
Review of Vector Spaces and Matrix Algebra

Review of Linear Algebra

Definition 1. A vector space V is a collection of objects, referred to as vectors, together with an

operation of vector addition (which allows us to add two vectors together) and a scalar multiplication

(which allows us to multiply a scalar times a vector).

Here are two examples:

Example 1. For example, V = Rn = {x = (x1, x2, · · · , xn) : xj ∈ R for j = 1, · · · , n}. Here we

define the vector addition and scalar multiplication as follows.

1. Given vectors x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) we define x + y by

x + y = (x1 + y1, x2 + y2, · · · , xn + yn).

2. Given a scalar α and a vector x = (x1, x2, · · · , xn) we define αx by

αx = (αx1, αx2, · · · , αxn).

Example 2. The set of continuous functions on an interval [a, b] = {x ∈ R : a ≤ x ≤ b} which

we denote by C[a, b]. We have learned in calculus that the sum of two continuos functions is a

continuous function and a constant times a continuous function is a continuous function.

In order for a collection of vectors V with an addition and scalar multiplication to be a vector space

the following Axioms must be satisfied:

Vector Addition For every x = (x1, x2, · · · , xn),y = (y1, y2, · · · , yn), z = (z1, z2, · · · , zn) ∈ V

1. (closure property) x + y ∈ V .

2. (commutative property) (x + y) = (y + x).

3. (associative law) (x + y) + z = x + (y + z)

4. (zero vector) There is a unique zero vector 0 ∈ V satisfying x + 0 = 0 + x = x.

5. (additive inverse) For every x ∈ V there exists a vector −x ∈ V satisfying x + (−x) =

(−x) + x = 0.

Scalar Multiplication For every x = (x1, x2, · · · , xn),y = (y1, y2, · · · , yn) ∈ V and scalars k, k1

and k2

1. (closure property) kx ∈ V .

2. (distributive law 1) k(x + y) = (ky + kx).

3. (distributive law 2) (k1 + k2)x = k1x + k2x.

4. (distributive law 3) k1(k2x) = (k1k2)x.
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5. (multiplicative identity) 1x = x.

Definition 2. 1. A subset W of a vector space V (denoted W ⊂ V ) is called a subspace if it

is closed under vector addition and scalar multiplication.

2. A collection of vectors {xj}nj=1 in a vector space V is said to be Linearly Independent if the

only constants {kj}nj=1 satisfying k1x1 + k2x2 + · · ·+ knxn = 0 are k1 = k2 = · · · = kn = 0. If

a set of vectors is not linearly independent then we say it is Linearly Dependent.

3. A collection of linearly independent vectors {xj}nj=1 in a vector space V is said to be Basis

for the vector space if every x ∈ V can be written as a linear combination of the vectors

{xj}nj=1, i.e., given x ∈ V there are constants {cj}nj=1 so that x =
n∑

j=1

cjxj.

4. The number of vectors in a basis is called the Dimension of the vector space.

Example 3. A basis (called the standard basis) for Rn is

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , · · · , en =


0
0
...
0
1

 .
Therefore the dimension of Rn is n.

Example 4. The vector space C[a, b] is infinite dimensional. On the other hand the vector space

of polynomials of degree less than n, denoted by Pn, has dimension n.

The standard basis for Pn is {1, x, x2, · · · , xn−1}. In particular a polynomial of degree less than n

has the form

p(x) = a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an.

Example 5. Sometimes determinants can be a useful way to test for linear independence. For

example, if you have n vectors from Rn you can form the n × n matrix with these vectors as the

columns. The vectors are linearly independent if and only if the determinant is not zero. For

example, consider the vectors  1
−1
1

 ,
0

0
2

 ,
−1

1
1

 .
We compute the determinant of the matrix with these vectors as the columns. We find∣∣∣∣∣∣

1 0 −1
−1 0 1
1 2 1

∣∣∣∣∣∣ = 0

so the vectors are linearly dependent. On the other hand for the vectors 1
−1
1

 ,
1

0
2

 ,
−1

1
1

 .
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We compute the determinant of the matrix with these vectors as the columns. We find∣∣∣∣∣∣
1 1 −1
−1 0 1
1 2 1

∣∣∣∣∣∣ = 2

so these vectors are linearly independent.

