
CS 598kn - Fall 2017

CS 598KN

Advanced Multimedia Systems Design

Lecture 2 – Video and Basic

Compression Concepts

Klara Nahrstedt

Fall 2017

CS 598kn - Fall 2017

Overview

 Basics of Video Characteristics

 Basic Coding Concepts

 RLE, Huffman Coding, JPEG

VIDEO CHARACTERISTICS

CS 598kn - Fall 2017

Video

 Sequence of Digital Images

 Important Video Characteristics

Spatial Characteristics

 Video Image Resolution characterized by Size and

Viewing Distance, Brightness, Color

Temporal Characteristics

 Temporal resolution characterized by Video Frame

Rate and Flicker avoidance

CS 598kn - Fall 2017

Visual Perception: Resolution and Brightness

 Spatial Resolution (depends

on:)

 Image size

 Viewing distance

 Brightness

 Perception of brightness is

higher than perception of color

 Different perception of primary

colors

 Relative brightness:

green:red:blue=59%:30%:1

1%

 B/W vs. Color

CS 598kn - Fall 2017
Source: wikipedia

Temporal Resolution

 Flicker

Perceived if frame rate or refresh rate of

screen too low (<50Hz)

Especially in large bright areas

 Higher refresh rate requires

Higher scanning frequency

Higher bandwidth

CS 598kn - Fall 2017

Visual Perception Influence

 Viewing distance

 Display ratio (width/height – 4/3 for

conventional TV, new TVs have ratio 16/9)

 Number of details still visible

 Intensity (luminance)

CS 598kn - Fall 2017

Visual Perception: Temporal

Resolution

CS 598kn - Fall 2017

 Effects caused by inertia of human eye

 Perception of 16 frames/second as continuous

sequence

 Special Effect: Flicker

Analog Video (TV)
 Production (capture)

 2D array of light energy to

electrical signals

 signals must adhere to known,
structured formats

 Representation and Transmission

 popular formats include NTSC,

PAL, SECAM, HDTV

 Re-construction

 CRT technology and raster scanning

 display issues (refresh rates,
temporal resolution)

 relies on principles of human visual
system CS 598kn - Fall 2017

Analog Video Representations
 Composite

USA NTSC - 6MHz (4.2MHz video), 29.97 fps

 Component

Maintain separate signals for color

 Color spaces

RGB, YUV, YCRCB, YIQ (color space in USA)

Y component determines brightness of the

color (luminance or luma)

U and V components determine the color

itself (chroma) CS 598kn - Fall 2017

RGB to YCbCr Coversion

CS 598kn - Fall 2017
Source: Wikipedia

YIQ
 NTSC standard

 Y – luma information

 I – in-phase (chroma)

 Q quadratre

amplitude modulation

(chroma)

 YIQ from RGB

Y = .299R + .587G + .114B

I = .74 (R - Y) - .27 (B - Y)

Q = 0.48 (R - Y) + 0.41 (B -

Y)

CS 598kn - Fall 2017
Source: wikipedia

YIQ with Y=0.5

HDTV

 Digital Television Broadcast (DTB) System

 Twice as many horizontal and vertical

columns and lines as traditional TV

 Resolutions:

1920x1080 (1080p) – Standard HDTV

 HDTV Frame rate (refresh rate): 60 times

a second or 60Hz (60 frames per second);

CS 598kn - Fall 2017

UHD (Ultra-High-Definition)

 Resolutions:

3840 pixel x 2160 lines (8.3 megapixel) – 4K

UHD

7680 pixels x 4320 lines (33.2 megapixel) –

8K UHD

 UHD Frame rate (refresh rate): 120fps

and 240fps

CS 598kn - Fall 2017

Aspect Ratio and Refresh Rate

 Aspect ratio

 Conventional TV is

4:3 (1.33)

 HDTV is 16:9 (2.11)

 Cinema uses 1.85:1

or 2.35:1

 Frame Rate

 NTSC is 60Hz interlaced

(actually 59.94Hz)

 PAL/SECAM is 50Hz

interlaced

 Cinema is 24Hz non-

interlaced
CS 598kn - Fall 2017

Source: wikipedia

BASIC CODING CONCEPTS

CS 598kn - Fall 2017

Data Compression

 Branch of information theory

minimize amount of information to be

transmitted

 Transform a sequence of characters into a

new string of bits

same information content

 length as short as possible

CS 598kn - Fall 2017

Concepts

 Coding (the code) maps source messages from

alphabet (A) into code words (B)

