Carnegie Mellon

Lecture #24 “Synchronization”

18-600: Foundations of Computer Systems
November 27, 2017

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

m Sharing
m Mutual exclusion
m Semaphores

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Shared Variables in Threaded C Programs

m Question: Which variables in a threaded C program are
shared?

" The answer is not as simple as “global variables are shared” and
“stack variables are private”

m Def: A variable x is shared if and only if multiple threads
reference some instance of x.

m Requires answers to the following questions:
" What is the memory model for threads?
" How are instances of variables mapped to memory?
" How many threads might reference each of these instances?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Mapping Variable Instances to Memory

m Global variables

" Def: Variable declared outside of a function

= Virtual memory contains exactly one instance of any global variable

m Local variables
= Def: Variable declared inside function without static attribute

= Each thread stack contains one instance of each local variable

m Local static variables
" Def: Variable declared inside function with the static attribute

= Virtual memory contains exactly one instance of any local static
variable.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Synchronizing Threads

m Shared variables are handy...

m ..butintroduce the possibility of nasty synchronization
errors.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

badcnt. c: Improper Synchronization

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{

long niters;

pthread t tidl, tid2;

niters = atoi(argv[l]);
Pthread create(&tidl, NULL,
thread, &niters);
Pthread create(&tid2, NULL,
thread, &niters);
Pthread join(tidl, NULL);
Pthread join(tid2, NULL) ;

/* Check result */
if (cnt !'= (2 * niters))

printf ("BOOM! cnt=%1d\n", cnt);

else
printf ("OK cnt=%1d\n", cnt);
exit(0) ;

} badcnt.c

/* Thread routine */
void *thread(void *vargp)

{
long i1, niters =
*((long *)vargp):

for (i = 0; 1 < niters; i++)
cnt++;

return NULL;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

linux> ./badcnt 10000
OK cnt=20000

linux> ./badcnt 10000
BOOM! cnt=13051
linux>

cnt should equal 20,000.

What went wrong?

Carnegie Mellon

Assembly Code for Counter Loop

C code for counter loop in thread i

for (1 = 0; i < niters; i++)
cnt++;

Asm code for thread i

movg (%rdi), S%rcx
testg %rcx, 3rcx

} H;: Head

cnt ($rip) , %rdx L; : Load cnt
$1, %$rdx U : Update cnt

, cnt (%rip) |/ S;:Store cnt

}ﬂfﬁ“

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Concurrent Execution

m Keyidea: In general, any sequentially consistent interleaving
is possible, but some give an unexpected result!

= |. denotes that thread i executes instruction |
= %rdx;is the content of %rdx in thread i’s context

i (thread) instr; %rdx, %rdx, cnt

=
L
-y

=3

=

0
1
1

0
0
0
1
, 1
1
1
2
2
2

=3

N

N

N

RINININININ|R|[R]|~
—|-|»|cl—|T|w|c|—

=y

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Concurrent Execution

m Keyidea: In general, any sequentially consistent interleaving
is possible, but some give an unexpected result!

= |. denotes that thread i executes instruction |
= %rdx;is the content of %rdx in thread i’s context

i (thread) instr; %rdx, %rdx, cnt

=
L
-y

Thread 1
critical section

=3

=

0
1
1

0
0
0
1
, 1
1
1
2
2
2

Thread 2
critical section

=3

N

N

N

RINININININ|R|[R ([~
— |- »|Cl—|Tw Ccir

=y

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Concurrent Execution (cont)

m Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2

i (thread) instr, %rdx, %rdx, cnt

=
L
=

=

N

L
U,
H
L

=

=y

N

N
RikRR|IRk|lo|lo|lo|lo|o

NININR(RININ[R|=
—I(ﬂ\,C—Im

N

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Concurrent Execution (cont)

m How about this ordering?

i (thread) instr; %rdx, %rdx, cnt

Y
L
—

0

=

N

N

N

=

=3

=

N (=== NNNN|=
—|—|V’CéﬂCI_II_

Oops!

