18-600 Foundations of Computer Systems

Lecture 18:
“Program Performance Optimizations”

John P. Shen & Gregory Kesden
November 1, 2017

> Required Reading Assignment: {Ky Electrical & Computer

 Chapter 5 of CS:APP (3" edition) by Randy Bryant & Dave O’Hallaron. E N G I N E E RI N G

11/01/2017 (©J.P. Shen) 18-600 Lecture Carnegie Mellon University :

18-600 Foundations of Computer Systems

Lecture 18:

“Program Performance Optimizations”

m Overview of Optimizing Compilers
m Generally Useful Optimizations
= Code motion/precomputation
= Strength reduction
= Sharing of common subexpressions
" Removing unnecessary procedure calls
m Optimization Blockers
" Procedure calls
= Memory aliasing
m Exploiting Instruction-Level Parallelism
m Dealing with Conditionals

ectrical & Computer
Y ENGINEERING

11/01/2017 (©J.P. Shen) 18-600 Lecture #18

Carnegie Mellon University 2

% Anatomy of a Computer System: SW/HW
» What is a Computer System?

% Software + Hardware

¢ Programs + Computer = [Application program + OS] + Computer

¢ Programming Languages + Operating Systems + Computer Architecture

COMPILER |=

OS =
ARCHITECTURE <

AV

AV

Application programs

Processor

Operat " CS:APP
perating system _Eg<sigis

Main memory| /O devices

_/
—~

Software
(programs)

_ Hardware

—

(computer)

11/01/2017 (©J.P. Shen)

18-600 Lecture #18

Carnegie Mellon University 3

Anatomy of a Computer System: Compiler

printf.o
hello.c | /& hello.i| Compiler | hello.s |Assembler| hello.o | Linker | hello
> processor (ccl) > (as) > (1q) 5
(cpp) 3
Source Modified Assembly Relocatable Executable
program source program object object
(text) program (text) programs program
(text) (binary) (binary)
— ™
COMPILER | < Application programs
_ PP Prog Software
B . rograms
OS = Operating system (prog)
- =
. . Hardware
ARCHITECTURE = | Processor |Main memory| 1/O devices >(computer)

11/01/2017 (©J.P. Shen) 18-600 Lecture #18

Carnegie Mellon University 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Realities

m There’s more to performance than asymptotic complexity

m Constant factors matter too!
" Easily see 10:1 performance range depending on how code is written
" Must optimize at multiple levels:
= algorithm, data representations, procedures, and loops

m Must understand system to optimize performance
" How programs are compiled and executed
" How modern processors + memory systems operate
®= How to measure program performance and identify bottlenecks

" How to improve performance without destroying code modularity and
generality

Carnegie Mellon University 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Optimizing Compilers

m Provide efficient mapping of program to machine
= Register allocation
= Code selection and ordering (scheduling)
" Dead code elimination
= Eliminating minor inefficiencies

m Do not (usually) improve asymptotic efficiency
= Up to programmer to select best overall algorithm
= Big-O savings are (often) more important than constant factors
= But constant factors also matter

m Have difficulty overcoming “optimization blockers”
= Potential memory aliasing
" Potential procedure side-effects

Carnegie Mellon University ¢

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of Optimizing Compilers

m Operate under fundamental constraint
" Must not cause any change in program behavior
= Except, possibly when program making use of nonstandard language features
= Often prevents it from making optimizations that would only affect behavior under
pathological conditions.
m Behavior that may be obvious to the programmer can be obfuscated by languages
and coding styles
= e.g., Data ranges may be more limited than variable types suggest
m Most analysis is performed only within procedures
" Whole-program analysis is too expensive in most cases
= Newer versions of GCC do inter-procedural analysis within individual files
= But, not between code in different files
m Most analysis is based only on static information
= Compiler has difficulty anticipating run-time inputs
m When in doubt, the compiler must be conservative

Carnegie Mellon University 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Scheduling

m Rearrange code sequence to minimize execution time

" Hide instruction latency
= Utilize all available resources

ld f 8(

r8)
fadd 5 > 1 stall
ld f

. 16(r8)
fsub 772, 6 —— oA

fmulf f7, 5
24(r8)> 3 stalls

0(r9)
¥ f% 8(r9) —— lstall

(memory dis- amblguatlon)

reorder

reorde

l.d f4, 8(r8)
l.d 2, 16(r8)
fadd f5, f4, 6
fsub f7, f2, f6

fmul f7, £7, 5
sd 7, 24(r8) — > SAlS

ld 8 0(r9)
s d f8, 8(r9) > 1 stall

l.d f4, 8(r8)
l.d f2, 16(r8)
fadd f5, f4, f6
fsub f7, f2, f6

fmul f7, 7, 5
l.d {8, 0(r9)

8, 8(r9) % 1 stall
sd f7, 24(r8)

Carnegie Mellon University s

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Scheduling

m Objectives: minimize execution latency of the program
= Start as early as possible instructions on the critical path
" Help expose more instruction-level parallelism to the hardware
" Help avoid resource conflicts that increase execution time

m Constraints
" Program Precedences (Dependences)
" Machine Resources

m Motivations

= Dynamic/Static Interface (DSI): By employing more software (static) optimization
techniques at compile time, hardware complexity can be significantly reduced

