy all alignment requirements
• 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes

• Can manipulate and modify only free memory

• Can’t move the allocated blocks once they are malloc’d
• i.e., compaction is not allowed

10/23/2017 Lecture #16 25

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Goal: Throughput

• Given some sequence of malloc and free requests:
• R0, R1, ..., Rk, ... , Rn-1

• Goals: maximize throughput and peak memory utilization
• These goals are often conflicting

• Throughput:
• Number of completed requests per unit time

• Example:
• 5,000 malloc calls and 5,000 free calls in 10 seconds

• Throughput is 1,000 operations/second

10/23/2017 Lecture #16 26

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Goal: Peak Memory Utilization
• Given some sequence of malloc and free requests:

• R0, R1, ..., Rk, ... , Rn-1

• Def: Aggregate payload Pk

• malloc(p) results in a block with a payload of p bytes

• After request Rk completed, the aggregate payload Pk is the sum of currently allocated payloads

• Def: Current heap size Hk

• Assume Hk is monotonically nondecreasing
• i.e., heap only grows when allocator uses sbrk

• Def: Peak memory utilization after k+1 requests
• Uk = (maxi<=k Pi) / Hk

• Poor memory utilization caused by fragmentation: internal fragmentation and
external fragmentation

10/23/2017 Lecture #16 27

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Internal Fragmentation

• For a given block, internal fragmentation occurs if payload is smaller than
block size

• Caused by
• Overhead of maintaining heap data structures

• Padding for alignment purposes

• Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

• Depends only on the pattern of previous requests
• Thus, easy to measure

Payload Internal
fragmentation

Block

Internal
fragmentation

10/23/2017 Lecture #16 28

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

External Fragmentation

• Occurs when there is enough aggregate heap memory, but no single free block
is large enough

• Depends on the pattern of future requests
• Thus, difficult to measure

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6)
Oops! (what would happen now?)

10/23/2017 Lecture #16 29

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation Issues

• How do we know how much memory to free given just a pointer?

• How do we keep track of the free blocks?

• What do we do with the extra space when allocating a structure that is smaller
than the free block it is placed in?

• How do we pick a block to use for allocation -- many might fit?

• How do we reinsert freed block?

10/23/2017 Lecture #16 30

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Knowing How Much to Free

• Standard method
• Keep the length of a block in the word preceding the block.

• This word is often called the header field or header

• Requires an extra word for every allocated block

p0 = malloc(4)

p0

free(p0)

block size payload

5

10/23/2017 Lecture #16 31

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Keeping Track of Free Blocks

• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list
• Different free lists for different size classes

• Method 4: Blocks sorted by size
• Can use a balanced tree (e.g. Red-Black tree) with pointers within each free block, and the

length used as a key

5 4 26

5 4 26

10/23/2017 Lecture #16 32

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

• Basic concepts

• Implicit free lists

• Explicit free lists

• Segregated free lists

10/23/2017 Lecture #16 33

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Method 1: Implicit List

• For each block we need both size and allocation status
• Could store this information in two words: wasteful!

• Standard trick
• If blocks are aligned, some low-order address bits are always 0

• Instead of storing an always-0 bit, use it as a allocated/free flag

• When reading size word, must mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

10/23/2017 Lecture #16 34

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Detailed Implicit Free List Example

Start
of

heap

Double-word
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

10/23/2017 Lecture #16 35

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Finding a Free Block
• First fit:

• Search list from beginning, choose first free block that fits:

• Can take linear time in total number of blocks (allocated and free)

• In practice it can cause “splinters” at beginning of list

• Next fit:
• Like first fit, but search list starting where previous search finished

• Should often be faster than first fit: avoids re-scanning unhelpful blocks

• Some research suggests that fragmentation is worse

• Best fit:
• Search the list, choose the best free block: fits, with fewest bytes left over

• Keeps fragments small—usually improves memory utilization

• Will typically run slower than first fit

p = start;

while ((p < end) && \\ not passed end

((*p & 1) || \\ already allocated

(*p <= len))) \\ too small

p = p + (*p & -2); \\ goto next block (word addressed)

10/23/2017 Lecture #16 36

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Allocating in Free Block

• Allocating in a free block: splitting
• Since allocated space might be smaller than free space, we might want to split the block

void addblock(ptr p, int len) {

int newsize = ((len + 1) >> 1) << 1; // round up to even

int oldsize = *p & -2; // mask out low bit

*p = newsize | 1; // set new length

if (newsize < oldsize)

*(p+newsize) = oldsize - newsize; // set length in remaining

} // part of block

4 4 26

4 24

p

24

addblock(p, 4)

10/23/2017 Lecture #16 37

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Freeing a Block

• Simplest implementation:
• Need only clear the “allocated” flag

void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation”

4 24 24

free(p) p

4 4 24 2

malloc(5)
Oops!

There is enough free space, but the allocator won’t be able to find it

10/23/2017 Lecture #16 38

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Coalescing

• Join (coalesce) with next/previous blocks, if they are free

• Coalescing with next block

• But how do we coalesce with previous block?

void free_block(ptr p) {

*p = *p & -2; // clear allocated flag

next = p + *p; // find next block

if ((*next & 1) == 0)

*p = *p + *next; // add to this block if

} // not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

10/23/2017 Lecture #16 39

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Bidirectional Coalescing
• Boundary tags [Knuth73]

• Replicate size/allocated word at “bottom” (end) of free blocks

• Allows us to traverse the “list” backwards, but requires extra space

• Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

10/23/2017 Lecture #16 40

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

10/23/2017 Lecture #16 41

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 1

Constant Time Coalescing (Case 1)

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

10/23/2017 Lecture #16 42

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant Time Coalescing (Case 2)

m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 1

m1 1
n+m2 0

n+m2 0

10/23/2017 Lecture #16 43

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 0

Constant Time Coalescing (Case 3)

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

10/23/2017 Lecture #16 44

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 0

Constant Time Coalescing (Case 4)

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

10/23/2017 Lecture #16 45

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disadvantages of Boundary Tags

• Internal fragmentation

• Can it be optimized?
• Which blocks need the footer tag? Only free blocks

• What does that mean? Use another free bits to indicate free/allocated blocks

10/23/2017 Lecture #16 46

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Key Allocator Policies
• Placement policy:

• First-fit, next-fit, best-fit, etc.