N

m We can analyze the behavior using a progress graph

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Enforcing Mutual Exclusion

m Question: How can we guarantee a safe trajectory?

m Answer: We must synchronize the execution of the threads so
that they can never have an unsafe trajectory.

= j.e., need to guarantee mutually exclusive access for each critical
section.

m Classic solution:
= Semaphores (Edsger Dijkstra)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Semaphores

m Semaphore: non-negative global integer synchronization variable.
Manipulated by P and V operations.

m P(s)
" |f sis nonzero, then decrement s by 1 and return immediately.
= Test and decrement operations occur atomically (indivisibly)

If s is zero, then suspend thread until s becomes nonzero and the thread is
restarted by a V operation.

After restarting, the P operation decrements s and returns control to the
caller.

m V(s):
" Increment s by 1.
= Increment operation occurs atomically

If there are any threads blocked in a P operation waiting for s to become non-

zero, then restart exactly one of those threads, which then completes its P
operation by decrementing s.

m Semaphore invariant: (s >=0)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Semaphores

m Semaphore: non-negative global integer synchronization
variable

m Manipulated by P and V operations:
= P(s): [while (s == 0) wait(); s--;]
= Dutch for “Proberen” (test)
= V(s): [s++;]
= Dutch for “Verhogen” (increment)

m OS kernel guarantees that operations between brackets [] are
executed indivisibly

= Only one P or V operation at a time can modify s.
= When while loop in P terminates, only that P can decrement s

m Semaphore invariant: (s >= 0)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

C Semaphore Operations

Pthreads functions:

#include <semaphore.h>
int sem init(sem t *s, 0, unsigned int val);} /* s = val */

int sem wait(sem t *s); /* P(s) */
int sem post(sem t *s); /* V(s) */

CS:APP wrapper functions:

#include "csapp.h”

void P(sem t *s); /* Wrapper function for sem wait */
void V(sem t *s); /* Wrapper function for sem post */

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

badcnt. c: Improper Synchronization

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{

long niters;

pthread t tidl, tid2;

niters = atoi(argv|[l])
Pthread create(&tidl, NULL,
thread, &niters);
Pthread create(&tid2, NULL,
thread, &niters);
Pthread join(tidl, NULL);
Pthread join(tid2, NULL) ;

/* Check result */
if (cnt !'= (2 * niters))

printf ("BOOM! cnt=%1d\n", cnt);

else
printf ("OK cnt=%1d\n", cnt);
exit (0) ;

} badcnt.c

/* Thread routine */
void *thread(void *vargp)

{
long i, niters =
*((long *)vargp)

for (i = 0; i < niters; i++)
cnt++;

return NULL;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How can we fix this using
semaphores?

Carnegie Mellon

Using Semaphores for Mutual Exclusion

m Basicidea:

= Associate a unique semaphore mutex, initially 1, with each shared
variable (or related set of shared variables).

= Surround corresponding critical sections with P(mutex) and
V(mutex) operations.

m Terminology:
" Binary semaphore: semaphore whose value is always O or 1
" Mutex: binary semaphore used for mutual exclusion
= P operation: “locking” the mutex
= V operation: “unlocking” or “releasing” the mutex
= “Holding” a mutex: locked and not yet unlocked.

" Counting semaphore: used as a counter for set of available
resources.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

goodcnt. c: Proper Synchronization

m Define and initialize a mutex for the shared variable cnt:

volatile long cnt = 0; /* Counter */
sem t mutex; /* Semaphore that protects cnt */

sem init(&mutex, 0, 1); /* mutex = 1 */

m Surround critical section with P and V:

for (1 = 0; i < niters; i++) { linux> ./goodcnt 10000
P (&mutex) ; OK cnt=20000
cnt++; linux> ./goodcnt 10000
V (&mutex) ; OK cnt=20000

