18-600 Foundations of Computer Systems

Lecture 17:
“Multicore Cache Coherence”

John P. Shen Prevalence of multicore processors:
= 2006: 75% for desktops, 85% for servers
October 25, 2017 = 2007: 90% for desktops and mobiles, 100%

for servers

= Today: 100% multicore processors with core
counts ranging from 2 to 8 cores for
desktops and mobiles, 8+ cores for servers

» Recommended Reference:

* “Parallel Computer Organization and Design,” by Michel Dubois, «) Electrical & Com uter

Murali Annavaram, Per Stenstrom, Chapters 5 and 7, 2012. E N G I N E E RI N G

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 1




18-600 Foundations of Computer Systems

Lecture 17:
“Multicore Cache Coherence”

A. Multicore Processors
= The Case for Multicores
" Programming for Multicores
= The Cache Coherence Problem
B. Cache Coherence Protocol Categories
= Write Update
= Write Invalidate
C. Specific Bus-Based Snoopy Protocols

= \/| & MI Protocols ) Electrical & Computer
= MSI, MESI, MOESI Protocols '( ENG|NEER|NG

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 2




The Case for Multicore Processors (MCP)

Multicore Processor package

m Stalled Scaling of Single- | &2%%—
Regs
Core Performance
. . ! L1 _ L1 |
B Expected continuation ! [g-cache| |icache| :

Cored
Regs

i L1 L1 |

| d-cache| |i-cache| !

of Moore’s Law

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b
I L2 unified
I |
|
|
|
|
|
|
|
|
|
|
|
|
|
L

L2 unified
cache cache
®m Throughput i/ m0—s! =7
Performance for Server S rdoache
WO rkIOa dS (shared by all cores)
Main memory
10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 3




~2004

7
10 . Transistors
i Thousands
1055 ( )
10° ¢ Single-Thread
f Performance
S INT
10° | (SpeciNT)
: Frequency
- (MHz)
103 3
2: Typical Power
10 3 (Watts)
1 | Number
10 3 of Cores
IDG

19?5 1980 1985 1990 1995 2000 2005 2010 2015

Data collected by M. Horowitz, F. Lab e, 0. Shacham, K. un, L. Hammond, ALLen

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 4




Processor Development Until ~2004

B Moore’s Law: transistor count doubles every 18 months
= Used to improve processor performance by 2x every 18 months
= Single core, binary compatible to previous generations

m Contributors to performance improvements
= More ILP through OOO superscalar techniques
= Wider issue, better branch prediction, better instruction scheduling, ...
= Better memory hierarchies, faster and larger
= Clock frequency improvements with deeper pipelines

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University s




Problems with Single Core Performance

m Moore’s Law is still doing well (for the foreseeable future...)

m The Power Wall o
= Power=C_ *V 2’ * Freq den — CL VDDf
m Cannot scale transistor count and frequency without reducing V 4
m Unfortunately, voltage scaling has essentially stalled
m The Complexity Wall
m Designing and verifying increasingly large OOO cores is very expensive

= 100s of engineers for 3-5 years
m Caches are easier to design but can only help so much...

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University ¢




[Ed Grochowski, 2004]

Power & Latency (Single-Thread) Performance

< For comparison 30
" Factor out contributions due to process o5 Pentium 4 (PSC)/
technology g Pentium 4 (me/
= Keep contributions due to 2 20
microarchitecture design g power = perf (1-74/
= Normalize to i486™ processor 215 /
: : : ©
< Relative to i486™ Pentium® 4 (Wmt) T 10 |
. ad Pentium Prg
Processor is /
= 6x faster (2X IPC at 3X frequency) S 6 S entium
= 23x higher power 0
= Spending 4 units of power for every 1 2 4 6 8
unit of scalar performance Relative Performance
10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 7




From [LP to TLP

m So far, we run single process, single thread

m Extracting ILP from sequential instruction stream

m Single-thread performance can't scale indefinitely!
= Limited ILP within each thread
= Power consumption & complexity of superscalar cores

m We will now pursue Thread-Level Parallelism (TLP)
m To increase utilization and tolerate latency in single core
= To exploit multiple cores

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University




Thread-Level Parallelism

m Instruction-level parallelism (ILP)

m Reaps performance by finding independent work in a single thread
m Thread-level parallelism (TLP)

m Reaps performance by finding independent work across multiple threads
m Historically, requires explicitly parallel workloads

m Originate from mainframe time-sharing workloads

= Even then, CPU speed >>1/0 speed

= Had to overlap I/O latency with “something else” for the CPU to do

= Hence, operating system would schedule other tasks/processes/threads
that were “time-sharing” the CPU

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University ¢




Thread-Leve

CPU1

Disk access

Parallelism

CPU1

Think time

Single user:

CPU1

Time-shared:

CPU1

Disk access |

| CPU2

Disk access |

|
CPU3 |

Think time

| CPU2

Disk access |

Increase in
number of
active threads
reduces
effectiveness
of spatial
locality by
increasing
working set.

