HW 7

DUE Friday, October 27, 3pm Section 4.1: 2, 10, 12, (15), (17), 18, (20), 24 Section 4.2: 4, 8, 10, 14, 26, (30), (35) Section 4.3: 2, (3), 6, 8, (9), (13), 16, 22, (31), (32)

Section 4.1

Exercises: 2, 10, 12, (15), (17), 18, (20), 24

4.1.2. Let *W* be the union of the first and third quadrants in the *xy*-plane. That is, let $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid xy \ge 0 \right\}$.

a. If **u** is in *W* and *c* is any scalar, is *c***u** in *W*? Why?

b. Find specific vectors **u** and **v** such that $\mathbf{u} + \mathbf{v}$ is not in *W*. (This is enough to show that *W* is *not* a vector space.)

	$\begin{bmatrix} 2t \end{bmatrix}$	
4.1.10. Let H be the set of all vectors of the form	0	. Show that H is a subspace of $\mathbb{R}^3.$ (<i>Hint:</i> Find a
	$\lfloor -t \rfloor$	
vector $\mathbf{v} \in \mathbb{R}^3$ such that $H = \operatorname{Span}\{\mathbf{v}\}$.)		

4.1.12. Let W be the set of all vectors of the form	$egin{bmatrix} s+3t\ s-t\ 2s-t \end{bmatrix}$	for arbitrary real numbers s and t . Show that H is
a subspace of $\mathbb{R}^4.$ (<i>Hint:</i> Use the method of Exercis	$\begin{bmatrix} 4t \end{bmatrix}$ se 4.1.11.)	

4.1.15. (recommended)

3a+b4 for arbitrary real numbers *a* and *b*. Find a set of vectors Let W be the set of all vectors of the form a-5bthat spans W, or say why (or give an example to show) that W is *not* a vector space.

4.1.17. (recommended)

	a-b								
Let W be the set of all vectors of the form	b-c	for arbitrary real numbers a , b , and c . Find a set of vectors							
	c-a								
	b								
that spans W_{i} or source by (or give an example to show) that W_{i} is not a vector space									

that spans W, or say why (or give an example to show) that W is not a vector space.

4.1.18. Let *W* be the set of all vectors of the form $\begin{vmatrix} 4a + 3b \\ 0 \\ a + b + c \\ c - 2c \end{vmatrix}$ for arbitrary real numbers *a*, *b*, and *c*. Find a

set of vectors that spans W, or say why (or give an example to show) that W is *not* a vector space.

4.1.20. (recommended)

The set of all continuous real-valued functions defined on a closed interval [a, b] of \mathbb{R} is denoted by C[a, b]. This set is a subspace of the vector space of all real-valued functions defined on [a, b].

a. What facts about continuous functions should be proved in order to demonstrate that C[a, b] is indeed a subspace as claimed? (These facts are usually discussed in a calcu- lus class.)

b. Show that $\{\mathbf{f} \in C[a, b] \mid \mathbf{f}(a) = \mathbf{f}(b)\}\$ is a subspace of C[a, b].

4.1.24. Mark each statement True or False. Justify each answer.

a. A vector is any element of a vector space.

b. If **u** is a vector in a vector space *V*, then $(-1)\mathbf{u}$ is the same as the negative of **u**.

c. A vector space is also a subspace.

d. \mathbb{R}^2 is a subspace of \mathbb{R}^3 .

e. A subset H of a vector space V is a subspace of V if the following conditions are satisfied: (i) the zero vector of V is in H; (ii) **u**, **v**, and **u** + **v** are in H; (iii) c is a scalar and c**u** is in H. (If this is false, give the correct conditions.)

Section 4.2

Exercises: 4, 8, 10, 14, 26, (30), (35)

4.2.4. Let $A = \begin{bmatrix} 1 & -6 & 4 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}$. Find an explicit description of Nul *A* by listing vectors that span the null space.

4.2.8. Let $W = \begin{cases} \begin{vmatrix} r \\ s \\ t \end{vmatrix} : 5r - 1 = s + 2t \end{cases}$. Use an appropriate theorem to show that W is a vector space, or give a specific reason or example demonstrating that W is not a subspace.

4.2.10. Let

$$W = \left\{ egin{bmatrix} a \ b \ c \ d \end{bmatrix} : a + 3b = c ext{ and } a + b + c = d
ight\}.$$

Use an appropriate theorem to show that W is a vector space, or give a specific reason or example demonstrating that W is not a subspace.