linux>

goodcnt.c

" Functon | _badomt__| _goodont__

Warr Time (ms) 12 450
niters = 10°

Slowdown 1.0 37.5 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edit

Carnegie Mellon

Binary Semaphores

m Mutex is special case of semaphore
= Value eitherOor1

m Pthreads provides pthread _mutex_t

= QOperations: lock, unlock

m Recommended over general semaphores when
appropriate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

goodmcnt. c: Mutex Synchronization

m Define and initialize a mutex for the shared variable cnt:

volatile long cnt = 0; /* Counter */

pthread mutex t mutex;
pthread mutex init(&mutex, NULL); // No special attributes

m Surround critical section with lock and unlock:

for (1 = 0; i < niters; i++) { linux> ./goodmcnt 10000
pthread mutex lock (&mutex) ; OK cnt=20000
cnt++; linux> ./goodmcnt 10000

pthread mutex unlock (&mutex) ; OK cnt=20000

1i >
goodcnt.c Lhux

mm

Time (ms)
niters = 10°

Slowdown

Bryant and O’Hallaron, Computer Systems: A Progra

Carnegie Mellon

Summary

m Programmers need a clear model of how variables are
shared by threads.

m Variables shared by multiple threads must be protected
to ensure mutually exclusive access.

m Semaphores are a fundamental mechanism for enforcing
mutual exclusion.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Using Semaphores to Coordinate
Access to Shared Resources

m Basic idea: Thread uses a semaphore operation to notify
another thread that some condition has become true
= Use counting semaphores to keep track of resource state.
= Use binary semaphores to notify other threads.

m Two classic examples:
" The Producer-Consumer Problem
" The Readers-Writers Problem

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Producer-Consumer Problem

producer consumer
thread thread

m Common synchronization pattern:
" Producer waits for empty slot, inserts item in buffer, and notifies consumer
= Consumer waits for item, removes it from buffer, and notifies producer

m Examples
" Multimedia processing:

= Producer creates video frames, consumer renders them
= Event-driven graphical user interfaces

= Producer detects mouse clicks, mouse movements, and keyboard hits
and inserts corresponding events in buffer

= Consumer retrieves events from buffer and paints the display

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Producer-Consumer on 1l-element
Buffer

m Maintain two semaphores: full + empty

full
0

empty
1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Producer-Consumer on 1-element Buffer

#include "csapp.h int main(int argc, char** argv) {

pthread t tid producer;

#define NITERS 5 pthread t tid consumer;

void *producer (void *arg) ;

_ _ /* Initialize the semaphores */
void *consumer (void *arq) ;

Sem init(&shared.empty, 0, 1);

Sem init (&shared.full, 0, O0);
struct { -

int buf; /* shared var */
sem t full; /* sems */
sem t empty;

} shared;

/* Create threads and wait */
Pthread create(&tid producer, NULL,
producer, NULL) ;
Pthread create(&tid consumer, NULL,
consumer, NULL) ;
Pthread join(tid producer, NULL) ;
Pthread join(tid consumer, NULL) ;

return 0;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Producer-Consumer on 1-element Buffer

Initially: empty==1, full==

Producer Thread

Consumer Thread

void *producer (void *arg) ({
int i1, item;

for (i=0; i<NITERS; i++) {
/* Produce item */
item = i;
printf ("produced %d\n",
item) ;

/* Write item to buf */
P (&shared.empty) ;
shared.buf = item;

V (&shared. full) ;

}
return NULL;

}

void *consumer (void *arg) ({
int i, item;

for (i=0; i<NITERS; i++) {
/* Read item from buf */
P (&shared. full) ;
item = shared.buf;
V (&shared.empty) ;

/* Consume item */
printf ("consumed %d\n"“, item) ;

}
return NULL;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Why 2 Semaphores for 1-Entry Buffer?

m Consider multiple producers & multiple consumers

m Producers will contend with each to get empty
m Consumers will contend with each other to get full

