HW 4

DUE: Friday, September 29, 3pm

Section 1.9

Exercises: 2, (8), 16, (18), (20), 24, (29), 30, (32), 38, (40)

In Exercises 1–10, assume that T is a linear transformation. Find the standard matrix of T.

1.9.2. $T: \mathbb{R}^3 \to \mathbb{R}^2$, $T(\mathbf{e}_1) = (1,3)$, $T(\mathbf{e}_2) = (4,-7)$, and $T(\mathbf{e}_3) = (-5,4)$, where \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 are the columns of the 3 imes 3 identity matrix.

1.9.8. (recommended) $T: \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the horizontal x_1 -axis and then reflects points through the line $x_2 = x_1$.

1.9.16. Fill in the missing entries of the matrix, assuming that the equation holds for all values of the variables.

$$egin{bmatrix} ? & ? \ ? & ? \ ? & ? \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} x_1 - x_2 \ -2x_1 + x_2 \ x_1 \end{bmatrix}$$

In Exercises 17–20, show that *T* is a linear transformation by finding a matrix that implements the mapping.

1.9.18. (recommended) $T(x_1, x_2) = (2x_2 - 3x_1, x_1 - 4x_2, 0, x_2)$

1.9.20. (recommended) $T(x_1, x_2, x_3, x_4) = 2x_1 + 3x_3 - 4x_4 \quad (T: \mathbb{R}^4 o \mathbb{R})$

1.9.24. Mark each statement True or False. Justify each answer.

a. Not every linear transformation from \mathbb{R}^n to \mathbb{R}^m is a matrix transformation.

b. The columns of the standard matrix for a linear transformation from \mathbb{R}^n to \mathbb{R}^m are the images of the columns of the $n \times n$ identity matrix.

c. The standard matrix of a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 that reflects points through the horizontal axis,

The vertical axis, or the origin has the form $\begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$, where *a* and *d* are 1 or -1.

d. A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each vector in \mathbb{R}^n maps onto a unique vector in \mathbb{R}^m . **e.** If *A* is a 3×2 matrix, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ cannot map \mathbb{R}^2 onto \mathbb{R}^3 .

1.9.29. (recommended) Suppose $T: \mathbb{R}^3 \to \mathbb{R}^4$ is one-to-one. Describe the possible echelon forms of the standard matrix for *T*. Use the notation of Example 1 in Section 1.2.

1.9.30. Suppose $T: \mathbb{R}^4 \to \mathbb{R}^3$ is onto. Describe the possible echelon forms of the standard matrix for *T*. Use the notation of Example 1 in Section 1.2.

1.9.32. (recommended) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, with A its standard matrix. Complete the following statement to make it true: "T maps \mathbb{R}^n onto \mathbb{R}^m if and only if A has _____ pivot columns." Find some theorems that explain why the statement is true.

In Exercises 38 and 40, let *T* be the linear transformation whose standard matrix is given. In Exercises 38, decide if *T* is a one-to-one mapping. In Exercises 40, decide if *T* maps \mathbb{R}^5 onto \mathbb{R}^5 . Justify your answers.

1.9.38.

Γ7	5	4	-97
10	6	16	-4
12	8	12	7
$\lfloor -8 \rfloor$	-6	-2	5

1.9.40. (recommended)

5	13	5	6	-1
14	15	-7	-6	4
-8	-9	12	-5	-9
-5	-6	-8	9	8
13	14	15	2	11

Section 2.1

Exercises: 2, 4, 6, 16, 18, (22)

2.1.2. Let
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & -5 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 7 & -5 & 1 \\ 1 & -4 & -3 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$, $E = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$. Compute each expression if it is defined:

a. A + 2B **b.** 3C - E **c.** CB **d.** EBIf an expression is undefined, explain why.

2.1.4. Compute $A - 5I_3$ and $(5I_3)A$, when $A = \begin{bmatrix} 9 & -1 & 3 \\ -8 & 7 & -6 \\ -4 & 1 & 8 \end{bmatrix}$.

2.1.6. Let $A = \begin{bmatrix} 4 & -2 \\ -3 & 0 \\ 3 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$. Compute the product *AB* in two ways: (a) by the definition, where *A***b**₁ and *A***b**₂ are computed separately, and (b) by the row-column rule for computing *AB*.

2.1.16. Let *A*, *B*, and *C* be arbitrary matrices for which the indicated sums and products are defined. Mark each statement True or False. Justify each answer.

a. If A and B are 3×3 and $B = [\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3]$, then $AB = [A\mathbf{b}_1 + A\mathbf{b}_2 + A\mathbf{b}_3]$.

b. The second row of AB is the second row of A multiplied on the right by B.

 $\mathbf{c.} (AB)C = (AC)B$

d. $(AB)^{\top} = A^{\top}B^{\top}$

e. The transpose of a sum of matrices equals the sum of their transposes.

2.1.18. Suppose the first two columns, b_1 and b_2 , of *B* are equal. What can you say about the columns of *AB* (assume *AB* is defined)? Why?

2.1.22. (recommended) Show that if the columns of *B* are linearly dependent, then so are the columns of *AB*.

Section 2.2

Exercises: (3), 4, 6, (15), 18, 32

Find the inverses of the matrices in Exercises 1–4.

2.2.3. (recommended) $\begin{bmatrix} 8 & 5 \\ -7 & -5 \end{bmatrix}$

2.2.4. $\begin{bmatrix} 3 & -4 \\ 7 & -8 \end{bmatrix}$

2.2.6. Use the inverse found in Exercise 3 to solve the system

2.2.15. (recommended) Suppose *A*, *B*, and *C* are invertible $n \times n$ matrices. Show that *ABC* is also invertible by producing a matrix *D* such that (ABC)D = I and D(ABC) = I.

2.2.18. Suppose *P* is invertible and $A = PBP^{-1}$. Solve for *B* in terms of *A*.

	Γ 1	-2	1	
2.2.32. Find the inverses of the matrix	4	-7	3	if
	$\lfloor -2$	6	-4	
section				

if it exists. Use the algorithm introduced in this

section.