= Performance Boost: Even with the same complex hardware, software scheduling can
provide additional performance enhancement over that of unscheduled code

Carnegie Mellon University o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Precedence Constraints

m Minimum required ordering and latency between definition and use

11: |.s 12, 4(r2)
m Precedence Graph 215 0. 40155
" Nodes: instructions i3: fadd.s f0, 2, fO
= Edges (a—b): a precedes b 'g IS.S :ffémg
i5: L.s 14, 8(r
" Edges are annotated with minimum latency i6 Is f6 O(r(2))
w(i+k].ip = z[i].rp + z[m+i].rp; 17: 1.s 5, 0(r3)
w[i+j].rp = e[k+1].rp* 18: fsub.s 5, 16, f5
(z[i].rp -z[m+i].rp) 19: fmul.s f4, 14, {5
e[k+1].ip * 110: |.s f15, 12(r7)
(z[i].ip - z[m+i].ip); 111: 1.s 7, 4(r2)

112: |.s 8, 4(r3)

113: fsub.s 18, f7, 18
FFT code fragment 114: fmul.s 18, f15, f8

115: fsub.s 18, f4, 18

116: s.s 18, 0(r8)

Carnegie Mellon University 10

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Precedence Graph

Carnegie Mellon University 11

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

List Schedul

m Initialize ready list that holds all ready instructions
Ready = data ready and can be scheduled

m Choose one ready instruction R from ready list with the highest priority
Number of descendants in precedence graph
Maximum latency from root node of precedence graph
Length of operation latency
Ranking of paths based on importance
Combination of above
m Insert Rinto schedule
Making sure resource constraints are satisfied

m Add those instructions whose precedence constraints are now satisfied
into the ready list
m Can be applied in the forward or backward direction

Ing for Basic Blocks

® & 6 o o

Carnegie Mellon University 12

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

List Scheduling Example

(a+b)*(c-d)+e/f
) (135

load: 2 cycles
add: 1 cycle
sub: 1 cycle
mul: 4 cycles
div: 10 cycles

orientation: cycle

direction: backward

heuristic: maximum latency to root

Carnegie Mellon University 13

Cycle

Ready list

Schedule

Code

Id f

Id e

Id d

fdiv (eff)

Id c

Id b

Id a

fsub (c — d)

Ol | N|IO| O PR~R|W|IDN|PF

N | ORI N WO OTO

fadd (a + b)

=
o

fmul

=
=

nop

=
N

nop

List Scheduling Example

=
W

nop

=
D

fadd

11/01/2017 (©J.P. Shen)

18-600 Lecture #18

Carnegie Mellon University 14

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Resource Constraints

m Bookkeeping

" Prevent resources from being oversubscribed

Machine model

fadd f1, f1, 2~ EEE

addrl, rl, 1

add r2, r2, 4 /

fadd 3, f3, f4--~

Carnegie Mellon University 15

D Cycle Ready list Schedule Resources Code
6_ I F FD

E 1 6 X Id f

© 2 5 X Id e

L>LI< 3|56

®) 4 49 X X fdiv (eff) Id d
C 5 9 3 X Id c

= 6 9 2 X d b

™, 7 3409 1 X Id a

_GC) 8|12809 8 X fsub (c — d)
O 9 9 7 X fadd (a + b)
f 109 10 X fmul

V) 119 10 nop

— 1219 10 nop

5 1319 10 nop

_ 14 11 X fadd

11/01/2017 (©J.P. Shen) 18-600 Lecture #18 Carnegie Mellon University 16

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of List Scheduling

m Cannot move instructions past conditional branch instructions in the
program (scheduling limited by basic block boundaries)

m Problem: Many programs have small numbers of instructions (4-5) in each
basic block. Hence, not much code motion is possible

m Solution: Allow code motion across basic block boundaries.

m Speculative Code Motion: “jumping the gun”

= Execute instructions before we know whether or not we need to

= Utilize otherwise idle resources to perform work which we speculate will need to be

done

m Relies on program profiling to make intelligent decisions about speculation

Carnegie Mellon University 17

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Types of Speculative Code Motion

m Two characteristics of speculative code motion:
= Safety, which indicates whether or not spurious exceptions may occur
= Legality, which indicates correctness of results

m Four possible types of code motion:

‘rlz... I\rlzrz&r?) I \r4:r1... I\rler&rB I

(a) safe and legal (b) illegal

|r1:... I\ rl =load A I |r4:r1... I|r1:IoadA I

(c) unsafe (d) unsafe and illegal

Carnegie Mellon University 18

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Renaming

m Prevents boosted instructions from overwriting register state needed on

alternate execution path.
m Utilizes idle (non-live) registers (r6 in example below).