Producers Consumers

P (&shared.empty) ; empty full P (&shared. full) ;
shared.buf = item; item = shared.buf;
V (&shared. full) ; V (&shared.empty) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Producer-Consumer on an n-element Buffer

en 0 and n elements
[]

o« " .

m Implemented using a shared buffer package called sbuf.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Circular Buffer (n = 10)

Store elements in array of size n
items: number of elements in buffer
Empty buffer:

" front =rear
Nonempty buffer

" rear: index of most recently inserted element
" front: (index of next element to remove — 1) mod n

Initially:

front

rear
items

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Carnegie Mellon

Circular Buffer Operation (n = 10)

m Insert 7 elements

front
rear
items

0

7

0O 1

7

m Remove 5 elements

front
rear
items

m Insert
front

rear

items

0o 1

m Remove 8 elements

front
rear
items

3

0 1

0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Sequential Circular Buffer Code

init(int v)

{

items = front = rear = 0;

}

insert (int v)
{
if (items >= n)
error () ;
if (++rear >= n) rear = 0;
buf[rear] = v;
items++;

}

int remove ()

{

if (items == 0)
error () ;
if (++front >= n) front = 0;
int v = buf[front];
items--;
return v;

}

Bryant and O’ Hamarorm, CoOMmpuUter SysStens:T A PTOETAMITIET S PETSPECTIVE, T ETTIOT

Carnegie Mellon

Producer-Consumer on an n-element Buffer

en 0 and n elements
[]

o«

m Requires a mutex and two counting semaphores:
" mutex: enforces mutually exclusive access to the buffer and counters
" slots:counts the available slots in the buffer
= items: counts the available items in the buffer

m Makes use of general semaphores

= Will range in value from O to n

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

sbuf Package - Declarations

#include "csapp.h”

typedef struct {
int *buf; /* Buffer array
int n; /* Maximum number of slots
int front; /* buf[front+l (mod n)] is first item
int rear; /* buf[rear] is last item
sem t mutex; /* Protects accesses to buf
sem t slots; /* Counts available slots
sem t items; /* Counts available items
} sbuf t;

void sbuf init(sbuf t *sp, int n);
void sbuf deinit(sbuf t *sp);

void sbuf insert(sbuf t *sp, int item);
int sbuf remove (sbuf t *sp);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

sbuf Package - Implementation

Initializing and deinitializing a shared buffer:

void sbuf init(sbuf t *sp, int n)

{
sp->buf = Calloc(n, sizeof(int)
sp->n = n; /*
sp->front = sp->rear = 0; /*
Sem init(&sp->mutex, 0, 1); /*
Sem init(&sp->slots, 0, n); /*
Sem init(&sp->items, 0, 0); /*

}

/* Clean up buffer sp */
void sbuf deinit(sbuf t *sp)
{

Free (sp->buf) ;
}

/* Create an empty, bounded, shared FIFO buffer with n slots */

) ;

Buffer holds max of n items */
Empty buffer iff front == rear */
Binary semaphore for locking */
Initially, buf has n empty slots */
Initially, buf has zero items */

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

sbuf Package - Implementation

Inserting an item into a shared buffer:

/* Insert item onto the rear of shared buffer sp */
void sbuf insert(sbuf t *sp, int item)

{
P (&sp->slots) ; /* Wait for available slot */
P (&sp->mutex) ; /* Lock the buffer *x/
if (++sp->rear >= sp->n) /* Increment index (mod n) */
sp->rear = 0;
sp->buf [sp->rear] = item; /* Insert the item */
V (&sp->mutex) ; /* Unlock the buffer *x /
V (&sp->items) ; /* Announce available item */

sbuf.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Implementation

Removing an item from a shared buffer:

Carnegie Mellon

int sbuf remove (sbuf t *sp)
{
int item;
P(&sp->items) ;
P (&sp->mutex) ;
if (++sp->front >= sp->n)
sp->front = 0;
item = sp->buf[sp->front];
V (&sp->mutex) ;
V(&sp->slots) ;
return item;