 Source message (symbol) is basic unit into which a

string is partitioned

 can be a single letter or a string of letters

 EXAMPLE: aa bbb cccc ddddd eeeeee fffffffgggggggg

 A = {a, b, c, d, e, f, g, space}

 B = {0, 1}
CS 598kn - Fall 2017

Taxonomy of Codes

 Block-block

 source msgs and code words of fixed length; e.g.,

ASCII

 Block-variable

 source message fixed, code words variable; e.g.,

Huffman coding

 Variable-block

 source variable, code word fixed; e.g., RLE, LZW

 Variable-variable

 source variable, code words variable; e.g., Arithmetic
CS 598kn - Fall 2017

Example of Block-Block

 Coding “aa bbb cccc ddddd

eeeeee fffffffgggggggg”

 Requires 120 bits

Symbol Code word

a 000

b 001

c 010

d 011

e 100

f 101

g 110

space 111

Example of Variable-Variable

 Coding “aa bbb cccc ddddd

eeeeee fffffffgggggggg”

 Requires 30 bits

 don’t forget the spaces

Symbol Code word

aa 0

bbb 1

cccc 10

ddddd 11

eeeeee 100

fffffff 101

gggggggg 110

space 111

Static Codes

 Mapping is fixed before transmission

message represented by same codeword

every time it appears in ensemble

Huffman coding is an example

 Better for independent sequences

probabilities must be known in advance; or

values computed from other data sources

CS 598kn - Fall 2017

Dynamic Codes

 Mapping changes over time

also referred to as adaptive coding

 Attempts to exploit locality of reference

periodic, frequent occurrences of messages

dynamic Huffman is an example

 Hybrids?

build set of codes, select based on input
CS 598kn - Fall 2017

Traditional Evaluation Criteria

 Algorithm complexity

running time

 Amount of compression

redundancy

compression ratio

 How to measure?
CS 598kn - Fall 2017

Measure of Information

 Consider symbols si and the probability of

occurrence of each symbol p(si)

 In case of fixed-length coding , smallest

number of bits per symbol needed is

 L ≥ log2(N) bits per symbol

Example: Message with 5 symbols need 3

bits (L ≥ log25)

CS 598kn - Fall 2017

Variable-Length Coding-

Entropy

 What is the minimum number of bits per

symbol?

 Answer: Shannon’s result – theoretical

minimum average number of bits per code

work is known as Entropy (H)

n

i

ii spsp
1

)(log)(2

CS 598kn - Fall 2017

Entropy Example

 Alphabet = {A, B}

p(A) = 0.4; p(B) = 0.6

 Compute Entropy (H)

-0.4*log2 0.4 + -0.6*log2 0.6 = .97 bits

 Maximum uncertainty (gives largest H)

occurs when all probabilities are equal

CS 598kn - Fall 2017

Redundancy

 Difference between avg. codeword length

(L) and avg. information content (H)

 If H is constant, then can just use L

 Relative to the optimal value

CS 598kn - Fall 2017

Compression Ratio

 Compare the average message length and the

average codeword length

 e.g., average L(message) / average L(codeword)

 Example:

 {aa, bbb, cccc, ddddd, eeeeee, fffffff, gggggggg}

 average message length is 5

 Relative to the original data

CS 598kn - Fall 2017

Symmetry

 Symmetric compression

 requires same time for encoding and decoding

 used for live mode applications (teleconference)

 Asymmetric compression

 performed once when enough time is available

 decompression performed frequently, must be fast

 used for retrieval mode applications (e.g., an

interactive CD-ROM)

CS 598kn - Fall 2017

Entropy Coding Algorithms

(Content Dependent Coding)
 Run-length Encoding (RLE)

Replaces sequence of the same consecutive

bytes with number of occurrences

Number of occurrences is indicated by a

special flag (e.g., !)