Think time

CPU3 |

Time dilation of each thread reduces
effectiveness of temporal locality.

m Reduces effectiveness of temporal and spatial locality

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 10




Thread-Level Parallelism

m [nitially motivated by time-sharing of single CPU
= OS, applications written to be multithreaded

m Quickly led to adoption of multiple CPUs in a single system
= Enabled scalable product line from entry-level single-CPU systems to high-end
multiple-CPU systems
= Same applications, OS, run seamlessly
= Adding CPUs increases throughput (performance)

m More recently:
= Multiple threads per processor core
= Coarse-grained multithreading (aka “switch-on-event”)
= Simultaneous multithreading (aka “hyper-threading”)
= Multiple processor cores per die
= Chip multiprocessors (CMP) or “Muticore processors” (MCP)
= Chip multithreading (CMT)

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 11




Recall: Processes and Software Threads

m Process: an instance of a program executing in a system
= OS supports concurrent execution of multiple processes
m Each process has its own address space, set of registers, and PC

= Two different processes can partially share their address spaces to
communicate

m Thread: an independent control stream within a process
m A process can have one or more threads
= Private state: PC, registers (int, FP), stack, thread-local storage
= Shared state: heap, address space (VM structures)

m A “parallel program” is one process but multiple threads

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 12




Reminder: Classic OS Context Switch

m OS context-switch
m Timer interrupt stops a program mid-execution (precise)
m OS saves the context of the stopped thread
= PC, GPRs, and more
= Shared state such as physical pages are not saved
m OS restores the context of a previously stopped thread (all except PC)
m OS uses a “return from exception” to jump to the restarting PC
= The restored thread has no idea it was interrupted, removed, later restarted
m Take a few hundred cycles per switch (why?)
= Amortized over the execution “guantum”

m What latencies can you hide using OS context switching?
m How much faster would a user-level thread switch be?

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 13




Multithreaded Cores (old “Multiprogramming”)

m Basic idea:

m CPU resources are expensive and should not be idle

m 1960’s: Virtual memory and multiprogramming

= Virtual memory/multiprogramming invented to tolerate latency to
secondary storage (disk/tape/etc.)

m Processor-disk speed mismatch:

= microseconds to tens of milliseconds (1:10,000 or more)

= OS context switch used to bring in other useful work while waiting for page
fault or explicit file read/write accesses

m Cost of context switch must be much less than 1/O latency (easy)

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 14




Multithreaded Cores (new “Multithreading”)

m 1990’s: Memory wall and multithreading

m Processor-DRAM speed mismatch:
= nanosecond to fractions of a microsecond (1:500)

m H/W task switch used to bring in other useful work while
waiting for cache miss

m Cost of context switch must be much less than cache miss
latency

m Very attractive for applications with abundant thread-level

parallelism
m Commercial multi-user (transaction processing) workloads

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 15




ince ~2005

Transistors < |
(Thousands)

Single-Thread
Performance
(SpecINT)

Frequency
(MHZz)

Typical Power < |
(Watts)

Number
of Cores < |

Data ¢

i
Le

19?5 1980 1985 1990 1995 2000 2005 2010 2015

ected by M. Horowitz, F. Labonte, O. Shacham, K. tun, L. Hammond, Batten

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 16




The Multicore Alternative

m Use Moore’s law to place more cores per chip
= Potentially 2x cores/chip with each CMOS generation
= Without significantly compromising clock frequency
= Known as Multi-Core Processors (MCP) or Chip Multiprocessors (CMP)

m The good news
s Continued scaling of chip-level peak (throughput) performance
= Mitigate the undesirable superscalar power scaling (“wrong side of the square law”)
m Facilitate design and verification, and product differentiation

m The bad news
s Require multithreaded workloads: multiple programs or parallel programs

m Require parallelizing single applications into parallel programs
m Power is still an issue as transistors shrink due to leakage current