/* Remove and return the first item from buffer sp */

Wait for available item
Lock the buffer
Increment index (mod n)

Remove the item
Unlock the buffer
Announce available slot

*/
*/
*/

*/
*/
*/

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

m Using semaphores to schedule shared resources
" Producer-consumer problem
= Readers-writers problem

m Other concurrency issues
" Thread safety

® Races
= Deadlocks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Readers-Writers Problem

O
()
.o

Access

m Problem statement:
= Reader threads only read the object
" Writer threads modify the object (read/write access)
= Writers must have exclusive access to the object
= Unlimited number of readers can access the object

m Occurs frequently in real systems, e.g.,
® Online airline reservation system
= Multithreaded caching Web proxy

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Read-only
Access

Readers/Writers Examples

Carnegie Mellon

Variants of Readers-Writers

m First readers-writers problem (favors readers)

" No reader should be kept waiting unless a writer has already been
granted permission to use the object.

= Areader that arrives after a waiting writer gets priority over the
writer.

m Second readers-writers problem (favors writers)

" Once a writer is ready to write, it performs its write as soon as
possible

= A reader that arrives after a writer must wait, even if the writer is
also waiting.

m Starvation (where a thread waits indefinitely) is possible
in both cases.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Solution to First Readers-Writers Problem

Readers: Writers:

int readent; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {

while (1) {
void reader (void) P(&w) ;
{
while (1) { /* Writing here */
P (&mutex) ;
readcnt++; V(&w) ;
if (readcnt == 1) /* First in */ }
P (&W) ; }
V (&mutex) ;

/* Reading happens here */

P (&mutex) ;

readcnt--;

if (readent == 0) /* Last out */
V(&w) ;

V (&mutex) ;

Carnegie Mellon

Readers/Writers Examples

O
\‘ readcnt=0

O
\‘ readcnt =0

w=0 /:
readcnt = 2 \ @

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

(W)

Carnegie Mellon

Solution to First Readers-Writers Problem

Readers: Writers:

int readent; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {

while (1) {
void reader (void) P(&w) ;
{
while (1) { /* Writing here */
P (&mutex) ;
readcnt++; V(&w) ;
if (readcnt == 1) /* First in */ }
P (&W) ; }
V (&mutex) ;

/* Reading happens here */

Arrivals: R1 R2 W1 R3

P (&mutex) ;

readcnt--;

if (readent == 0) /* Last out */
V(&w) ;

V (&mutex) ;

Carnegie Mellon

Solution to First Readers-Writers Problem

Readers: Writers:

int readent; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {

while (1) {
void reader (void) P(&w) ;
{
while (1) { /* Writing here */
P (&mutex) ;
readcnt++; V(&w) ;
if (readcnt == 1) /* First in */ }
P (&W) ; }
V (&mutex) ;

R1 %‘* Reading happens here */

Arrivals: R1 R2 W1 R3

P (&mutex) ;

readcnt--;

if (readent == 0) /* Last out */ Readcnt ==
V(&w) ; W ==

V (&mutex) ;

Carnegie Mellon

Solution to First Readers-Writers Problem

Readers: Writers:

int readent; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {

while (1) {
void reader (void) P(&w) ;
{
while (1) { /* Writing here */
P (&mutex) ;
readcnt++; V(&w) ;

R2 Qf (readent == 1) /* First in */ }
P(&w) ; }
V (&mutex) ;

R1 %‘* Reading happens here */

Arrivals: R1 R2 W1 R3

P (&mutex) ;

readcnt--;

if (readent == 0) /* Last out */ Readcnt ==
V(&w) ; W ==

V (&mutex) ;

Carnegie Mellon

Solution to First Readers-Writers Problem

Readers: Writers:

int readent; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {

while (1) {
P(&w) ; e W1

void reader (void)
{
while (1) { /* Writing here */
P (&mutex) ;
readcnt++; V(&w) ;
if (readcnt == 1) /* First in */ }
P(&w) ; }
V (&mutex) ;