Example:

 abcccccccccdeffffggg (20 Bytes)

 abc!9def!4ggg (13 bytes)

CS 598kn - Fall 2017

Variations of RLE (Zero-

suppression technique)

 Assumes that only one symbol appears

often (blank)

 Replace blank sequence by M-byte and a

byte with number of blanks in sequence

Example: M3, M4, M14,…

 Some other definitions are possible

Example:

 M4 = 8 blanks, M5 = 16 blanks, M4M5=24 blanks

CS 598kn - Fall 2017

Huffman Encoding
 Statistical encoding

 To determine Huffman code, it is useful to
construct a binary tree

 Leaves are characters to be encoded

 Nodes carry occurrence probabilities of the
characters belonging to the subtree

 Example (homework): How does a Huffman
code look like for symbols with statistical symbol
occurrence probabilities:

P(A) = 8/20, P(B) = 3/20, P(C) = 7/20, P(D) =
2/20?

CS 598kn - Fall 2017

Huffman Encoding (Example)

P(C) = 0.09 P(E) = 0.11 P(D) = 0.13 P(A)=0.16

P(B) = 0.51

Step 1 : Sort all Symbols according to their probabilities
(left to right) from Smallest to largest

these are the leaves of the Huffman tree

CS 598kn - Fall 2017

Huffman Encoding (Example)

P(C) = 0.09 P(E) = 0.11 P(D) = 0.13 P(A)=0.16

P(B) = 0.51

P(CE) = 0.20
P(DA) = 0.29

P(CEDA) = 0.49

P(CEDAB) = 1
Step 2: Build a binary tree from left to
Right
Policy: always connect two smaller nodes
together (e.g., P(CE) and P(DA) had both
Probabilities that were smaller than P(B),
Hence those two did connect first

CS 598kn - Fall 2017

Huffman Encoding (Example)

P(C) = 0.09 P(E) = 0.11 P(D) = 0.13 P(A)=0.16

P(B) = 0.51

P(CE) = 0.20
P(DA) = 0.29

P(CEDA) = 0.49

P(CEDAB) = 1

0 1

0 1

0 1

Step 3: label left branches of the tree
With 0 and right branches of the tree
With 1

0 1

CS 598kn - Fall 2017

Huffman Encoding (Example)

P(C) = 0.09 P(E) = 0.11 P(D) = 0.13 P(A)=0.16

P(B) = 0.51

P(CE) = 0.20
P(DA) = 0.29

P(CEDA) = 0.49

P(CEDAB) = 1

0 1

0 1

0 1

Step 4: Create Huffman Code
Symbol A = 011
Symbol B = 1
Symbol C = 000
Symbol D = 010
Symbol E = 001

0 1

CS 598kn - Fall 2017

Huffman Decoding

 Assume Huffman

Table

 Symbol Code

X 0

Y 10

Z 11

Consider encoded

bitstream:

000101011001110

CS 598kn - Fall 2017

What is the decoded string?

Limitations

 Diverges from lower limit when probability
of a particular symbol becomes high

always uses an integral number of bits

 Must send code book with the data

 lowers overall efficiency

 Must determine frequency distribution

must remain stable over the data set
CS 598kn - Fall 2017

IMAGE COMPRESSION

(CONCEPTS USED IN MPEG

AND H.26X)
CS 598kn - Fall 2017

JPEG (Joint Photographic Experts

Group)

 Requirements:

Very good compression ratio and good quality

image

 Independent of image size

Applicable to any image and pixel aspect ratio

Applicable to any complexity (with any

statistical characteristics)

CS 598kn - Fall 2017

Hybrid Coding

CS 598kn - Fall 2017

Picture Preparation

 Generation of appropriate digital

representation

 Image division into 8x8 blocks

 Fix number of bits per pixel (first level

quantization – mapping from real numbers

to bit representation)

CS 598kn - Fall 2017

Other Compression Steps
 Picture processing (Source Coding)

Transformation from time to frequency domain

(e.g., use Discrete Cosine Transform)

Motion vector computation in video

 Quantization

Reduction of precision, e.g., cut least

significant bits

Quantization matrix, quantization values

 Entropy Coding

Huffman Coding + RLE
CS 598kn - Fall 2017

JPEG Compression

FDCT

Source

Image

Quantizer
Entropy

Encoder

TableTable

Compressed

image data

DCT-based encoding

8x8 blocks

R

B

G

CS 598kn - Fall 2017

Image Preparation

 The image preparation is NOT BASED on

9-bit YUV encoding

Fixed number of lines and columns

Mapping of encoded chrominance

 Source image consists of components

(Ci) and to each component we assign

YUV, RGB or TIQ signals.