• Trades off lower throughput for less fragmentation

• Interesting observation: segregated free lists (next lecture) approximate a best fit placement
policy without having to search entire free list

• Splitting policy:
• When do we go ahead and split free blocks?

• How much internal fragmentation are we willing to tolerate?

• Coalescing policy:
• Immediate coalescing: coalesce each time free is called

• Deferred coalescing: try to improve performance of free by deferring coalescing until needed.
Examples:
• Coalesce as you scan the free list for malloc

• Coalesce when the amount of external fragmentation reaches some threshold
10/23/2017 Lecture #16 47

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit Lists: Summary

• Implementation: very simple

• Allocate cost:
• linear time worst case

• Free cost:
• constant time worst case

▪ even with coalescing

• Memory usage:
• will depend on placement policy

• First-fit, next-fit or best-fit

• Not used in practice for malloc/free because of linear-time allocation
▪ used in many special purpose applications

• However, the concepts of splitting and boundary tag coalescing are general to all allocators

10/23/2017 Lecture #16 48

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

• Basic concepts

• Implicit free lists

• Explicit free lists

• Segregated free lists

10/23/2017 Lecture #16 49

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Keeping Track of Free Blocks
• Method 1: Implicit free list using length—links all blocks

• Method 2: Explicit free list among the free blocks using pointers

• Method 3: Segregated free list
• Different free lists for different size classes

• Method 4: Blocks sorted by size
• Can use a balanced tree (e.g. Red-Black tree) with pointers within each free block, and the length

used as a key

5 4 26

5 4 26

10/23/2017 Lecture #16 50

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Free Lists

• Maintain list(s) of free blocks, not all blocks
• The “next” free block could be anywhere

• So we need to store forward/back pointers, not just sizes

• Still need boundary tags for coalescing

• Luckily we track only free blocks, so we can use payload area

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

10/23/2017 Lecture #16 51

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Free Lists

• Logically:

• Physically: blocks can be in any order

A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C

10/23/2017 Lecture #16 52

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

10/23/2017 Lecture #16 53

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With Explicit Free Lists

• Insertion policy: Where in the free list do you put a newly freed block?

• LIFO (last-in-first-out) policy

• Insert freed block at the beginning of the free list

• Pro: simple and constant time

• Con: studies suggest fragmentation is worse than address ordered

• Address-ordered policy

• Insert freed blocks so that free list blocks are always in address order:

addr(prev) < addr(curr) < addr(next)

• Con: requires search

• Pro: studies suggest fragmentation is lower than LIFO

10/23/2017 Lecture #16 54

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 1)

• Insert the freed block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

10/23/2017 Lecture #16 55

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 2)

• Splice out successor block, coalesce both memory blocks and insert the new block at
the root of the list

free()

Root

Before

Root

After

conceptual graphic

10/23/2017 Lecture #16 56

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 3)

• Splice out predecessor block, coalesce both memory blocks, and insert the new block
at the root of the list

free()

Root

Root

Before

After

conceptual graphic

10/23/2017 Lecture #16 57

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 4)

• Splice out predecessor and successor blocks, coalesce all 3 memory blocks and insert
the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic

10/23/2017 Lecture #16 58

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit List Summary

• Comparison to implicit list:
• Allocate is linear time in number of free blocks instead of all blocks

• Much faster when most of the memory is full

• Slightly more complicated allocate and free since needs to splice blocks in and out of the list

• Some extra space for the links (2 extra words needed for each block)
• Does this increase internal fragmentation?

• Most common use of linked lists is in conjunction with segregated free lists
• Keep multiple linked lists of different size classes, or possibly for different types of objects

10/23/2017 Lecture #16 59

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

• Basic concepts

• Implicit free lists

• Explicit free lists

• Segregated free lists

10/23/2017 Lecture #16 60

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Segregated List (Seglist) Allocators

• Each size class of blocks has its own free list

• Often have separate classes for each small size

• For larger sizes: One class for each two-power size

1-2

3

4

5-8

9-inf

10/23/2017 Lecture #16 61

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Seglist Allocator

• Given an array of free lists, each one for some size class

• To allocate a block of size n:
• Search appropriate free list for block of size m > n

• If an appropriate block is found:
• Split block and place fragment on appropriate list (optional)

• If no block is found, try next larger class

• Repeat until block is found

• If no block is found:
• Request additional heap memory from OS (using sbrk())

• Allocate block of n bytes from this new memory

• Place remainder as a single free block in largest size class.

10/23/2017 Lecture #16 62

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Seglist Allocator (cont.)

• To free a block:
• Coalesce and place on appropriate list

• Advantages of seglist allocators
• Higher throughput

• log time for power-of-two size classes

• Better memory utilization

• First-fit search of segregated free list approximates a best-fit search of entire heap.

• Extreme case: Giving each block its own size class is equivalent to best-fit.

10/23/2017 Lecture #16 63

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

• Basic concepts

• Implicit free lists

• Explicit free lists

• Segregated free lists

10/23/2017 Lecture #16 64

Lecture 17:
“Multicore Cache Coherence”

October 25, 2017

18-600 Foundations of Computer Systems

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

10/23/2017 Lecture #16 65