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 17




Big OOQ Superscalar vs. Multicore Processor

21 mm

] 21 mm -
: A
Instruction
External . Cache
Instruction
Interface Fetch (32 KB)
TLB )
5
K Inst. Decode & Data L0
S Rename Cache ;
L (32 KB) <
o3 & 21
mm
2 S
S Reorder Buffer, =
8 Instruction Queues, = o
and Out-of-Order Logic | > )
5| 5
€
Floating Point
Unit
Y

External
Interface

21 mm
|-EacF|e #1 EQRE |-EacF|e #E E§R'}
Processor | Processor

#1 #2
[7)]
o
©
o
°3 I'D-Cache #1 (8K) | D-Cache #2 (8K)
© 'D-Cache #3 (8K) | D-Cache #4 (8K)
S
Q
o
O

Processor | Processor
#3 #4
["Cache #3 (8K) | I-Cache #4 (8K)

L2 Communication Crossbar

On-Chip L2 Cache (256KB)

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 18




[Ed Grochowski, 2004]

Power & Throughput (Multi-Thread) Performance

30
<« Assume a large-scale multicore e Pentium4(Psc)/
processor (MCP) with potentially Pentium4(me
many cores 2 20
g power = perf (1.7%
< Replication of cores results in Q 15 <
. ) = calar/Latency
nearly proportional increases to 5 Performance/ Jg&gf%gﬁléte
b th th h t f x 10 Pentium Prg Pentium M
0 roughput performance nti
and power (hopefully). 51 bentium =~ 1.0)
1186 power = perf =4/ ?
O- ;
0 2 4 6 8
Relative Performance

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 19




Programming for Multicore Processors (MCP)

» Programmers must write parallel programs using threads/processes.
» Spread the workload across multiple cores at run time.
» OS will map threads/processes to cores at run time.

Assigning Threads to Cores:

» Each thread/process has an affinity mask

» Affinity mask specifies what cores the thread is allowed to run on.
» Different threads can have different masks

» Affinities are inherited across fork()

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 20




Shared-Memory Multiprocessors or Multicores

m All processor cores have access to unified physical memory
m They can communicate via the shared memory using loads and stores

m Advantages
m Supports multi-threading (TLP) using multiple cores
m Requires relatively simple changes to the OS for scheduling
m Threads within an app can communicate implicitly without using OS
= Simpler to code for and lower overhead
m App development: first focus on correctness, then on performance

m Disadvantages
= Implicit communication is hard to optimize
m Synchronization can get tricky
m Higher hardware complexity for cache management

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 21




Caches for Multicores (or Multicore Processors)

m Caches are (equally) helpful with multicores
m Reduce access latency, reduce bandwidth requirements
m For both private and shared data across cores

m Advantages of private caches:
m They are closer to core, so faster access
m Reduces contention to cache by cores
m Advantages of shared cache:
m Threads on different cores can share the same cache data
m More cache space available if a single (or a few) high-performance
thread runs on the system
m But multiple private caches introduce the two problems of

m Cache Coherence (cover in this lecture)
m Memory Consistency (beyond this course)

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 22




The Cache Coherence Problem

« Since we have private caches:

How to keep the data consistent across caches?

« Each core should perceive the memory as a monolithic array, shared
by all the cores

Core 1 @ @ Core 4

One or more
levels of
cache

One or more
levels of
cache

One or more
levels of
cache

One or more
levels of
cache

Main memory

multi-core chip

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 23




The Cache Coherence Problem
Suppose variable x initially contains 15213

Core 1 @ @ Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

Main memory

x=15213

multi-core chip

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 24




The Cache Coherence Problem
Core 1 reads X

Core l Core 2 Core 3 Core 4
One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

x=15213

Main memory

x=15213

multi-core chip

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 2




The Cache Coherence Problem
Core 2 reads X

Core 1 Core 2 Core 3 Core 4
One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

x=15213 x=15213

Main memory

x=15213

multi-core chip

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 26




The Cache Coherence Problem
Core 1 writes to X, setting it to 21660

Core 1 @ @ Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache
X=21660 x=15213
| multi-core chip
_ assuming
Main memory write-through
x=21660 } caches

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 27




The Cache Coherence Problem
Core 2 attempts to read x... gets a stale copy

Core 1 @ @ Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

x=21660 x=15213

Main memory

Xx=21660

multi-core chip

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 2




Solutions for Cache Coherence Problem

* This is a general problem with shared memory
multiprocessors and multicores with private caches

 Coherence Solution:

« Use HW to ensure that loads from all cores will return the
value of the latest store to that memory location

 Use metadata to track the state for cached data

* There exist two major categories with many specific
coherence protocols.