CS 598kn - Fall 2017

Division of Source Image into

Planes

CS 598kn - Fall 2017

Components and their

Resolutions

CS 598kn - Fall 2017

Color Transformation (optional)

 Down-sample chrominance components

compress without loss of quality (color space)

e.g., YUV 4:2:2 or 4:1:1

 Example: 640 x 480 RGB to YUV 4:1:1

Y is 640x480

U is 160x120

V is 160x120

CS 598kn - Fall 2017

Image Preparation (Pixel

Allocation)
 Each pixel is presented by ‘p’ bits, value is

in range of (0,2p-1)

 All pixels of all components within the

same image are coded with the same

number of bits

 Lossy modes use precision 8 or 12 bits

per pixel

 Lossless mode uses precision 2 up to 12

bits per pixel
CS 598kn - Fall 2017

Image Preparation - Blocks

 Images are divided into data units, called

blocks – definition comes from DCT

transformation since DCT operates on

blocks

 Lossy mode – blocks of 8x8 pixels;

lossless mode – data unit 1 pixel

CS 598kn - Fall 2017

Data Unit Ordering

 Non-interleaved: scan from left to right, top

to bottom for each color component

 Interleaved: compute one “unit” from each

color component, then repeat

 full color pixels after each step of decoding

but components may have different resolution

CS 598kn - Fall 2017

Interleaved Data Ordering

 Interleaved data units of different

components are combined into Minimum

Coded Units (MCUs)

 If image has the same resolution, then

MCU consists of exactly one data unit for

each component

 If image has different resolution for each

component, reconstruction of MCUs is

more complex
CS 598kn - Fall 2017

Example

[Wallace, 1991]
CS 598kn - Fall 2017

Image Processing

 Shift values [0, 2P - 1] to [-2P-1, 2P-1 - 1]

e.g. if (P=8), shift [0, 255] to [-127, 127]

DCT requires range be centered around 0

 Values in 8x8 pixel blocks are spatial

values and there are 64 samples values in

each block

CS 598kn - Fall 2017

Forward DCT

 Convert from spatial to frequency domain

convert intensity function into weighted sum of
periodic basis (cosine) functions

 identify bands of spectral information that can
be thrown away without loss of quality

 Intensity values in each color plane often
change slowly

CS 598kn - Fall 2017

DCT Basic Functions

 Decompose the intensity function into a

weighted sum of cosine basis functions

CS 598kn - Fall 2017

DCT for 2D

 Perform 1D DCT on each

row of the block

 Again for each column of

1D coefficients

 alternatively, transpose

the matrix and perform

DCT on the rows
X

Y

Equations for 2D DCT

 Forward DCT:

 Inverse DCT:

 m

vy

n

ux
yxIvCuC

nm
vuF

m

y

n

x 2

)12(
cos*

2

)12(
cos*),()()(

2
),(

1

0

1

0

 m

vy

n

ux
vCuCuvF

nm
xyI

m

v

n

u 2

)12(
cos*

2

)12(
cos)()(),(

2
),(

1

0

1

0

Visualization of Basis Functions

In
crea

sin
g

 freq
u

en
cy

Increasing frequency

CS 598kn - Fall 2017

Coefficient Differentiation

 F(0,0)

 includes the lowest frequency in both

directions

 is called DC coefficient

Determines fundamental color of the block

 F(0,1) …. F(7,7)

are called AC coefficients

Their frequency is non-zero in one or both

directions

CS 598kn - Fall 2017

Quantization
 Throw out bits

 Consider example: 1011012 = 45 (6 bits)
 We can truncate this string to 4 bits: 10112 = 11

 We can truncate this string to 3 bits: 1012 = 5 (original
value 40) or 1102 = 6 (original value 48)

 Uniform quantization is achieved by dividing DCT
coefficients by N and round the result (e.g., above
we used N=4 or N=8)

 In JPEG – use quantization tables
 Fq(u,v) = F(u,v)/Quv

 Two quantization tables – one for luminance and one for
two chrominance components

