HW 11

DUE Friday, December 8, 3pm

Section 6.1

Exercises: 16, (27), 28, (30)

6.1.16. Determine whether $\mathbf{u} = \begin{bmatrix} 12 \\ 3 \\ 5 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix}$ are orthogonal vectors.

6.1.27. (recommended)

Suppose a vector **y** is orthogonal to vectors **u** and **v**. Show that **y** is orthogonal to the vector $\mathbf{u} + \mathbf{v}$.

6.1.28. Suppose y is orthogonal to u and v. Show that y is orthogonal to every w in Span{u, v}. [*Hint:* An arbitrary **w** in Span{**u**, **v**} has the form $\mathbf{w} = c_1 \mathbf{u} + c_2 \mathbf{v}$; show that **y** is orthogonal to every such a vector.]

6.1.30. (recommended)

Let W be a subspace of \mathbb{R}^n , and let W^{\perp} be the set of all vectors orthogonal to W. Show that W^{\perp} is a subspace of \mathbb{R}^n using the following steps.

a. Take **z** in W^{\perp} , and let **u** represent any element of W. Then $\mathbf{z} \cdot \mathbf{u} = 0$. Take any scalar c and show that $c\mathbf{z}$ is orthogonal to **u**. (Since **u** was an arbitrary element of W, this will show that $c\mathbf{z}$ is in W^{\perp} .)

b. Take \mathbf{z}_1 and \mathbf{z}_2 in W^{\perp} , and let \mathbf{u} be any element of W. Show that $\mathbf{z}_1 + \mathbf{z}_2$ is orthogonal to \mathbf{u} . What can you conclude about $\mathbf{z}_1 + \mathbf{z}_2$? Why?

c. Finish the proof that W^{\perp} is a subspace of \mathbb{R}^{n} .

Section 6.2

Exercises: 10, 12, (13), 16, 24, (33)

6.2.10. Let $\mathbf{u}_1 = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix}$. Show that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an

orthogonal basis for \mathbb{R}^3 . Then express **x** as a linear combination of the **u**

6.2.12. Compute the orthogonal projection of $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ onto the line through $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$.

6.2.13. (recommended) Let $\mathbf{y} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 4 \\ -7 \end{bmatrix}$. Write \mathbf{y} as the sum of two orthogonal vectors, one in Span{ \mathbf{u} } and the other orthogonal to **u**.

6.2.16. Let $\mathbf{y} = \begin{bmatrix} -3 \\ 9 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Compute the distance from \mathbf{y} to the line passing through \mathbf{u} and the origin.

6.2.24. Mark each statement True or False. Justify each answer. All vectors are assumed to belong to \mathbb{R}^{n} .

a. Not every orthogonal set in \mathbb{R}^n is linearly independent.

b. If a set $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ has the property that $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ whenever $i \neq j$, then S is an orthonormal set.

c. If the columns of an $m \times n$ matrix A are orthonormal, then the linear mapping $\mathbf{x} \mapsto A\mathbf{x}$ preserves lengths.

d. The orthogonal projection of **y** onto **v** is the same as the orthogonal projection of **y** onto c**v** whenever $c \neq 0$.

e. An orthogonal matrix is invertible.

6.2.33. (recommended)

Suppose **u** is a nonzero vector in \mathbb{R}^n , and let $L = \text{Span}\{\mathbf{u}\}$. Show that the mapping $\mathbf{x} \mapsto \text{proj}_L \mathbf{x}$ is a linear transformation.

Section 6.3

Exercises: 6, 8, 12, (13), 16

6.3.6. Let $\mathbf{y} = \begin{bmatrix} 6\\4\\1 \end{bmatrix}$, $\mathbf{u}_1 = \begin{bmatrix} -4\\-1\\1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$. Verify that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set, and then find the orthogonal projection of \mathbf{y} onto $\operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$.

6.3.8. Let $\mathbf{y} = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix}$, $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}$. Let *W* be the subspace spanned by \mathbf{u}_1 and \mathbf{u}_2 , and write \mathbf{y} as the sum of a vector in *W* and a vector orthogonal to *W*.

6.3.12. Let $\mathbf{y} = \begin{bmatrix} 3 \\ -1 \\ 1 \\ 13 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -4 \\ 1 \\ 0 \\ 3 \end{bmatrix}$. Find the closest point to \mathbf{y} in the subspace W spanned

by \mathbf{v}_1 and \mathbf{v}_2 .

6.3.13. (recommended)

Let
$$\mathbf{z} = \begin{bmatrix} 3 \\ -7 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_1 = \begin{bmatrix} 2 \\ -1 \\ -3 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}$. Find the best approximation to \mathbf{z} by a vector of the form $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$.

6.3.16. Let \mathbf{y} , \mathbf{v}_1 , \mathbf{v}_2 be as in Exercise 12. Find the distance from \mathbf{y} to the subspace W spanned by \mathbf{v}_1 and \mathbf{v}_2 .