Determinants can also be used to determine whether functions in C(n−1)(a, b) are linearly indepen-

dent using the Wronskian. Let f1(x), f2(x), · · · , fn(x) be in C(n−1)(a, b). Define the Wronskian

W (f1, · · · , fn) by

W (f1, · · · , fn)(x) =

∣∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fn(x)
f ′1(x) f ′2(x) · · · f ′n(x)

...
...

...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣
If there is a point a ≤ x0 ≤ b such that W (f1, · · · , fn)(x0) 6= 0 then the functions are linearly

independent.

Remark 1. Given a collection of linearly independent vectors {xj}`j=1 in a vector space V we

define the Span, S, of {xj}`j=1 to be the collection of all linear combinations of the vectors, i.e.,

S =

{∑̀
j=1

cjxj : for all scalars cj, j = 1, · · · , n

}
.

The span of a set of vectors is a subspace and we can say that a basis is a linearly independent

spanning set.

Another important property of the vector space Rn is that we can do geometry by introducing the

so-called dot-product (or inner product). For x,y ∈ Rn we define x · y =
n∑

j=1

xjyj. We will also

often use the notation 〈x,y〉 for the inner product.

The inner product allows us to consider tow very important things: the length of a vector and the

angle between two vectors. In particular we define the length of a vector by

|x| = 〈x,x〉1/2 =

(
n∑

j=1

x2j

)1/2

.

Notice this is exactly the formula given by the distance formula in calculus.

Then given two vectors x and y we can consider the angle θ between the vectors and using the law

of cosines we obtain a formula for cos(θ) as

cos(θ) =
〈x,y〉
|x| |y|

.
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Changing the basis in a Vector Space

We have already seen the standard basis consisting of the standard unit vectors {ej} in Rn. For

example any vector x ∈ R3 can be written as

x =

x1x2
x3

 = x1

1
0
0

+ x2

0
1
0

+ x3

0
0
1

 = x1e1 + x2e2 + x3e3.

The numbers xj are called the coordinates of the vector x with respect to the standard basis. If we

have some other basis V = {v1,v2,v3} for R3 then the vector x above can be written as a linear

combination of v1,v2,v3, i.e.,

x = α1v1 + α2v2 + α3v3

In this case we call
(
α1, α2, α3

)
V

the coordinates of x with respect to the basis V .

This idea of different coordinates for different basis can seem a bit confusing and to make matters

worse we often want to change back and forth between different bases. If we are given a vector

x =

x1x2
x3

 ∈ R3 without being given a basis then we assume it is the standard basis.

For example let us take a vector x ∈ R3 and a basis B for R3

x =

1
2
3

 , B =

v1 =

1
0
0

 , v2 =

1
1
0

 , v3 =

1
1
1

 .

Then we can write 1
2
3

 = (−1)

1
0
0

+ (−1)

1
1
0

+ (3)

1
1
1

 =

−1
−1
3


B

.

So the coordinates of x with respect to B are
(
−1, −1, 3

)
B

The general procedure for changing bases in Rn is to find a so-called transition matrix. The idea

goes like this. Suppose we have two bases

B1 = {w1,w2, · · · ,wn} and B2 = {v1,v2, · · · ,vn}.

When we write this we mean that the vectors wj and vj are vectors in Rn and the entries in these

vectors are with respect to the standard basis. We build the two n× n matrices A1 and A2 whose

columns are the vectors in B1 and B2, respectively.

A1 =
[
w1 w2 · · · wn

]
, A2 =

[
v1 v2 · · · vn

]
.

Let x be a vector in Rn and denote the vector with coordinates corresponding to the basis Bj by

xBj
. Then we have

A1xB1 = x = A2xB2
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This implies

xB1 = x = A−11 A2xB2

So we a formula for the transition matrix for B2 to B1

xB1 = S21xB2 , S21 = A−11 A2.

Similarly we have the transition matrix for B1 to B2

xB2 = S12xB1 , S12 = A−12 A2.

Example 6. Consider the bases for R3

B1 =


1

1
1

 ,
1

1
0

 ,
1

0
0

 ,
 , B2 =


 1

1
−1

 ,
 1
−1
0

 ,
2

0
0

 .

To find the transition matrices from B1 to B2 and from B2 to B1 we first set

A1 =

1 1 1
1 1 0
1 0 0

 , A2 =

 1 1 2
1 −1 0
−1 0 0


In order to compute the transition matrix S12 from B1 to B2 we need to compute the inverse of A2.