CS 598kn - Fall 2017

De facto Quantization Table

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Eye becomes less sensitive

E
y

e b
eco

m
es less sen

sitiv
e

CS 598kn - Fall 2017

Entropy Encoding

 Compress sequence of quantized DC and

AC coefficients from quantization step

 further increase compression, without loss

 Separate DC from AC components

DC components change slowly, thus will be

encoded using difference encoding

CS 598kn - Fall 2017

DC Encoding

 DC represents average intensity of a block

encode using difference encoding scheme

use 3x3 pattern of blocks

 Because difference tends to be near zero,
can use less bits in the encoding

categorize difference into difference classes

send the index of the difference class,
followed by bits representing the difference

CS 598kn - Fall 2017

Difference Coding applied to DC

Coefficients

CS 598kn - Fall 2017

AC Encoding

 Use zig-zag ordering of coefficients

orders frequency components from low->high

produce maximal series of 0s at the end

Ordering helps to apply efficiently entropy

encoding

 Apply Huffman coding

 Apply RLE on AC zero

values

CS 598kn - Fall 2017

Huffman Encoding

 Sequence of DC difference indices and values

along with RLE of AC coefficients

 Apply Huffman encoding to sequence

 Attach appropriate headers

 Finally have the JPEG image!

CS 598kn - Fall 2017

Interchange Format of JPEG

CS 598kn - Fall 2017

ADDITIONAL SLIDES

CS 598kn - Fall 2017

Huffman Example

 Construct the Huffman

coding tree (in class)
Symbol (S) P(S)

A 0.25

B 0.30

C 0.12

D 0.15

E 0.18

Characteristics of Solution

Symbol (S) Code

A 01

B 11

C 100

D 101

E 00

CS 598kn - Fall 2017

Example Encoding/Decoding

Encode “BEAD”

 110001101

 Decode “0101100”

Symbol (S) Code

A 01

B 11

C 100

D 101

E 00

CS 598kn - Fall 2017

Entropy (Theoretical Limit)

= -.25 * log2 .25 +

-.30 * log2 .30 +

-.12 * log2 .12 +

-.15 * log2 .15 +

-.18 * log2 .18

H = 2.24 bits

N

i

ii spspH
1

)(log)(2
Symbol P(S) Code

A 0.25 01

B 0.30 11

C 0.12 100

D 0.15 101

E 0.18 00

Average Codeword Length

= .25(2) +

.30(2) +

.12(3) +

.15(3) +

.18(2)

L = 2.27 bits

N

i

ii scodelengthspL
1

)()(Symbol P(S) Code

A 0.25 01

B 0.30 11

C 0.12 100

D 0.15 101

E 0.18 00

Code Length Relative to

Entropy

 Huffman reaches entropy limit when all

probabilities are negative powers of 2

 i.e., 1/2; 1/4; 1/8; 1/16; etc.

 H <= Code Length <= H + 1

N

i

ii spspH
1

)(log)(2

N

i

ii scodelengthspL
1

)()(

CS 598kn - Fall 2017

Example

H = -.01*log2.01 +

-.99*log2.99

= .08

L = .01(1) +

.99(1)

= 1

Symbol P(S) Code

A 0.01 1

B 0.99 0

CS 598kn - Fall 2017

Group Exercise

 Compute Entropy (H)

 Build Huffman tree

 Compute average

code length

 Code “BCCADE”

Symbol (S) P(S)

A 0.1

B 0.2

C 0.4

D 0.2

E 0.1

CS 598kn - Fall 2017

Arithmetic Coding

 Optimal algorithm as Huffman coding wrt

compression ratio

 Better algorithm than Huffman wrt

transmitted amount of information

Huffman – needs to transmit Huffman tables

with compressed data

Arithmetic – needs to transmit length of

encoded string with compressed data

CS 598kn - Fall 2017

Arithmetic Coding

 Each symbol is coded by considering the prior

data

 Encoded data must be read from the beginning,

there is no random access possible

 Each real number (< 1) is represented as binary

fraction

 0.5 = 2-1 (binary fraction = 0.1); 0.25 = 2-2 (binary

fraction = 0.01), 0.625 = 0.5+0.125 (binary fraction =

0.101) ….

CS 598kn - Fall 2017

CS 598kn - Fall 2017

CS 598kn - Fall 2017