BB# Original Code Scheduled Code

N load r4d= ... load r4= ...
load r5= ... load r5=...
cmpi c0,r4,10 cmpi c0,r4,10
add rd=r4+r5 add r4=r4+r5
<stall> sub r3=r7-r4
<stall> and r6=r3&r5
bc c0, Al bc c0, Al

n+1 st ...=r4 st ...=r4

n+2 Al: sub r3=r7-r4 Al: st ... =I6
and r4=r3&r5
st ...=r4

Carnegie Mellon University 19

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Copy Creation

m Register renaming causes a problem when there are multiple definitions of a
register reaching a single use:
= Below, definitions of rl in both (i) and (ii) reach the use in (iii).
= |f the instruction in (ii) is boosted into (i), it must be renamed to preserve the first value of r1.
= However, the boosted definition of r1 must reach the use in (iii) as well.
" Hence, we insert a copy instruction in (ii).

(i) |r1=..
I5=r2&r3

(1) I
v
(iii)‘ rd=rl.. I

(i) r1=r2&r3

Carnegie Mellon University 20

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Instruction Replication

m General case of upward code motion: crossing control flow joins.
m Instructions must be present on each control flow path to their original basic
block

m Replicate set is computed for each basic block that is a source for instructions
to be boosted

(in)

Carnegie Mellon University 2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Profile Driven Optimizations

Wrong optimization choices can be costly!

How do you determine dynamic information during compilation?

During initial compilation, “extra code” can be added to a program to
generate profiling statistics when the program is executed

Execution Profile, e.g.
= how many times is a basic block executed
= how often is a branch taken vs. not taken

Recompile the program using the profile to guide optimization choices

A profile is associated with a particular program input
= may not work well on all executions

Carnegie Mellon University 22

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Generally Useful Optimizations

m Optimizations that you or the compiler should do regardless of
processor / compiler

m Code Motion
" Reduce frequency with which computation performed
= |f it will always produce same result
= Especially moving code out of loop

volid set row(double *a, double *b,
long i, long n)
{
long 3J;
for (J = 0; 7 <
aln*i+j] =

n; Jt++)
b[j];

Carnegie Mellon University 23

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Compiler-Generated Code Motion (-O1)

volid set row(double *a, double *Db,

long i, long n)

{
long j;
for (3

set row:

J < ny;

$rcx, Srcx

Ll

srcx, Srdx

(%rdi, srdx,8), %rdx
SO0, %eax

(5rsi, srax,8), %xmmO
sxmm0, (%rdx, %$rax, 8)
S1, %rax

$rcx, Srax

L3

long 7j;
long ni = n*i;
double *rowp = a+tni;

for

H= S S S S S S S S

(J = 0; J < n; Jj++)
*rowp++ =

Test n

If 0, goto done
1 = n*i

rowp

3 =0

loop:

t = bl]J]

M[A+ni*8 + J*8]

o

Jin

if !=, goto loop

done:

Carnegie Mellon University 24

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Strength Reduction

= Replace costly operation with simpler one
= Shift, add instead of multiply or divide
16*x -—> x << 4
= Utility machine dependent
= Depends on cost of multiply or divide instruction
— On Intel Nehalem, integer multiply requires 3 CPU cycles
= Recognize sequence of products

Carnegie Mellon University 2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Share Common Subexpressions

= Reuse portions of expressions
= GCC will do this with =01

/* Sum neighbors of 1,73 */
up = val[(i-1)*n + J 1;
down = wval[(i+1)*n + J 1;
left = wvall[i*n + 3-11];
right = val[i*n + J+11;
sum = up + down + left + right;

3 multiplications: i*n, (i—-1)*n, (i+1)*n

long inj = 1i*n + 7j;
up = val[in] - n]
down = wval[in] + n]
left = wvall[in] - 1]
right = vall[inj + 1];
sum = up + down +

left + right;

4

.
.
4
.

4

4

1 multiplication: i*n

leaqg 1(%rsi), %rax # i+1

leaqg -1(%rsi), %r8 # i-1

imulg %rcx, %rsi # i*n
imulg $%$rcx, %rax # (1+1) *n
imulg %$rcx, %r8 # (1i-1)*n
addg $rdx, %rsi # 1*n+7
addg $rdx, %rax # (1+1) *n+j
addg $rdx, %r8 # (i-1) *n+j

imulg $rcx, Srsi
addg $rdx, %rsi
movqg $rsi, %srax
subg $rcx, %rax
leaqg (%rsi, $rcx),

i*n
i*n+]
i*n+]
i*n+j-n

H= =

$rcx # i*ntj+n

Carnegie Mellon University 26

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Optimization Blocker #1: Procedure Calls

m Procedure to Convert String to Lower Case

vold lower (char *s)

{
size t 1;
for (1 =

s[1i]

O, 1 < strlen(s
if (s[i] >= '"A' && s[i
- (lAl — lal);

) ; 1++)
] <= '2")

= Extracted from 213 lab submissions, Fall, 1998

Carnegie Mellon University 27

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lower Case Conversion Performance

" Time quadruples when double string length
B Quadr‘atic performance

250
200
(7]
©
g 150
@ lowerl
7]
2 100
O
50
0 ﬂM : T T T T
0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
String length

Carnegie Mellon University 2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convert Loop To Goto Form

vold lower (char *s)
{
size & 1 = 07
1f (1 >= strlen(s))
goto done;
loop:
if (s[1i] >= 'A' && s

i++;
1f (1 < strlen(s))
goto loop;
done:

}

] <= '2")

" strlen executed every iteration

Carnegie Mellon University 20

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Calling Strlen

/* My version of strlen */
size t strlen(const char *s)
{
size t length =
while (*s != "\O
S++;
length++;
}

return length;

0;
") Ao

}

m Strlen performance
" Only way to determine length of string is to scan its entire length,
looking for null character.
m Overall performance, string of length N
= N calls to strlen

" Require times N, N-1, N-2, ..., 1
= QOverall O(N?) performance

Carnegie Mellon University 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Improving Performance

vold lower (char *s)

{

size t 1;

1f (s[1] >= 'A'
s[i] -= ('A’

size t len = strlen(s);

for (1 = 0; 1 < len;

&& s[i] <= 'z")
'a');

" Move call to strlen outside of loop

" Since result does not change from one iteration to another

" Form of code motion

Carnegie Mellon University 31

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lower Case Conversion Performance

" Time doubles when double string length
" Linear performance of lower2

250

200

150

100

CPU seconds

lowerl

0

50000

100000

50
::::::: lower?2
0

150000

200000 250000 300000 350000 400000 450000 500000

String length

Carnegie Mellon University 32

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Optimization Blocker: Procedure Calls

m Why couldn’t compiler move strlen out of inner loop?

" Procedure may have side effects
= Alters global state each time called

" Function may not return same value for given arguments

= Depends on other parts of global state
= Procedure lower could interact with strlen

m Warning:
= Compiler treats procedure call as a black box
" Weak optimizations near them
m Remedies:
= Use of inline functions
= GCC does this with —01
— Within single file
" Do your own code motion

size t lencnt = 0;
size t strlen(const char *s)

{

size t length = 0;
while (*s != "\0") {
s++; length++;

}
lencnt += length;
return length;

Carnegie Mellon University 33

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Matters

/* Sum rows 1s of n X n matrix a
and store in vector b */
vold sum rowsl (double *a, double *b,
long i, 3J;
for (1 = 0; 1 < n;
b[i] = 0;
for (j = 0;] < n; J++)
1] += al[i*n + J]1;

long n) {

i++) |

sum rowsl inner loop
.L4:

movsd
addsd
movsd
addg

cmpg
Jne

(%rsi, $rax, 8),
(%rdi),
$xmm0O0, (%rsi, %rax, 8)
$8, %rdi

Trcx,
L4

% xmm0O
S xmm0O

Srdi

" Code updates b [i] on every iteration

" Why couldn’t compiler optimize this away?

FP load
FP add
FP store

Carnegie Mellon University 34

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Aliasing

/* Sum rows 1s of n X n matrix a
and store in vector b */
vold sum rowsl (double *a, double *b,
long i, J;
L= 0,

long n) {

L < n; 1++) |

double A[9]
{ 0, 1,
4, 8,

32, 64,

double B[3]

sum_rowsl (A, B,

" Code updates b [i] on every iteration

Value of B:

init: [4, 8, 16]

" Must consider possibility that these updates will affect program behavior

Carnegie Mellon University 3s

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Removing Aliasing

/* Sum rows is of n X n matrix a
and store in vector b */
vold sum rowsZ (double *a, double *b,
long 1, 3J;
for (1 = 0; i < n; i++) {
double val = 0;
for (jJ = 0; J++)
val += a[i*n + J];
b[i] = val;

long n)

J < n;

sum rows2 inner loop
.L10:

addsd
addg

cmpg
Jne

(%rdi),
$8, %rdi
$rax, Srdi
.L10

S xmmO

" No need to store intermediate results

{

FP load + add

Carnegie Mellon University 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Optimization Blocker: Memory Aliasing

mAliasing
" Two different memory references specify single location
" Easy to have happenin C
= Since allowed to do address arithmetic
= Direct access to storage structures
" Get in habit of introducing local variables
= Accumulating within loops
= Your way of telling compiler not to check for aliasing

Carnegie Mellon University 37

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exploiting Instruction-Level Parallelism

m Need general understanding of modern processor design

" Hardware can execute multiple instructions in parallel
m Performance limited by data dependencies

m Simple transformations can yield dramatic performance
improvement

= Compilers often cannot make these transformations
" Lack of associativity and distributivity in floating-point arithmetic

Carnegie Mellon University 3s

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Example: Data Type for Vectors

/* data structure for vectors */
typedef struct{

size t len;

data t *data;
} vec;

mData Types

= Use different declarations for
data t

" 1int

" long

" float
" double

len 0O 1 len-1
data —>

/* retrieve vector element
and store at val */
int get vec element
(*vec v, size t 1idx, data t *val)
{
if (idx >= v->len)
return O;
*val = v—->data[idx];
return 1;

Carnegie Mellon University 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Computation

void combinel (vec ptr v, data t *dest)

mData Types

{
long int 1;
*dest = IDENT;
data t val;

*dest = *dest OP wval;

}

for (1 = 0; 1 < vec length(v);

get vec element (v, 1, &val);

