
These lecture notes include some material from Professors
Bertossi, Kolaitis, Guagliardo and Libkin

Relational Data Model and
Relational Algebra

Lecture Handout 3

Dr Evgenia Ternovska
Associate Professor

Simon Fraser University

Fall 2017

On Database Systems

Databases are sets of mutually related data items

I They represent some aspects of the real world

I Aspects that are relevant for a particular application or
specific set of users

I Databases must be “Logically coherent”

They are accessed and manipulated by means of Database
Management Systems (DBMSs)

Database Management Systems
A database management system (DBMS) provides support for:

I At least one data model (a mathematical abstraction for
representing data);

I At least one high level data language (language for defining,
updating, manipulating, and retrieving data);

I Transaction management & concurrency control mechanisms;

I Access control (limit access of certain data to certain users);

I Resiliency (ability to recover from crashes);

I Integrity and consistency of information;

I Concurrent access to information:
Different transactions can simultaneously access and modify
the database

I Possibility of building applications on top:
Writing and running programs that interact with the database

Logical separation between data and programs:

In a file based system (or data models before the
relational) the structure of data was embedded in the
data manipulation programs

Any change in the structure of data implied change
of the programs and vice versa

Relational Databases: How it Started

The history of relational databases is the history of a scientific and
technological revolution.

The scientific revolution started in 1970 by Edgar (Ted) F. Codd at
the IBM San Jose Research Laboratory (now the IBM Almaden
Research Center)

Codd introduced the relational data model and two database query
languages: relational algebra and relational calculus.

”A relational model for data for large shared data banks”, CACM,
1970.

”Relational completeness of data base sublanguages, in: Database
Systems, ed. by R. Rustin, 1972.”

Brief History:

1961: First DBMS: Integrated Data Store of GE

1962: IBM and AA develop SABRE

1966-1969: IBM develops Information Management System
(IMS). Uses hierarchical model.

1970: Edgar Codd (IBM) proposes the relational model of
data, and specifies how a relational DBMS could be
built accordingly

1975: First international conferences ACM SIGMOD and
VLDB

1976: Peter Chen introduces the ER model

70s: Development of first RDBMS:
more on it on the next slide

80s: DBMSs for PCs (DBASE, Paradox, etc.).

Relational Databases: the Early Years

In the 1970th, researchers at the IBM San Jose Laboratory embark
on the System R project, the first implementation of a relational
database management system (RDBMS)

In 1974-1975, they develop SEQUEL, a query language that
eventually became the industry standard SQL.

System R evolved to DB2 released first in 1983.

M. Stonebraker and E. Wong embark on the development of the
Ingres RDBMS at UC Berkeley in 1973.

Ingres is commercialized in 1983; later, it became PostgreSQL, a
free software OODBMS (object-oriented DBMS).

L. Ellison founds a company in 1979 that eventually becomes
Oracle Corporation; Oracle V2 is released in 1979 and Oracle V3 in
1983.

1981: Edgar F. Codd receives the ACM Turing Award

For his fundamental and continuing contributions to
the theory and practice of database management
systems.
He originated the relational approach to
database management in a series of research
papers published commencing in 1970.
His paper ”A Relational Model of Data for Large
Shared Data Banks” was a seminal paper, in a
continuing and carefully developed series of papers.

The contribution had impact on numerous related
areas, including database languages, query
subsystems, database semantics, locking and
recovery, and inferential subsystems.

About ACM Turing Award

A.M. Turing Award given by the Association for Computing
Machinery

ACM’s most prestigious technical award is accompanied by a
prize of $250,000.

It is given to an individual selected for contributions of a technical
nature made to the computing community.

The contributions should be of lasting and major technical
importance to the computer field.

Financial support of the Turing Award is provided by the Intel
Corporation and Google Inc.

http://awards.acm.org/homepage.cfm?srt=all&awd=140

Brief History (Cont.)

1985: Preliminary publication of standard for SQL. Object
Oriented DBMSs. Client/server architectures.
Distributed DBs.