* Reading happens here */
Arrivals: R1 R2 W1 R3
P (&mutex) ;
readcnt--;
if (readent == 0) /* Last out */ Readcnt ==

V(&w) ; W ==
V (&mutex) ;

Carnegie Mellon

Solution to First Readers-Writers Problem

Readers: Writers:

int readent; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {

while (1) {
void reader (void) P(&w) ; é Wil
{
while (1) { /* Writing here */
P (&mutex) ;
readcnt++; V(&w) ;

if (readcnt == 1) /* First in */ }

P (&W) ; }

V (&mutex) ;

| 4* Reading happens here */

Arrivals: R1 R2 W1 R3

P (&mutex) ;

readcnt--;

if (readent == 0) /* Last out */ Readcnt ==
V(&w) ; W ==

V (&mutex) ;

Carnegie Mellon

Solution to First Readers-Writers Problem

Readers: Writers:

int readent; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {

while (1) {
void reader (void) P(&w) ; é Wil
{
while (1) { /* Writing here */
P (&mutex) ;
readcnt++; V(&w) ;

f (readcnt == 1) /* First in */ }

P (&W) ; }

V (&mutex) ;

/* Reading happens here */

Arrivals: R1 R2 W1 R3
P (&mutex) ;

readcnt--;

if (readent == 0) /* Last out */ Readcnt ==
V(&W),’ W==

V (&mutex) ;

Carnegie Mellon

Solution to First Readers-Writers Problem

Readers: Writers:

int readent; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {

while (1) {
void reader (void) P(&w) ; é Wil
{
while (1) { /* Writing here */
P (&mutex) ;
readcnt++; V(&w) ;

if (readcnt == 1) /* First in */ }

P (&W) ; }

V (&mutex) ;

—

/* Reading happens here */

Arrivals: R1 R2 W1 R3
P (&mutex) ;
readcnt--;
if (readent == 0) /* Last out */ Readcnt ==
V(&w) ; W ==

! é{(&mutex) ;
}

}

Carnegie Mellon

Solution to First Readers-Writers Problem

Readers: Writers:

int readent; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {

while (1) {
P(&w) ; e W1

void reader (void)
{
while (1) { /* Writing here */
P (&mutex) ;
readcnt++; V(&w) ;
if (readcnt == 1) /* First in */ }
P(&w) ; }
V (&mutex) ;

/* Reading happens here */
Arrivals: R1 R2 W1 R3
P (&mutex) ;
readcnt--;
if (readent == 0) /* Last out */ Readcnt ==

V(&w) ; —_—
R3 a(&mutex) ; W ==

}
}

Carnegie Mellon

Other Versions of Readers-Writers

m Shortcoming of first solution
® Continuous stream of readers will block writers indefinitely

m Second version
" Once writer comes along, blocks access to later readers

= Series of writes could block all reads

m FIFO implementation
= See rwqueue code in code directory
= Service requests in order received

" Threads kept in FIFO
= Each has semaphore that enables its access to critical section

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Solution to Second Readers-Writers

F>r()t)|€3rr] int readcnt, writecnt; // Initially O
sem t rmutex, wmutex, r, w; // Initially 1
void reader (void)
{
while (1) {
P(&r) ;
P (&rmutex) ;
readcnt++;
if (readcnt == 1) /* First in */
P(&w);
V(&rmutex) ;
V(&r)

/* Reading happens here */

P (&rmutex) ;
readcnt--;
if (readcnt == 0) /* Last out */
V(&w) ;
V (&rmutex) ;
}
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution to Second Readers-Writers

PrOble m void writer (void)
{
while (1) {
P (&wmutex) ;
writecnt++;
if (writecnt ==
P(&r);
V (&wmutex) ;

P (&w) ;
/* Writing here
V(&w) ;

P (&wmutex) ;

writecnt--;

if (writecnt ==
V(&r) ;