Compute sum or
product of vector
i4++) elements

mOperations
Use different declarations for data t = Use different definitions of OP and IDENT
int =+ /0
long = x /1
float
double

Carnegie Mellon University <o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cycles Per Element (CPE)

m Convenient way to express performance of program that operates on
vectors or lists

m Length=n
m In our case: CPE = cycles per OP
m T=CPE*n + Overhead 2500

= CPEis slope of line 2000
psuml
1500
1000
/ psum2
500

Slope =6.0

Cycles

0 50 100 150 200
Elements

Carnegie Mellon University

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Performance

void combinel (vec ptr v, data t *dest)

{
long int 1;
*dest = IDENT;

Compute sum or
product of vector

for (l = O,' 1 < VeC_length(V); j_‘|“|‘) { elements
data t wval;
get vec element (v, 1, &val);
*dest = *dest OP val;
}
}
Method Integer Double FP
Operation Add Mult Add Mult
Combinel 22.68 20.02 19.98 20.18
unoptimized
Combinel -0O1 10.12 10.12 10.17 11.14

Carnegie Mellon University 42

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Basic Optimizations

void combined (vec ptr v, data t *dest)

{
long 1;
long length vec length (v);
data t *d = get vec start(v)

data t t = IDENT;

for (1 = 0; 1 < length; i++)
t =t OP d[1];

*dest = t;

14

m Move vec _length out of loop
m Avoid bounds check on each cycle
m Accumulate in temporary

Carnegie Mellon University 43

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Effect of Basic Optimizations

volid combined (vec ptr v, data t *dest)
{
long 1i;
long length = vec length(v);
data t *d = get vec start(v);
data t t = IDENT;
for (1 = 0; i < length; i++)
t =t OP d[1];
*dest = t;
}
Method Integer Double FP
Operation Add Mult Add Mult
Combinel -0O1 10.12 10.12 10.17 11.14
Combine4 1.27 3.01 3.01 5.01

m Eliminates sources of overhead in loop

Carnegie Mellon University 44

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Modern Superscalar CPU Design

Instruction Control

Retirement
Unit
Register
File

Fetch Address
Control - :
Instruction

Instruction Instructions

Cache

Operations

Register Updates Prediction OK?

Functional
Units

A 4 A 4 A 4

A 4

Operation Results

Execution

Addr.

Data Data

Carnegie Mellon University 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Superscalar Processor

m A superscalar processor can issue and execute multiple
instructions in one cycle. The instructions are retrieved from a
sequential instruction stream and are usually scheduled
dynamically.

m Benefit: without programming effort, superscalar processor can
take advantage of the Instruction Level Parallelism (ILP) that most
programs have

m Most modern CPUs are superscalar out-of-order (O3) processors.
m Intel: since Pentium Pro (1995)

Carnegie Mellon University <

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pipelined Functional Units

long pl = a*b;
long p2 = a*c;
long p3 = pl * p2;
return p3;

long mult eg(long a, long b, long c)

{

\
J

} |
1 2 3 4 5 6 7
Stage1 | ' a*c pl*p2
Stage 2 a*b | a%c pl*p2
Stage 3 a*b | a%c pl*p2

Divide computation into stages

Pass partial computations from stage to stage
Stage i can start on new computation once values passed to i+1
E.g., complete 3 multiplications in 7 cycles, even though each requires 3 cycles

Carnegie Mellon University 47

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel Haswell CPU

= 8 Total Functional Units

m Multiple instructions can execute in parallel

2 load, with address computation
1 store, with address computation
4 integer

2 FP multiply

1 FP add

1 FP divide

m Some instructions take > 1 cycle, but can be pipelined

Instruction

Load / Store

Integer Multiply
Integer/Long Divide
Single/Double FP Multiply
Single/Double FP Add
Single/Double FP Divide

Latency

Cycles/Issue

3-15

Carnegie Mellon University <

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64 Compilation of Combine4

m Inner Loop (Case: Integer Multiply)

.L519: # Loop:

imull (%rax,%rdx,4), %ecx # t =t * d[i]

addg $1, %rdx # i+t

cmpg rdx, Srbp # Compare length:i

Jjg .L519 # If >, goto Loop
Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Latency Bound 1.00 3.00 3.00 5.00

Carnegie Mellon University 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Combine4 = Serial Computation (OP = *)

m Computation (length=8)

(CCCCCC(L * d[0]) * d[1]) * d[2]) * d[3])
* d[4]) * d[5]) * d[e]) * d[7])

m Sequential dependence

" Performance: determined by latency of OP

Carnegie Mellon University 5o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Loop Unrolling (2x1)

void unrollZa combine (vec ptr v, data t *dest)
{
long length = vec length(v);
long limit = length-1;
data t *d = get vec start(v);
data t x = IDENT;
long 1i;
/* Combine 2 elements at a time */
for (i = 0; 1 < limit; i+=2) {
x = (x OP d[i]) OP d[i+1];
}
/* Finish any remaining elements */
for (; 1 < length; 1i++) {
Xx = x OP d[1];
}

*dest = x;

m Perform 2x more useful work per iteration

Carnegie Mellon University 51

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Effect of Loop Unrolling

Method Integer Double FP

Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Latency Bound 1.00 3.00 3.00 5.00

m Helps integer add

= Achieves latency bound

m Others don’t improve. Why?