90s: New functionalities:

I Spatial DBs: Store, manipulate, query spatial objects

I Temporal DBs: Manipulate time as we understand time, not
as any other numerical attribute

I Active DBs: Store active rules (or triggers) in the DB that
react executing actions (A) when certain events (E) inside the
DB happen (e.g. updates) and when certain conditions (C)
are satisfied (checked through an internal and fixed query)
The action can be of several kinds, e.g. additional updates,
message to the user/application, etc.
ECA rules: E, C ⇒ A

I Deductive DBs: Have deductive rules in addition to the
tables, producing implicit data via the combination; data that
can be queried and computed (by logical inference)

Best example: recursive rules that define (and compute upon
request) the transitive closure of a relation stored in the DB

I OO DBs

I Multimedia DBs

I Data Mining: Mechanisms for learning from data, detection
of patterns, associations, etc.

I Workflows, etc.: Processes realizing several tasks that involve
automated use of DBs

Brief History (Cont.)
I Data Warehouses: Large repositories of physically integrated

data, designed for data analysis, business
undertanding/learning, etc.
Not for operational/transactional purposes; they handle
complex queries (involving massive data); implemented
separately from operational DB

1998: Jim Gray receives the ACM Turing Award

For seminal contributions to database and
transaction processing research and technical
leadership in system implementation.

Late 90s - approx. 2010:

I Virtual Data Integration: Mediators integrate data sources
leaving data at the sources, and offering a database-like
interface to users, with global schema (possible different from
local schemas)
Mediator requires and contains mappings between global
schema and each of local schema; and a general query planner

1

3 3 3
2

2
2

4

mediator

data sources

I Data Exchange: Moving data from a source database to a
target database that has no data and a different schema

source target

DB1 DB2

Source Schema Target Schema

mapping: logical relationship between target and source schemas

???

with instance no instance

data

I Interaction with the WWW, XML, Semantic Web, Web
Services, P2P Data Management Systems, Data Streams,

These days:
I Big data
I Data in the cloud
I “no-SQL” DBs
I Business intelligence
I Data on the web: RDF data, linked data, graph

DBs
I Data access through ontologies and conceptual

models

We will focus on the Relational data model next, and we will give
precise definitions

Relational Database Industry Today

According to Gartner, Inc., June 2007:

Worldwide relational database management systems (RDBMS)
total software revenue totalled $15.2 billion in 2006, a 14.2 percent
increase from 2005 revenue of $13.3 billion.

In 2007, the total RDBMS software revenue increased to $17.1
billion (figures released in July 2008).

In 2015, $35.9 billion, more than doubled compared to 2007

Data Models and Data Languages
I A data model is a mathematical formalism for describing and

representing data.
I A data model is accompanied by a data language that has two

parts: a data definition language and a data manipulation
language.

I A data definition language (DDL) has a syntax for
describing database templates in terms of the underlying data
model.

I A data manipulation language (DML) supports the
following operations on data:

I Insertion
I Deletion
I Update
I Retrieval and extraction of data (query the data).

I The first three operations are fairly standard. However, there
is much variety on data retrieval and extraction (query
languages).

The Relational Data Model (E.F. Codd 1970)

The Relational Data Model uses the mathematical concept of a
relation as the formalism for describing and representing data.

Question: What is a relation?

Answer:

I Formally, a relation is a subset of a cartesian product of sets.

I Informally, a relation is a table with rows and columns.

Customer

CustID Name City Address

cust1 Renton Edinburgh 2 Wellington Pl
cust2 Watson London 221B Baker St
cust3 Holmes London 221B Baker St

Basic Notions from Discrete Mathematics

A k-tuple is an ordered sequence of k objects (need not be distinct)
(2, 0, 1) is a 3-tuple; (a, b, a, a, c) is a 5-tuple, and so on.

If D1, D2, . . . , Dk are k sets, then the cartesian product
D1 ×D2 · · · ×Dk of these sets is the set of all k-tuples
(d1, d2, . . . , dk) such that di ∈ Di, for 1 ≤ i ≤ k.

Fact: Let |D| denote the cardinality (= # of elements) of a set D.
Then |D1 ×D2 × · · · ×Dk| = |D1| × |D2| × · · · × |Dk|.

Example

If D1 = {0, 1} and D2 = {a, b, c, d}, then |D1| × |D2| = 8.

Warning: Computing cartesian products is an expensive operation!

Basic Notions from Discrete Mathematics

A k-ary relation R is a subset of a cartesian product of k sets, i.e.,
R ⊆ D1 ×D2 × · · · ×Dk.

Example

Unary R = {0, 2, 4, . . . , 100} (R ⊆ D)
Binary T = {(a, b) : a and b have the same birthday}
Ternary S = {(m,n, s) : s = m+ n}
. . .

