
Basic	SQL

Instructor:		Shel	Finkelstein

Reference:
A	First	Course	in	Database	Systems,	
3rd edition,	Chapter	2.3,	6.1

Important	Notices

• You	should	have	Gradiance	access	this	week,	via	Lab	Sections	
with	Akhil	and	Aniket.
– First	Gradiance	Assignment will	be	posted	this	Friday.

• Lab1	assignment	was	posted	on	Monday,	Oct	2	on	Piazza	
under	Resources.		General	Information	about	Labs	has	already	
been	posted.			See	Piazza	announcement.
– Lab1	will	be	discussed	at	Lab	Sections.
– Due	Sunday,	October	15,	by	11:59pm.
– Your	solution	should	be	submitted	via	Canvas	as	zip	file.
– Canvas	will	be	used	for	both	Lab	submission	and	grading.

Practice	Homework

• If	D1 has	n1 elements	and	D2 has	n2 elements,	then	how	many	elements	
are	there	in	D1 × D2?
– That	is,	if	|D1|=	n1,	|D2|=	n2,	what	is	|D1× D2|?

• If	Di has	ni elements,	then	how	many	elements	are	there	
in	the	Cartesian	product	D1 × …	× Dk?	

• If	Di has	ni elements,	then	how	many	relations	can	one	construct	from	D1 ×
…	× Dk ?

Summary	of	Previous	Lecture

• A	data	model
• A	relation	schema
– Attributes	or	column	names
– Tuples	or	rows
– Columns
– Arity (number	of	columns/attributes)

• A	relation	(an	instance	of	a	relation	schema)
• A	relational	database	schema
• A	database	(an	instance	of	a	database	schema)
• Logical	and	physical	data	independence

A	Relation	Database	Schema

• A	relation	database	schema or,	simply,	a	database	schema	is	a	set	of	
relation	schemas	with	disjoint	relation	names.

• A	university	database	schema:
– Student(studentID,	name,	major,	gender,	avgGPA)
– Course(courseID,	description,	department)
– Teach(profID,	courseID,	quarter,	year)
– Enroll(studentID,	courseID,	grade)
– Professor(profID,	name,	department,	level)

Instance	of	a	Database	Schema

• An	instance	of	a	database	schema	{R1,	…	Rk}	(or	a	database	instance	in	
short)	is	a	set	{r1,	…,	rk}	of	relations	such	that	ri is	an	instance	of	Ri,	for	
1	≤	i	≤	k.

studentID name major gender avgGPA

112 Ann Computer	
Science

F 3.95

327 Bob Computer	
Science

M 3.90

835 Carl Physics M 4.00

courseID description department

CMPS101 Algo. CS

BINF223 Intro.	to	bio. Biology

Teach,	Enroll,	Professor,	…

Student

Course

What	is	a	Data	Model?

• A	data	model	is	a	mathematical	formalism	that	consists	of	
three	parts:
1. Structure	of	the	data
2. Operations	on	the	data
3. Constraints	on	the	data

• This	course	focuses	mainly	on	the	relational	data	model

• What	is	the	associated	query	language	commonly	
used	for	the	relational	data	model?

Two	Query	Languages	

• Codd	proposed	two	different	query	languages	for	the	
relational	data	model.
– Relational	Algebra

• Queries	are	expressed	as	a	sequence	of	operations	on	relations
• Procedural	language

– Relational	Calculus
• Queries	are	expressed	as	formulas	of	first-order	logic
• Declarative	language

• Codd’s	Theorem:	The	Relational	Algebra	query	language	has	
the	same	expressive	power	as	the	Relational	Calculus	query	
language.

Procedural	vs.	Declarative	Languages

• Procedural	program
– The	program	is	specified	as	a	sequence	of	operations	to	
obtain	the	desired	the	outcome.	I.e.,	how	the	outcome	is	
to	be	obtained.	

– E.g.,	Java,	C,	…

• Declarative	program
– The	program	specifies	what	is	the	expected	outcome,	and	
not	how	the	outcome	is	to	be	obtained.

– E.g.,	Scheme,	Ocaml,	…

An	Example:		Travel	from	Baskin	Engineering,	
UC	Santa	Cruz	to	Soda	Hall,	UC	Berkeley

Declarative	(non-procedural):

• Go	from	Baskin	Engineering,	at	McLaughlin	Dr.	
and	Heller	Dr.	in	Santa	Cruz,	CA,	to	Soda	Hall,	
at	Hearst	Ave.	and	Oxford	St.	in	Berkeley,	CA

An	Example:		Travel	from	Baskin	Engineering,	
UC	Santa	Cruz	to	Soda	Hall,	UC	Berkeley

Procedural	(first	part)
• Turn	left	onto	Heller	Dr,
• Turn	left	onto	Empire	Grade
• Continue	onto	High	St
• High	St	turns	right	and	becomes	Storey	St,
• Turn	left	onto	King	St
• Turn	left	onto	CA-1	S/Mission	St	
• Continue	to	follow	CA-1	S
• Take	the	CA-17	exit	on	the	left	toward	San	Jose/Oakland
• Continue	onto	CA-17	N	
• Keep	left	to	continue	on	I-880	N	

An	Example:		Travel	from	Baskin	Engineering,	
UC	Santa	Cruz	to	Soda	Hall,	UC	Berkeley

Procedural	(continued):
• Keep	right	at	the	fork,	follow	signs	for	CA-24/I-980/Walnut	Cr.	