= Still sequential dependency

x = (x OP df[1]) OP d[1+1l];

Carnegie Mellon University 52

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Loop Unrolling with Re-association (2x1a)

vold unrollZaa combine(vec ptr v,

{

long length vec length (v);

long limit = length-1;

data t *d = get vec start(v);
data t x = IDENT;

long 1i;

0, 1 < limit; 1+=2)
x OP (d[1] OP d[i+1]);

for (1

X

}

for 1++) |

X

(; i < length;
x OP d[1i];

data t *dest)

{

/* Combine 2 elements at a time */

/* Finish any remaining elements */

Compare to before

}
*dest

Xy

X

(x OP d[1])

OP dl[i+1];

}

m Can this change the result of the computation?

m Yes, for FP. Why?

Carnegie Mellon University 53

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Effect of Re-association

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x1a 1.01 1.51 1.51 2.51
Latency Bound 1.00 3.00 3.00 5.00
Throughput 0.50 1.00 1.00 0.50
Bound

m Nearly 2x speedup for Int *, FP +, FP *
= Reason: Breaks sequential dependency

x = x OP (d[1] OP d[i1+1]);

= Why is that? (next slide)

2 func. units for FP *
2 func. units for load

4 func. units for int +
2 func. units for load

Carnegie Mellon University 54

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Re-associated Computation

m What changed:

" Ops in the next iteration can be
started early (no dependency)

x = x OP (d[1] OP d[1+1]);

dy d

) _* g, a. m Overall Performance
= N elements, D cycles
*
N ds s latency/op

(%) " (N/2+1)*D cycles:
—() #% T CPE = D/2

Carnegie Mellon University 55

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Loop Unrolling with Separate Accumulators (2x2)

{

long length

}

for (; 1 < length;
x0 = x0 OP dJ[i];

}

*dest = x0 OP x1;

}

i++)

void unrollZa combine (vec ptr v, data t *dest)

vec length (v);

it+=2)

long limit = length-1;
data t *d = get vec start(v);
data t x0 = IDENT;
data t x1 = IDENT;
long 1i;
/* Combine 2 elements at a time */
for (1 = 0; 1 < limit;
x0 = x0 OP df[i];
x1 = x1 OP d[i+1];

/* Finish any remaining elements */

{

{

m Different form of re-association

Carnegie Mellon University 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Effect of Separate Accumulators

Method Integer Double FP

Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x1a 1.01 1.51 1.51 2.51
Unroll 2x2 0.81 1.51 1.51 2.51
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50

m Int + makes use of two load units

x0
x1

= x0 OP dI[i];
= x1 OP d[i+1];

m 2x speedup (over unroll2) for Int *, FP +, FP *

Carnegie Mellon University 57

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Separate Accumulators

%0 = %0 OP d[i]; m What changed:

xl = x1 OP d[i+1]; = Two independent “streams” of
operations

1d, 1d,

éi‘]], é], m Overall Performance
"= N elements, D cycles
@ d, 4,@;] ds latency/op
A’d] A’Ci—] = Should be (N/2+1)*D cycles:
) % CPE = D/2
4.@;] @ " CPE matches prediction!

What Now?

Carnegie Mellon University 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unrolling & Accumulating

m ldea
" Can unroll to any degree L
" Can accumulate K results in parallel
" | must be multiple of K

m Limitations
" Diminishing returns
= Cannot go beyond throughput limitations of execution units
" Large overhead for short lengths
= Finish off iterations sequentially

Carnegie Mellon University 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unrolling & Accumulating: Double *

m Case
" Intel Haswell
" Double FP Multiplication
" Latency bound: 5.00. Throughput bound: 0.50

FP * Unrolling Factor L
K 1 2 3 4 6 8 10
1 501 501 501 501 501 501 5.01
2 2.51 2.51 2.51
v
[3 1.67
S
E 4 1.25 1.26
3 6 0.84
QO
= 8 0.63
10 0.51
12

12

0.88

0.52

Carnegie Mellon University 6o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unrolling & Accumulating: Int +

m Case

" |ntel Haswell

" Integer addition
" Latency bound: 1.00. Throughput bound: 1.00

FP *

Accumulators
0o O b W N R R

10
12

1.27

1.01
0.81

Unrolling Factor L

3 4 6
1.01 101 1.01
0.69

0.74
0.69
0.56

8

1.01

0.54

1.24

0.54

10
1.01

0.54

12

0.56

0.56

Carnegie Mellon University 61

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Achievable Performance

Method Integer Double FP

Operation Add Mult Add Mult
Best 0.54 1.01 1.01 0.52
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50

m Limited only by throughput of functional units
m Up to 42X improvement over original, unoptimized code

Carnegie Mellon University 62

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Single Instruction Multiple Data (SIMD)

128-bit register Source 0
(4 32-bitdata) i e
Source 1
vl vl vl vl
+ + + +
Destination
1 0 0 1 WriteMask/Predicate