Relations and Attributes

Note:
R ⊆ D1 ×D2 × ×Dk can be viewed as a table with k columns

Example

Table Sales:

Customer25 0 3672 45 28 3672 3 67
Customer2 9 8392 88 72 7292 8 23

In the relational data model, we want to have names for the
columns; these are the attributes of the relation.

Relation Schemas and Relational Database Schemas
A k-ary relation schema R(A1, A2, , AK) is a set A1, A2, , Ak of
k attributes.

Example

COURSE(course-no, course-name, term, instructor, room, time)
CITY-INFO(name, state, population)

Thus, a k-ary relation schema is a blueprint, a template for some
k-ary relation.

An instance of a relation schema is a relation conforming to the
schema (arities match; also, in DBMS, data types of attributes
match).

A relational database schema is a set of relation schemas
Ri(A1, A2, , Aki), for 1 ≤ i ≤ m.

A relational database instance of a relational schema is a set of
relations Ri each of which is an instance of the relation schema
Ri, 1 ≤ i ≤ m.

Relational Database Schemas - Examples

BANKING relational database schema with relation schemas

CHECKING-ACCOUNT(branch, acc-no, cust-id, balance)
SAVINGS-ACCOUNT(branch, acc-no, cust-id, balance)
CUSTOMER(cust-id, name, address, phone, email)
. . . .

UNIVERSITY relational database schema with relation
schemas

STUDENT(student-id, student-name, major, status)
FACULTY(faculty-id, faculty-name, dpt, title, salary)
COURSE(course-no, course-name, term, instructor)
ENROLLS(student-id, course-no, term)
. . . .

Schemas vs. Instances

Keep in mind that there is a clear distinction between

I relation schemas and instances of relation schemas

and between

I relational database schemas and relational database instances.

Important Difference:

Syntactic Notion Semantic Notion
(discrete mathematics notion)

Relation Schema Instance of a relation schema
(i.e., a relation)

Relational Database Schema Relational database instance
(i.e., a database)

Programming Languages Paradigms

There are two main paradigms of programming languages:
imperative (or procedural) languages and declarative languages.

Imperative (Procedural) Languages: programs are expressed by
specifying how the task is to be accomplished (sequence
of operations).

FORTRAN, C, . . .

Declarative Languages: programs are expressed by specifying what
has to be accomplished (as opposed to how).

LISP (functional programming), PROLOG (logic programming),
. . .

Query Languages for the Relational Data Model

Codd introduced two different query languages for the relational
data model:

Relational Algebra, which is a procedural language.
It is an algebraic formalism in which queries are expressed by
applying a sequence of operations to relations.

Relational Calculus, which is a declarative language.

It is a logical formalism in which queries are expressed as formulas
of first-order logic.

Codds Theorem: Relational Algebra and Relational Calculus are
essentially equivalent in terms of expressive power.

(but what does this really mean?)

Desiderata for a Database Query Language

The language should be sufficiently high-level to secure physical
data independence, i.e., the separation between the physical level
and the conceptual level of databases.

The language should have high enough expressive power to be
able to pose useful and interesting queries against the database.

The language should be efficiently implementable to allow for
the fast retrieval of information from the database.

Warning:

There is a tension between the last two desiderata.
Increase in expressive power comes at the expense of efficiency.

Relational algebra

Relational algebra strikes a good balance between expressive power
and efficiency.

Codd’s key contribution was to identify a small set of basic
operations on relations and to demonstrate that useful and
interesting queries can be expressed by combining these operations.

I Thus, relational algebra is a rich enough language, even
though, as we will see later on, it suffers from certain
limitations in terms of expressive power.

The first RDBMS prototype implementations (System R and
Ingres) demonstrated that the relational algebra operations can be
implemented efficiently.

The Basic Operations of Relational Algebra

Group I: Three standard set-theoretic binary operations:

I Union

I Difference

I Cartesian Product.

Group II. Two unary operations on relations:

I Projection

I Selection.

Group III. One special operation:

I Renaming

Relational Algebra consists of all expressions obtained by
combining these basic operations in syntactically correct ways.