V (&wmutex) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Carnegie Mellon

Today

m Using semaphores to schedule shared resources
" Producer-consumer problem

® Readers-writers problem

m Other concurrency issues
" Races
= Deadlocks
" Thread safety

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

One Worry: Races

m A race occurs when correctness of the program depends on one
thread reaching point x before another thread reaches point y

/* a threaded program with a race */
int main(int argc, char** argv) {
pthread t tid[N];
int 1i;
for (i = 0; i < N; i++)
Pthread create(&tid[i], NULL, thread, &i);
for (i = 0; i < N; i++)
Pthread join(tid[i], NULL);
return O;

}

/* thread routine */

void *thread(void *vargp) ({
int myid = *((int *)vargp):;
printf ("Hello from thread %d\n", myid);
return NULL;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Race Elimination

m Make sure don’t have unintended sharing of state

/* a threaded program without the race */
int main(int argc, char** argv) {
pthread t tid[N];
int i;
for (1 = 0; i < N; i++) {
int *valp = Malloc(sizeof(int)) ;
*valp = 1;
Pthread create(&tid[i], NULL, thread, valp);

}
for (1 = 0; i < N; i++)

Pthread join(tid[i], NULL);
return O;

}

/* thread routine */
void *thread(void *vargp) ({
int myid = *((int *)vargp):
Free (vargp) ;
printf ("Hello from thread %d\n"
return NULL;
norace.cC

Carnegie Mellon

Today

m Using semaphores to schedule shared resources
" Producer-consumer problem

® Readers-writers problem
m Other concurrency issues
" Races

= Deadlocks
" Thread safety

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

A Worry: Deadlock

m Def: A process is deadlocked iff it is waiting for a condition
that will never be true.

m Typical Scenario

" Processes 1 and 2 needs two resources (A and B) to proceed

" Process 1 acquires A, waits for B
" Process 2 acquires B, waits for A
= Both will wait forever!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Deadlocking With Semaphores

int main(int argc, char** argv)

{

pthread t tid[2];

Sem init(&mutex[0], O, 1); /* mutex[0] =1 */
Sem init(&mutex[1l], O, 1); /* mutex[l] =1 */
Pthread create(&tid[0], NULL, count, (void¥*) O0);
Pthread create(&tid[l], NULL, count, (void¥*) 1);
Pthread join(tid[0], NULL);

Pthread join(tid[1l], NULL);

printf ("cnt=%d\n", cnt);

return O;

}

void *count (void *vargp)

{

int 1i;

int id = (int) vargp;

for (1 = 0; i < NITERS; i++) {
P(&mutex[id]); P(&mutex[1l-id]);
cnt++;
V(&mutex[id]); V(&mutex[l-id]) ;

}

return NULL;

}

Brya. Carna O rranar orr, COTITPUTET JySteTTTS. AR T Tograrrirer st er

Carnegie Mellon

Deadlock

c
o
=
©
w
e
=
<
[
o
2
pras]
(S}
[}
o
0
e
[}
a
)
R
[}
IS
IS
©
[
Qo
o
s
a
<
»
S
[}
+
Y
>
(%]
.
[}
=
>3
Q.
S
(e}
(]
c
o
<
©
©
I
@)
©
c
©
+
c
©
>
j-
o

Carnegie Mellon

AVOid i ng Dead IOCk Acquire shared resources in same order

int main(int argc, char** argv)

{

pthread t tid[2];

Sem init(&mutex[0], O, 1); /* mutex[0] =1 */
Sem init(&mutex[1], O, 1); /* mutex[l] =1 */
Pthread create(&tid[0], NULL, count, (void¥*) O0);
Pthread create(&tid[l], NULL, count, (void¥*) 1);
Pthread join(tid[0], NULL);

Pthread join(tid[1l], NULL);

printf ("cnt=%d\n", cnt);

return O;

}

void *count (void *vargp)

{

(int) wvargp;
= 0; i < NITERS; i++) {
P(&mutex[0]); P(&mutex[1l])
cnt++;
V(&mutex[id]); V(&mutex[l-id]) ;
}
return NULL;

=

Carnegie Mellon

Today

m Using semaphores to schedule shared resources
" Producer-consumer problem

® Readers-writers problem

m Other concurrency issues
® Races
= Deadlocks

" Thread safety

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Crucial concept: Thread Safety

m Functions called from a thread must be thread-safe

Def: A function is thread-safe iff it will always produce
correct results when called repeatedly from multiple
concurrent threads.