Carnegie Mellon University 63

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SIMD Extensions for Superscalar Processors

m Every CISC/RISC processor today has SIMD extensions
= MMX, SSE, SSE-2, SSE-3, SSE-4, AVX, AVX2, Altivec, VIS, ...
m Basic idea: accelerate multimedia processing

" Define vectors of 8, 16, 32 and 64 bit elements in regular registers
= Apply SIMD arithmetic on these vectors

m Nice and cheap
" Don’t need to define big vector register file
= This has changed in more recent SIMD extensions

= All we need to do
= Add the proper opcodes for SIMD arithmetic
= Modify datapaths to execute SIMD arithmetic

= Certain operations are easier on short vectors
= Reductions, random permutations

Carnegie Mellon University ¢4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Problems with SIMD Extension

m SIMD defines short, fixed-sized, vectors

= Cannot capture data parallelism wider than 64 bits
= MMX (1996) has 64-bit register s (8 8-bit or 4 16-bit operations)

" Must use wide-issue to utilize more than 64-bit datapaths
= SSE and Altivec have switched to 128-bits because of this
= AVX2 has switched to 512-bits because of this

m SIMD does not support vector memory accesses
= Strided and indexed accesses for narrow elements
"= Needs multi-instruction sequence to emulate

= Pack, unpack, shift, rotate, merge, etc

" Cancels most of performance and code density benefits of vectors

m Compiler support for SIMD?
= Auto vectorization is hard

= Rely on programming model (e.g., OpenMP, Cilk+)

Carnegie Mellon University ¢

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

AVX2 SIMD Register Set

m Intel® AVX extends all 16 XMM
registers to 256bits
Intel AVX instructions operate on

either:
— The whole 256-bits (FP only)
— The lower 128-bits (like existing Intel” SSE
instructions)
= Areplacement for existing scalar/128-bit
SSE instructions
= Provides new capabilities on existing
instructions
= The upper 128-bits of the register are
zeroed out

. Intel AVX2 supports integer operations

511 256 255 128
ZMMO YMMO
ZMM1 YMM1
ZMM31 YMM31
512 bits (2013) 256 bits (2011)

127

Bit#

XMMO

XMM1

XMM31

128 bits (1999)

Carnegie Mellon University ¢

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

AVX Example

- Intel® AVX defines two 128-bit lanes (low =xmm, high=ymm[255:128])
— Nearly all operations are defined as “in-lane”

— For most instructions, e.g., VADDPS, the lane division is uninteresting
255 127

bbb&v %Eﬂab'

X7+Y7 X6+Y6 X5+Y5 | X4+Y4 X3+Y3 X2+Y2 X1+Y1 X0+Y0
- Some in-lane behavior is more interesting: VPERMILPS

255 High Lane 127 Low Lane 0
x7 | x6 X5 | x4 x3 | x2 | x1 | xo |

— N

X7.X4 | X7.X4 | X7.x4 | x7.X4 | X3.X0 | X3..X0 | X3..X0 | X3..X0 |

Intel® SSE functionality is preserved within lanes

Carnegie Mellon University 67

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

AVX2 Gather Operation

VGATHERDPS ymml,[eax + ymmO0*4], ymm2

destination

base

index scale

mask

« D : index(offset) size is double word
« PS: data type is packed single-precision floating point

dst = _mm256_i32gather_ps(base, index, scale)

Index : ymmO 23 | 6 | 21 | 4

Base : EAX
scale = 4
dst : ymml

Carnegie Mellon University ¢s

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VPGATHERDD & Mask

\

VPGATHERDD ymm1l,[eax + ymmO0*4], ymm2

destination

base index

scale

mask

dst = _mm256_mask_i32gather_epi32(base, index, mask, scale)

mask: ymm?2

Index: ymmO

prev: ymml

Base: EAX
scale = 4

dest : ymm1

255

128

0

19

23 | 6 | 21

17 | o

\

87878787°/38888888 | 65656567 44444444"! 55555

7777 [SlEEEEIsIeel 55595555 e i3 333

cccceceece | bbb

] bbbb | aaaapaaa | 99999999 | 88888888
87878787d7 Slelsrisislsel) 54545454 | Aliip eliiel) 32328232 | AAAPAN 10101010

SEKKR 2222 2222 BREE kREEE F0000000€0

4444

212121291| 000000019

Carnegie Mellon University 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

YMM Registers
B 16 total, each 32 bytes

M 32 sin

ole-byte integers

Programming with AVX2

B 16 16-bit integers

1 1

B 8 32-bit integers

B 8 single-precision floats

B 4 double-precision floats

M 1 single-precision float

B 1 double-precision float

Carnegie Mellon University 70

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

B SIMD Operations: Single Precision Sl M D OperathnS

vaddsd SymmO, Symml, S$Symml

%ymmO
~ ~ ~ ~ ~ ~ ~ ~
AR AR }9\] |

Symml
B SIMD Operations: Double Precision

vaddpd %ymmO, %ymml, Symml
‘ ‘ ‘ ‘ SymmO
NV NV NV NV
SN2 N <N ¢
Symml

Carnegie Mellon University 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using Vector Instructions