Relational algebra

Procedural query language

A relational algebra expression

I takes as input one or more relations

I applies a sequence of operations

I returns a relation as output

Operations:

Projection (π)

Selection (σ)

Product (×)

Renaming (ρ)

Union (∪)

Intersection (∩)

Difference (−)

The application of each operation results in a new relation
that can be used as input to other operations

Projection

I Vertical operation: choose some of the columns

I Syntax: πset of attributes(relation)

I πA1,...,An(R) takes only the values of attributes A1, . . . , An
for each tuple in R

Customer

CustID Name City Address

cust1 Renton Edinburgh 2 Wellington Pl
cust2 Watson London 221B Baker St
cust3 Holmes London 221B Baker St

πName,City(Customer)

Name City

Renton Edinburgh
Watson London
Holmes London

Selection

I Horizontal operation: choose rows satisfying some condition

I Syntax: σcondition(relation)

I A family of unary operations, one for each condition Θ

I σθ(R) takes only the tuples in R for which θ is satisfied

term := attribute | constant

θ := term op term with op ∈ {=, 6=, >,<,>,6}
| θ ∧ θ | θ ∨ θ | ¬θ

Example of selection

Customer

CustID Name City Age

cust1 Renton Edinburgh 24
cust2 Watson London 32
cust3 Holmes London 35

σCity 6=‘Edinburgh’∧Age<33(Customer)

CustID Name City Age

cust2 Watson London 32

More on the Selection Operator

Note: The use of the comparison operators <, >, ≤, ≥ assumes
that the underlying domain of values is totally ordered.

If the domain is not totally ordered, then only = and 6= are allowed.

If we do not have attribute names (hence, we can only reference
columns via their component number), then we need to have a
special symbol, say $, in front of a component number.

Thus, $4 > 100 is a meaningful basic clause $1 =“Apto” is a
meaningful basic clause, and so on.

Efficiency (1)

Consecutive selections can be combined into a single one:

σθ1
(
σθ2(R)

)
= σθ1 ∧ θ2(R)

Example

Q1 = σCity6=‘Edinburgh’

(
σAge<33(Customer)

)
Q2 = σCity6=‘Edinburgh’∧Age<33(Customer)

Q1 = Q2 but Q2 faster than Q1 in general

Efficiency (2)

Projection can be pushed inside selection

πα
(
σθ(R)

)
= σθ

(
πα(R)

)
only if all attributes mentioned in θ appear in α

Example

Q1 = πName,City,Age

(
σCity 6=‘Edinburgh’∧Age<33(Customer)

)
Q2 = σCity6=‘Edinburgh’∧Age<33

(
πName,City,Age(Customer)

)
Question: Which one is more efficient?

Cartesian product

R×S concatenates each tuple of R with all the tuples of S

Example

R A B
1 2
3 4

× S C D
1 a
2 b
3 c

= R×S A B C D
1 2 1 a
1 2 2 b
1 2 3 c
3 4 1 a
3 4 2 b
3 4 3 c

Expensive operation:

I card(R×S) = card(R)× card(S)

I arity(R×S) = arity(R) + arity(S)

Joining relations

Combining Cartesian product and selection

Customer: ID, Name, City, Address
Account: Number, Branch, CustID, Balance

We can join customers with the accounts they own as follows

σID=CustID(Customer×Account)

Renaming

Gives a new name to some of the attributes of a relation

Syntax: ρreplacements(relation),
where a replacement has the form A→ B

ρA→A′, C→D

 A B C
a b c
1 2 3

 =

A′ B D
a b c
1 2 3

Example

Customer: CustID, Name, City, Address
Account: Number, Branch, CustID, Balance

σCustID=CustID′
(
Customer× ρCustID→CustID′(Account)

)

Natural join

Joins two tables on their common attributes

Example

Customer: CustID, Name, City, Address

Account: Number, Branch, CustID, Balance

Customer ./ Account =

πX∪Y
(
σCustID=CustID′

(
Customer× ρCustID→CustID′(Account)

))
where X = { all attributes of Customer }

Y = { all attributes of Account }

Set operations

Union

R A B
a1 b1
a2 b2

∪ S A B
a1 b1
a3 a3

= R ∪ S A B
a1 b1
a2 b2
a3 b3

Intersection

R A B
a1 b1
a2 b2

∩ S A B
a1 b1
a3 a3

= R ∩ S A B
a1 b1

Difference

R A B
a1 b1
a2 b2

− S A B
a1 b1
a3 a3

= R − S A B
a2 b2

The relations must have the same set of attributes

Union and renaming

R Father Child
George Elizabeth
Philip Charles
Charles William

S Mother Child
Elizabeth Charles
Elizabeth Andrew

We want to find the relation parent-child

ρFather→Parent(R) ∪ ρMother→Parent(S) = Parent Child
George Elizabeth
Philip Charles
Charles William
Elizabeth Charles
Elizabeth Andrew