Carnegie Mellon University 20




Bus Based (“Snooping”) Multicore Processor

Core l Core 2 Core 3 Core 4
One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

multi-core chip

Vi .
ain memory Inter-core bus

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 30




Invalidation Protocol with Snooping

 Invalidation:
If a core writes to a data item, all other copies of this

data item In other caches are invalidated

* Snooping:
All cores continuously “snoop” (monitor) the bus
connecting the cores.

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 31




Invalidation Based Cache Coherence Protocol
Revisited: Cores 1 and 2 have both read x

Core 1 @ @ Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

x=15213 x=15213

Main memory

x=15213

multi-core chip

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 32




Invalidation Based Cache Coherence Protocol
Core 1 writes to X, setting it to 21660

Core 1 Core 2 Core 3 Core 4
One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache
x=21660 X= 3
L_> P -
sends INVALIDATED
invalidation \multi-core chip
request .
Main memory assuming

x=21660 Inter-core bus

} write-through
caches

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 33




Invalidation Based Cache Coherence Protocol
After invalidation:

Core 1 @ @ Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

Xx=21660

Main memory

Xx=21660

multi-core chip

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 34




Invalidation Based Cache Coherence Protoco
Core 2 reads x. Cache misses, and loads the new copy.

Core 1 @ @ Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

Xx=21660 Xx=21660

Main memory

Xx=21660

multi-core chip

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 3s




Update Based Cache Coherence Protoco
Core 1 writes x=21660:

Core 1 @ @ Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache
x=21660 xX=21660
( UPDATED
broadcasts multi-core chip
Updated - assuming
value Main memory ) :
X=21660 } write-through inter-core bus
caches

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 3




Invalidation vs. Update Protocols

* Multiple writes to the same location
— Invalidation: only the first time

— update: must broadcast each write
(which includes new variable value)

* Invalidation generally performs better:
It generates less bus traffic

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 37




Cache Coherence

m Informally, with coherent caches: accesses to a memory
location appear to occur simultaneously in all copies of that
memory location
“copies” = caches + memory

m Cache coherence suggests an absolute time scale -- this is
not necessary
m What is required is the "appearance" of coherence... not

absolute coherence

m E.g. temporary incoherence between memory and a write-back
cache may be OK.

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 33




Write Update vs.
Write Invalidate

m Coherent caches with
Shared Memory

m All cores see the effects
of others’ writes

® How/when writes are
propagated

m Determined by
coherence protocol

(a) No coherence protocol: stale copy of A at P2

A:O‘l
[

A

A:l
|

(b) Update protocol writes through to both copies of A

A:OA/
[

A
7] |

N———

(c) Invalidate protocol eliminates stale remote copy

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 3




Bus-Based Snoopy Cache Coherence

m All requests broadcast on the bus
m All processors (or private caches) and memory snoop and respond

m Cache blocks writeable at one processor or read-only at several
m Single-writer protocol

m Snoops that hit dirty (i.e. modified) lines?
= Flush modified data out of cache
m Either write back to memory, then satisfy remote miss from memory, or
= Provide dirty (modified) data directly to requestor
= Big problem in shared-memory multicore processor systems

= Dirty/coherence/sharing misses

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 40




% Bus-Based Protocols Viain Memory

Bus

m Protocol consists of
states and actions Bus Actions
(state transitions)

m Actions can be

Cache I

invoked from Controller A State | Tags Cache Data
processor or bus to |
Processor Actions
the cache controller p @ N
m Coherence based on
per cache line (block) Processor
_ J

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University




Minimal Coherence Protocol (Write-Back Caches)

’ ! i \ Evict or

m Blocks are always private or

exclusive
o Local
m State transitions: Read or
- Local
. !_ocal. read: | >M' fet_Ch' Write Local Read or Remote
invalidate other copies Local Write Read or

= Remote write: M->I, write
back data

= Local write: I->M, fetch, Remote
invalidate other copies rite
m Evict: M->|, write back data
= Remote read: M->I, write Cache I
back data -mm
B

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 42




Invalidate Protocol Optimization

m Observation: data often read shared by multiple CPUs
m Add S (shared) state to protocol: MSI

m State transitions:

Local read: |->S, fetch shared

Remote read: M->I, write back data

Remote write: M->I, write back data

Local write: [->M, fetch modified; S->M, invalidate other copies

10/25/2017 (© J.P. Shen) 18-600 Lecture #17

Carnegie Mellon University 43




MSI Protocol (with Write Back Cache)

Action and Next State
Current Processor Processor Eviction Cache Cache Cache
State Read Write Read Read&M Upgrade
I Cache Read Cache Read&M No Action No Action No Action
Acquire Acquire Copy — 1 — 1 — 1
Copy — M
— S
S No Action Cache Upgrade No Action No Action Invalidate Invalidate
— S — M — 1 — S Frame Frame
— 1 — 1
M No Action No Action Cache Memory Invalidate
—M —>M Write inhibit; Frame;
back Supply Memory
— 1 data; inhibit;
— S Supply data;
— 1

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 4




MSI Example

Thread Event Bus Action | Data From | Global State Local

States:

Co C1 C2
0. Initially: <0,0,0,1> I | I I
1. TO read— CR Memory <1,0,0,1> S | I I
2. TO write— CU <1,0,0,0> M| I I
3. T2 read— CR Co <1,0,1,1> S | I S
4. T1 write— CRM Memory <0,1,0,0> I M| 1

m If lineis in no other cache

m Read, modify, Write requires 2 bus transactions
m Optimization: add Exclusive state

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 4




MSI: A Coherence Protocol (Write Back Caches)

Each cache line has a tag M: Modified

S: Shared
Address tag [ Invalid
state
bits
P, reads
Other processor reads or writes
P, writes back Write miss
Other processor
intent to write
Read ‘
miss @
Read by any Other processor Cache state in
processor Intent to write processor P,

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 46




MSI Coherence Protocol Example with 2 Cores

P, reads
P, writes
P, reads
P, writes
P, reads
P, writes
P, writes
P, writes

P P, reads
1 P, reads, _ M or writes
P, writes back_.— 7" _ _
P Write miss
s \S{\‘e
pd & P, intent to write
Read Q"
Mmiss
— — I
P, intent to write
P P, reads
2 P, reads, )
: - or writes
P, writes back.—-— M
o - Write miss
g R
e 7~ e) . .
/ X P, intent to write
Read_ SRR P
miss T

P, intent to write

0

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 47




Invalidate Protocol Optimizations

m Observation: data can be write-private (e.g. stack frame)
= Avoid invalidate messages in that case
= Add E (exclusive) state to protocol: MESI

m State transitions:

m Local read: I->E if only copy, I->S if other copies exist
m Local write: E->M silently, S->M, invalidate other copies

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 43




MESI Protocol (most common in industry)

m Variation used in many Intel processors
m 4-State Protocol
= Modified: <1,0,0...0>
m Exclusive: <1,0,0,...,1>
mShared: <1,X)X,...,1>
m Invalid: <0, X, X,...X>
m Bus/Processor Actions
= Same as MS|
m Adds shared signal to indicate if other caches have a copy

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 49




MESI Protocol

Action and Next State
Current Processor Processor Eviction Cache Cache Cache
State Read Write Read Read&M Upgrade
Cache
Read
It no _ Cache Read&M No Action No Action No Action
| sharers:
— M — | — | — |
— E
If sharers:
— S
No Action Cache Upgrade No Action Responq No Action No Action
S Shared:
— S — M — | — 1 — 1
— S
No Action No Action No Action Respon_d No Action
E Shared;
— E — M — 1 — 1
— S
Respond Respond
. : Cache dirty; dirty;
M No Action No Action Write-back Write back Write back
— M — M
— 1 data; data;
— S — 1

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 5o




MESI Example

Thread Event | Bus Data Global State | Local States:
Action From CoO C1 (C2
0. Initially: <0,0,0,1> I | 1 I
1. TO read— CR Memory |<1,0,0,1> E | I I
2. TO write— none <1,0,0,0> M| I I

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University s:




Cache-to-Cache Transfers

m Common in many workloads:
= TO writes to a block: <1,0,...,0> (block in M state in TO)
= T1 reads from block: TO must write back, then T1 reads from memory

® In shared-bus system
m T1 can snarf data from the bus during the writeback
m Called cache-to-cache transfer or dirty miss or intervention

m Without shared bus
= Must explicitly send data to requestor and to memory (for writeback)

m Known as the 4% C (cold, capacity, conflict, communication)