Method Integer Double FP
Operation Add Mult Add Mult
Scalar Best 0.54 1.01 1.01 0.52
Vector Best 0.06 0.24 0.25 0.16
Latency Bound 0.50 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50
Vec Throughput 0.06 0.12 0.25 0.12
Bound

m Make use of AVX Instructions

" Parallel operations on multiple data elements
= See Web Aside OPT:SIMD on CS:APP web page

Carnegie Mellon University 72

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What About Branches?

m Challenge

" |nstruction Control Unit must work well ahead of Execution Unit to
generate enough operations to keep EU busy

404663
404668:
40466Db:
40460d:

404685

:}— Executing

How to continue?

mov S0x0, $eax

cmp (5rdi), 3rsi
jge 404685 <
mov Ox8 (%rdi), Srax

repz retqg

"When encounters conditional branch, cannot reliably determine where
to continue fetching

Carnegie Mellon University 73

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch QOutcomes

"When encounter conditional branch, cannot determine where to
continue fetching

= Branch Taken: Transfer control to branch target
= Branch Not-Taken: Continue with next instruction in sequence
= Cannot resolve until outcome determined by branch/integer unit

404663
404668:
40466b:
404606d:

4046085:

mov S0x0, $eax
cmp (3rdi), srsi
jge 404685

Branch Not-Taken
mowv 0x8 (%rdi), 3rax EE;>>

Branch Taken

repz retqg

Carnegie Mellon University 74

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Prediction

m ldea
® Guess which way branch will go
" Begin executing instructions at predicted position
= But don’t actually modify register or memory data

404663: mov S0x0, $Seax
404668: cmp (3rdi) , srsi
40466b: jge 404685 :
40466d: mov 0x8 (%rdi), $rax } Predict Taken
404685: repz retq Begin

Execution

Carnegie Mellon University 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Prediction Through Loop

401029: vmulsd (%rdx),$xmm0, $xmm0 Assume
40102d: add $0x8, $rdx vector length = 100
401031: cmp Trax, srdx)
401034: jne 401029 _Lfffi_;
7 Predict Taken (OK)

401029: vmulsd (%rdx), $xmmO, 3xmmO
40102d: add S0x8, $rdx
401031: cmp $rax, srdx)
401034: dne 401029 I=39

— 7 Predict Taken
401029: vwvmulsd (%rdx), $xmmO, $xmmO «)ops) _T_
40102d: add $0x8, $rdx T
401031: cmp srax, srdx Read Executed
401034: jne 401029 I =100 invalid

o 7 location ¥
401029: vmulsd (%rdx), $xmmO, 3xmmO Fetched
40102d: add S0x8, $rdx
401031: cmp $rax, srdx)
401034: dne 401029 /=101 l

Carnegie Mellon University 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Mis-prediction Invalidation

/

7

P

401029: vmulsd (5rdx), sxmm0O, 3xmmO
40102d: add $0x8, $rdx
401031: cmp Trax, srdx)
401034: 3ne 401029 =98
401029: vmulsd (%rdx), $xmmO, 3xmmO
40102d: add $S0x8, $rdx
401031: cmp srax, srdx .
401034: jne 401029 I=39
40102d: add S0x8, $rdx
401031: cmp srax, srdx
401034: dne 401029 =100
407029~ vmiilad (Zrdx) Sxmm(2xmm(
_401024d. 344 S0x8 Srdx
401037 - cmp S Lo d i
401934 “ne 491409 (=101

Assume
vector length = 100

Predict Taken (OK)

Predict Taken
(OOIOS)

> Invalidate

Carnegie Mellon University 77

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Mis-prediction Recovery

401040: vmovsd %SxmmO, (35rl2)

401029: vmulsd (%rdx), $xmmO, $xmmO
40102d: add $0x8, $rdx i=99
401031: cmp srax, srdx

401034: Jne 401029

401036: Jmp 401040 —

Definitely not taken

Reload
Pipeline

m Performance Cost

= Multiple clock cycles on modern processor

= Can be a major performance limiter

Carnegie Mellon University 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Getting High Performance

m Good compiler and flags

m Don’t do anything stupid
= Watch out for hidden algorithmic inefficiencies
= Write compiler-friendly code
= Watch out for optimization blockers:
procedure calls & memory references
" Look carefully at innermost loops (where most work is done)

m Tune code for machine
" Exploit instruction-level parallelism
" Avoid unpredictable branches
= Make code cache friendly (Covered later in course)

Carnegie Mellon University 7

18-600 Foundations of Computer Systems

Lecture 19:

“Virtual Machine Design & Implementation”
18-600

John P. Shen
November 6, 2017

Next Time ...

»Recommended References:
* Jim Smith, Ravi Nair, Virtual Machines: Versatile Platforms for Systems

and Processes, Morgan Kaufmann, June 2005. Electrical & Computer
* Matthew Portnoy, Virtualization Essentials, Sybex Press, May 2012 E N G I N E E RI N G

11/01/2017 (©J.P. Shen) 18-600 Lecture #18 Carnegie Mellon University 8o