Full relational algebra

Primitive operations: π , σ , × , ρ , ∪ , −
Removing any of these results in a loss of expressive power

Derived operations

./ can be expressed in terms of π , σ , × , ρ

∩ can be expressed in terms difference:

R ∩ S = R− (R− S)

Other derived operations

Theta-join R ./θ S = σθ(R×S)

Equijoin ./θ where θ is a conjunction of equalities

Semijoin Rnθ S = πX
(
R ./θ S

)
where X is the set of attributes of R

Antijoin Rnθ S = R− (Rnθ S)

Why use these operations?

I to write things more succintly

I they can be optimized independently

Division

R over set of attributes X

S over set of attributes Y ⊂ X
Let Z = X − Y

R÷ S =
{
r̄ ∈ πZ(R) | ∀s̄ ∈ S (r̄s̄ ∈ R

)
}

=
{
r̄ ∈ πZ(R) | {r̄}×S ⊆ R

}
= πZ(R)− πZ

(
πZ(R)× S −R

)

Division: Example

Exams

Student Course

John Databases
John Chemistry
Mary Programming
Mary Math
Mary Databases

CS

Course

Databases
Programming

Exams ÷ CS =
Student

Mary

= πStudent(Exams)− πStudent

(
πStudent(Exams)×CS− Exams

)
Find the names of students who has taken exams in all CS courses

Relational Algebra Expression

Definition: A relational algebra expression is a string obtained
from relation schemas using union, difference, cartesian product,
projection, selection and renaming.

Context-free grammar for relational algebra expressions:

E := R,S, . . . | (E1∪E2) | (E1−E2) | (E1×E2) | πL(E) | σΘ(E) | ρE,

where
R,S, . . . are relation schemas
L is a list of attributes
Θ is a condition.

Strength from Unity and Combination

By itself, each basic relational algebra operation has limited
expressive power, as it carries out a specific and rather simple task.

When used in combination, however, the basic relational algebra
operations can express interesting and, quite often, rather complex
queries.

Derived relational algebra operations are operations on relations
that are expressible via a relational algebra expression (built from
the basic operators).

Independence of the Basic Relational Algebra Operations

Question: Are all the basic relational algebra operations really
needed? Can one of them be expressed in terms of the other four?

Theorem: Each of the basic relational algebra operations is
independent of the other four, that is, it cannot be expressed by a
relational algebra expression that involves only the other four.

Proof Idea: For each relational algebra operation, we need to
discover a property that is possessed by that operation, but is not
possessed by any relational algebra expression that involves only
the other four operations.

Independence of the Basic Relational Algebra Operations

Proof Sketch: (projection and cartesian product only)

Property of projection: It is the only operation whose output may
have arity smaller than its input.

Show, by induction, that the output of every relational algebra
expression in the other four basic relational algebra is of arity at
least as big as the maximum arity of its arguments.

Property of cartesian product: It is the only operation whose
output has arity bigger than its input.

Show, by induction, that the output of every relational algebra
expression in the other four basic relational algebra is of arity at
most as big as the maximum arity of its arguments.

Exercise: Complete this proof.

Relational Algebra: Summary

When combined with each other, the basic relational algebra
operations can express interesting and complex queries (natural
join, quotient (division), . . .)

The basic relational algebra operations are independent of each
other: none can be expressed in terms of the other.

So, in conclusion, Codds choice of the basic relational algebra
operations has been very judicious.

Relational Completeness

Definition (Codd – 1972): A database query language L is
relationally complete if it is at least as expressive as relational
algebra, i.e., every relational algebra expression E has an
equivalent expression F in L.

Relational completeness provides a benchmark for the expressive
power of a database query language.

Every commercial database query language should be at least as
expressive as relational algebra.

Exercise: Explain why SQL is relationally complete (after SQL is
studied).

SQL vs. Relational Algebra

SQL Relational Algebra

SELECT Projection π

FROM Cartesian Product ×

WHERE Selection σ

Semantics of SQL via interpretation to Relational Algebra

SELECT Ri1 .A1, . . . , Rim .Am
FROM R1, . . . , Rk
WHERE Ψ

= πRi1 .A1, . . . , Rim .Am(σΨ(R1 × · · · ×Rk))