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University s2




MESI Example 2

Thread Event Bus Data From | Global State Local States:
Action CoO C1 C2
0. Initially: <0,0,0,1> I I I
1. TO read— CR Memory <1,0,0,1> E | I I
2. TO write— none <1,0,0,0> M| 1 I
3. Tl read— CR Co0 <1,1,0,1> S S I
4. T2 read— CR Memory <1,1,1,1> S S S

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 53




MOESI Optimization (IEEE Standard)

m Observation: shared ownership prevents cache-to-cache
transfer, causes unnecessary memory read

= Add O (owner) state to protocol: MOSI/MOESI

m Last requestor becomes the owner

= Avoid writeback (to memory) of dirty data

m Also called shared-dirty state, since memory is stale

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University s




MOESI Protocol

m Used in AMD Opteron

m 5-State Protocol

= Modified: <1,0,0...0>

m Exclusive: <1,0,0,...,1>

mShared: <1,X,X,..., 1>

m Invalid: <0,X,X,...X>

m Owned: <1,X,X,X,0> ; only one owner, memory not up to date
m Owner can supply data, so memory does not have to

m Avoids lengthy memory access

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University ss




MOES!

Protocol

Action and Next State

Current State Processor Prqcessor Eviction Cache Read Cache Read&M Cache
Read Write Upgrade
Cache Read
I It no:h;rers: Cache Read&M No Action No Action No Action
] — M — 1 — 1 — 1
If sharers:
— S
S No Action Cache Upgrade No Action Respond shared; No Action No Action
— S - M — 1 — S — 1 — 1
_ Respond
E No Action No Action No Action ReSsl;J)onId sdhaa;;(?d, shared,;
— E —-M — 1 PPy ’ Supply data;
— S
— 1
No Action Cache Upgrade Cache Write- Respond shar_ed; Respond share_d;
@) back Supply data; Supply data;
— 0 — M
— 1 — 0 — 1
No Action No Action Cache Write- Respond shar_ed; Respond share:d;
M back Supply data; Supply data;
—-M —-M
— 1 — 0 — 1

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 5




MOESI Example

Thread Event Bus Action | Data From | Global State local states

C0 C1 C2
0. Initially: <0,0,0,1> I | I |1
1. TO read— CR Memory <1,0,0,1> E|I|1
2. TO write— none <1,0,0,0> M| I | I
3. T2 read— CR Co0 <1,0,1,0> O|1]|S
4. T1 write— CRM Co0 <0,1,0,0> I M| I

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 57




MOESI Coherence Protocol

m A protocol that tracks validity, ownership, and exclusiveness
= Modified: dirty and private
= Owned: dirty but shared
= Avoid writeback to memory on M->S transitions
m Exclusive: clean but private
= Avoid upgrade misses on private data
= Shared
= |nvalid

m There are also some variations (MOSI and MESI)

® What happens when 2 cores read/write different words in a cache
line?

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University ss




Snooping with Multi-level Caches

m Private L2 caches
m If inclusive, snooping traffic checked at the L2 level first

m Only accesses that refer to data cached in L1 need to be
forwarded

m Saves bandwidth at the L1 cache

m Shared L2 or L3 caches

m Can act as serialization points even if there is no bus
m Track state of cache line and list of sharers (bit mask)
m Essentially the shared cache acts like a coherence directory

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University s




Scaling Coherence Protocols

m The problem
s Too much broadcast traffic for snooping (probing)

m Solution: probe filters

= Maintain info of which address ranges that are definitely not shared or
definitely shared

m Allows filtering of snoop traffic
m Solution: directory based coherence
m A directory stores all coherence info (e.g., sharers)

m Consult directory before sending coherence messages
= Caching/filtering schemes to avoid latency of 3-hops

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University o




The Memory Consistency Problem: Example

P, P,
[*Assume initial value of A and flag is 0*/
A= 1; while (flag == 0); /*spinidly*/
flag = 1; print A;

m [ntuitively, you expect to print A=1
m But can you think of a case where you will print A=07?
m Even if cache coherence is available

m Coherence talks about accesses to a single location
m Consistency is about ordering for accesses to difference locations

m Alternatively
m Coherence determines what value is returned by a read
m Consistency determines when a write value becomes visible

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University s:




18-600 Foundations of Computer Systems

Lecture 18:

“Program Performance Optimizations”

John P. Shen & Gregory Kesden
November 1, 2017

» Required Reading Assignment: {Ky Electrical & Computer

* Chapter 5 of CS:APP (3" edition) by Randy Bryant & Dave O’Hallaron. E N G I N E E RI N G

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 2