We get

A−12 =

 0 0 −1
0 −1 −1

1/2 1/2 1


and we have

S12 = A−12 A1 =

 0 0 −1
0 −1 −1

1/2 1/2 1

1 1 1
1 1 0
1 0 0

 =

−1 0 0
−2 −1 0
2 1 1/2

 .
We also have S21 = S−112 from B2 to B1 given by

S21 =

−1 0 0
2 −1 0
0 2 2

 .
As an example let us take a vector represented in the basis B1 and find its coordinates with respect

to B1 a:

xB1 =

1
2
3


sB1

⇒ xB2 = S12xB1 =

−1 0 0
−2 −1 0
2 1 1/2

1
2
3


sB1

=

 −1
−4

11/2


sB2

To check that this is correct we can reduce both vectors to the coordinates with respect to the

standard basis. 1
2
3


sB1

= (1)

1
1
1

+ (2)

1
1
0

+ (3)

1
0
0

 =

6
3
1


 −1
−4

11/2


sB2

= (−1)

 1
1
−1

+ (−4)

 1
−1
0

+ (11/2)

2
0
0

 =

6
3
1


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Row and Column Space and Rank of a Matrix

Using the definition of matrix multiplication and equality of matrices we can writea system of

equations in the form:

AX = B, where A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn

 , X =


x1
x2
...
xn

 , B =


b1
b2
...
bm

 .
In order to exploit this formulation of a linear system we will introduce several important tools that

can be of use in practice and in a theoretical study.

Definition 3 (Rank of a Matrix). The rank of an m × n matrix A is the number of linearly

independent row vectors in A.

Definition 4 (Nullity of a Matrix). The nullity of an m× n matrix A is the dimension of the

null space N(A) = {x ∈ Rn : Ax = 0}.

Definition 5 (Row and Column Space). 1. The rows of A which we denote by {Ai}mi=1 span

a subspace of Rn called the Row Space of A denoted by RA.

2. The columns of A which we denote by {Aj}nj=1 span a subspace of Rm called the Column

Space of A denoted by CA.

We have the following result which is useful for finding the rank of a matrix.

If B is a row-echelon form of A, then

1. {the row space of A } = {the row space of B } .

2. The nonzero rows of B form a basis for RA.

3. Rank(A) = the number of nonzero rows of B.

The following are all the same

1. The rank of A, i.e. number of linearly independent rows of A.

2. The dimension of RA, i.e. number of elements in a basis for RA.

3. The number of linearly independent columns of A.

4. The dimension of CA.
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A linear system AX = B is consistent if and only if the rank of A is the same as

the rank of the augmented matrix (A|B).

If a system is consistent and has infinitely many solutions then the solution will

contain a number of arbitrary parameters. In particular for an m × n system if the

rank of A is r then the number of free parameters is n− r.

1. For an m×n matrix A the system Ax = b is consistent for every b if and only

if CA = Rm and the system has at most one solution for every b if and only if

the columns of A are linearly independent.

2. An n×n matrix is invertible (nonsingular) if and only if the columns of A form

a basis for Rn.

3. For an m× n matrix A we have

Rank(A) + dim(N(A)) = n,

i.e., the sum of the rank and the nullity is always n.

4. dim(CA) = dim(RA).
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How to Find Bases for Row, Column & Null Space of a Matrix

I. Null Space of A To find a basis for the N(A) just solve Ax = 0 as usual. The null space is

never empty because 0 ∈ N(A). To solve this problem you write the augmented matrix [A|0]

and put this matrix in row echelon form. The number of free variables is the dimension of the

N(A). See the example in Section 3.2.

If for example you solve the system of equations and find the solution to be

x =


α− β
−2α + 3β

α
β

 =


1
−2
1
0

α +


−1
3
0
1

 β.
Then a basis for the two dimensional null space is

1
−2
1
0

 ,

−1
3
0
1

 .
II. Column and Row Space of A To find a basis for the column or row space you need to find

the row echelon form U of A.

(a) Basis for Column Space Find the columns in U containing the pivots. These same

columns of A form a basis of the column space of A.

(b) Basis for Row Space The nonzero rows of U form a basis of the row space of A.
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