4.2.14. Let $W = \left\{ \begin{bmatrix} -a+2b \\ a-2b \\ 3a-6b \end{bmatrix} : a, b \in \mathbb{R} \right\}$. Use an appropriate theorem to show that W is a vector space,

or give a specific reason or example demonstrating that W is not a subspace.

4.2.26. Let *A* be an $m \times n$ matrix. Mark each statement True or False. Justify each answer.

- **a.** A null space is a vector space.
- **b.** The column space of an $m \times n$ matrix is in \mathbb{R}^m .
- **c.** Col *A* is the set of all solutions to $A\mathbf{x} = \mathbf{b}$.
- **d.** Nul *A* is the kernel of the mapping $\mathbf{x} \mapsto A\mathbf{x}$.

e. The range of a linear transformation is a vector space.

f. The set of all solutions of a homogeneous linear differential equation is the kernel of a linear transformation.

4.2.30. (recommended)

Let $T: V \to W$ be a linear transformation from a vector space V into a vector space W. Prove that the range of T is a subspace of W. [*Hint:* Typical elements of the range have the form $T(\mathbf{x})$ and $T(\mathbf{y})$ for \mathbf{x} , \mathbf{y} in V.]

4.2.35. (recommended) Let $T : V \to W$ be a linear transformation from a vector space V into a vector space W. Given a subspace U of V, let T(U) denote the image of U under T. That is, $T(U) = \{T(\mathbf{u}) : \mathbf{u} \in U\}$. Show that T(U) is a subspace of W.

Section 4.3

Exercises: 2, (3), 6, 8, (9), (13), 16, 22, (31), (32)

Determine which sets in Exercises 1–8 are bases for \mathbb{R}^3 . Of the sets that are not bases, determine which ones are linearly independent and which ones span \mathbb{R}^3 . Justify your answers.

4.3.2
$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$$
, $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$.

4.3.3. (recommended) $\begin{bmatrix} 1\\0\\-2 \end{bmatrix}, \begin{bmatrix} 3\\2\\-4 \end{bmatrix}, \begin{bmatrix} -3\\-5\\1 \end{bmatrix}.$

4.3.6. $\begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} -4 \\ -5 \\ 6 \end{bmatrix}.$

4.3.9. (recommended)

	$\lceil 1 \rceil$	0	-3	2
Find a basis for the null space of the matrix	0	1	-5	4.
	3	-2	1	-2

4.3.13. (recommended)

,	$\lceil -2 \rceil$	4	-2	-4		Γ1	0	6	5	
Let $A =$	2	-6	-3	1	and $B =$	0	2	5	3	and assume that A is row equivalent to B . Find
	$\lfloor -3 \rfloor$	8	2	-3		0	0	0	0	
bases for I	$\overline{\operatorname{Nul}}A$	and C	$\operatorname{Col} A$. –		-				

4.3.16. Find a basis for the space spanned by the following set of vectors:

ſ	[1]		$\lceil -2 \rceil$		6		$\begin{bmatrix} 5 \end{bmatrix}$		[0])
	0		1		-1		-3		3	
Ì	0	,	-1	,	2	,	3	,	-1	ſ
l	1		1		$\lfloor -1 \rfloor$		-4		1	J

4.3.22. Mark each statement True or False. Justify each answer.

a. A linearly independent set in a subspace H is a basis for H.

b. If a finite set S of nonzero vectors spans a vector space V, then some subset of S is a basis for V.

c. A basis is a linearly independent set that is as large as possible.

d. The standard method for producing a spanning set for Nul *A*, described in Section 4.2, sometimes fails to produce a basis for Nul *A*.

e. If *B* is an echelon form of a matrix *A*, then the pivot columns of *B* form a basis for Col A.

4.3.31. (recommended)

Let *V* and *W* be vector spaces, let $T: V \to W$ be a linear transformation, and let $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ be a subset of *V*. Show that if $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ linearly dependent in *V*, then the set of images, $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_p)\}$, is linearly

dependent in *W*. (This fact shows that if a linear transformation maps a set $S = {\mathbf{v}_1, \ldots, \mathbf{v}_p}$ onto a linearly independent set, then *S* is linearly independent, too.)

4.3.32. (recommended)

Suppose *T* is a one-to-one transformation, so that an equation $T(\mathbf{u}) = T(\mathbf{v})$ implies $\mathbf{u} = \mathbf{v}$. Show that if the set $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_p)\}$, of images is linearly dependent, then $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ linearly dependent. (This fact shows that a one-to-one linear transformation maps a linearly independent set onto a linearly independent set, because in this case the set of images cannot be linearly dependent).