Classes of thread-unsafe functions:
® (Class 1: Functions that do not protect shared variables
= (Class 2: Functions that keep state across multiple invocations
® (Class 3: Functions that return a pointer to a static variable
= (Class 4: Functions that call thread-unsafe functions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Carnegie Mellon

Thread-Unsafe Functions (Class 1)

m Failing to protect shared variables

" Fix: Use P and V semaphore operations
= Example: goodent.c

" |ssue: Synchronization operations will slow down code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Thread-Unsafe Functions (Class 2)

m Relying on persistent state across multiple function invocations
= Example: Random number generator that relies on static state

static unsigned int next = 1;

/* rand: return pseudo-random integer on 0..32767 */
int rand(void)
{

next = next*1103515245 + 12345;

return (unsigned int) (next/65536) % 32768;

}

/* srand: set seed for rand() */
void srand(unsigned int seed)

{

next = seed;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Thread-Safe Random Number Generator

m Pass state as part of argument

= and, thereby, eliminate static state

/* rand r - return pseudo-random integer on 0..32767 */

int rand r(int *nextp)
{
*nextp = *nextp*1103515245 + 12345;
return (unsigned int) (*nextp/65536) % 32768;

m Consequence: programmer using rand _r must maintain seed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Thread-Unsafe Functions (Class 3)

/* Convert integer to string */
char *itoa(int x)

m Returning a pointer toa {

static variable static char buf[11];
. . . sprintf (buf, "%d", x);
m Fix 1. Rewrite function so I ETRE L

caller passes address of
variable to store result

= Requires changes in caller and | char *1c_itoa(int x, char *dest)
callee {

P (&mutex) ;

m Fix 2. Lock-and-copy strcpy (dest, itoa(x));
V (&mutex) ;

= Requires simple changes in return dest:

caller (and none in callee)

However, caller must free
memory.
Warning: Some functions like gethostbyname

require a deep copy. Use reentrant
gethostbyname rversion instead.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Thread-Unsafe Functions (Class 4)

m Calling thread-unsafe functions

® Calling one thread-unsafe function makes the entire function that calls it
thread-unsafe

= Fix: Modify the function so it calls only thread-safe functions ©

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Reentrant Functions

m Def: A function is reentrant iff it accesses no shared
variables when called by multiple threads.
" |mportant subset of thread-safe functions
= Require no synchronization operations

= Only way to make a Class 2 function thread-safe is to make it
reetnrant (e.g.,, rand r)

All functions

Thread-safe
functions

Thread-unsafe
Reentrant functions

functions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Thread-Safe Library Functions

m All functions in the Standard C Library (at the back of your
K&R text) are thread-safe

= Examples:malloc, free, printf, scanf

m Most Unix system calls are thread-safe, with a few
exceptions:

Thread-unsafe function Class Reentrant version

asctime 3 asctime r

ctime ctime r
gethostbyaddr gethostbyaddr r
gethostbyname gethostbyname r
inet ntoa (none)
localtime localtime r
rand rand r

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Threads Summary

m Threads provide another mechanism for writing concurrent
programs

m Threads are growing in popularity
= Somewhat cheaper than processes
= Easy to share data between threads

m However, the ease of sharing has a cost:

= Easy to introduce subtle synchronization errors
" Tread carefully with threads!

m For more info:

= D. Butenhof, “Programming with Posix Threads”, Addison-Wesley,
1997

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