Continue	onto	I-980	E	
• Keep	left	to	continue	on	CA-24	E	
• Take	the	exit	toward	51st	Street
• Turn	right	onto	52nd	St	
• Take	the	1st	left	onto	Shattuck	Ave	
• Turn	right	onto	University	Ave	
• Turn	left	onto	Oxford	St	
• Turn	right	onto	Hearst	Ave	
• Turn	left;	destination	will	be	on	the	right

SQL	– Structured	Query	Language

• Is	SQL	a	procedural	or	a	declarative	language?
– SQL	is	usually	described	as	declarative,	but	it’s	not	fully	declarative.

• SQL	is	the	principal	language	used	to	describe	and	manipulate	data	
stored	in	relational	database	systems.
– Frequently	pronounced	as	“Sequel”,	but	formally	it’s	“Ess	Cue	El”
– Not	exactly	the	same	as	Codd’s	relational	algebra	or	relational	calculus

• Several	iterations	of	the	standard	from	cooperating	groups	
– SQL-86,	SQL-89,	SQL-92	(SQL2),	SQL:1999	(SQL3),	SQL:2003,	SQL:2006,	

SQL:2008,	SQL:2011
– ANSI	(American	National	Standards	Institute)	
– ISO	(International	Organization for	Standards)
– Implementations	usually	offer	their	own	extensions	of	SQL.

SQL	DDL	and	SQL	DML

Two	main	aspects	to	SQL:
• Data	Definition	Language	(DDL)
– CREATE	TABLE,	DROP	TABLE
– CREATE	SCHEMA,	DROP	SCHEMA
– …

• Data	Manipulation	Language	(DML)
– SELECT
– INSERT
– UPDATE
– DELETE
– …

Relations	in	SQL

• Three	types	of	relations
1. Stored	relations	(or	tables)

• These	are	tables	that	contain	tuples	and	can	be	modified	or	
queried.

2. Views
• Views	are	relations	that	are	defined	in	terms	of	other	relations	

but	they	are	not	stored.	They	are	constructed	only	when	needed.
3. Temporary	tables

• These	are	(intermediate)	tables	that	are	constructed	by	the	SQL	
execution	engine	during	the	processing	of	SQL	queries	and	
discarded	when	done.

Most	of	the	Primitive	Data	Types	in	SQL

• CHAR(n):	fixed-length	string	of	up	to	n	characters	(blank-
padded)

• VARCHAR(n):	also	a	string	of	up	to	n	characters
• BIT(n)
• BIT	VARYING(n)
• BOOLEAN:	true/false				(unknown)
• INT	or	INTEGER
– Analogous	to	int in	C

• SHORTINT
– Analogous	to	short	int in	C

Primitive	Data	Types	in	SQL	(continued)

• DECIMAL(n,d)
– Total	of	n	decimal	digits;	d	of	them	to	the	right	of	the	
decimal	point

• FLOAT(p),	FLOAT	and	REAL	(Implementation-specific)
– DOUBLE	PRECISION
• Analogous	to	double in	C

• DATE,	TIME,	TIMESTAMP,	INTERVAL
– Separate	data	types
– Constants	are	character	strings	of	a	specific	form,	e.g.,	
DATE	‘2017-09-13’	and	TIME	‘16:45:33’

• A	few	others	…
• PostgreSQL	has	non-standard	TEXT,	for	variable	strings	of	any	length

More	on	DATE,	TIME,	TIMESTAMP,	INTERVAL

• Some	information	sources
– Limited	stuff	in	textboosk;	see	Sections	2.3.2	and	6.1.5
– Too	much	in	PostgreSQL	manual

• 8.5.	Date/Time	Types
• 9.9.	Date/Time	Functions	and	Operators

• Some	examples	of	constants
– DATE	‘2017-09-13’	and	TIME	‘16:45:33’
– TIMESTAMP	‘2017-09-13	16:45:33’
– INTERVAL	‘2	HOURS	30	MINUTES’

• Arithmetic
– Subtracting	one	TIME	from	another	results	in	an	INTERVAL
– Taking	a	TIME	and	adding	an	INTERVAL	results	in	a	TIME
– Similarly	for	TIMESTAMP	and	DATE	(instead	of	TIME)

Defining	a	Table

CREATE	TABLE	Movies	(
title	 CHAR(100),
year INT,
length INT,
genre CHAR(10),
studioName CHAR(30),
producerC# INT

);

title year length genre studioName producerC#

Think	of	producerC#	as	the	Certificate	Number	for	the	movie’s	producer,	
where	Certificate	Number	is	a	key	uniquely	identifying	a	Movie	Executive.

Defining	a	Table	(continued)

CREATE	TABLE	MovieStar	(
name CHAR(30),
address VARCHAR(255),
gender CHAR(1),
birthdate DATE

);

name address gender birthdate

Modifying	Relation	Schemas

• DROP	TABLE	Movies;
– The	entire	table	is	removed	from	the	database	schema.

• ALTER	TABLE	MovieStar	ADD	phone	CHAR(16);
– Adds	an	attribute	“phone”	with	type	CHAR(16)	to	the	table	MovieStar.

• ALTER	TABLE	MovieStar	DROP	birthdate;

name address gender birthdate

name address gender birthdate phone

name address gender phone

Default	Values

CREATE	TABLE	MovieStar	(
name CHAR(30),
address VARCHAR(255)				DEFAULT 'Hollywood',
gender CHAR(1),
birthdate DATE

);
• If	a	new	row	is	inserted	and	no	value	is	specified	for	the	attribute	address,	

then	the	value	for	this	attribute	will	default	to	'Hollywood'.
• If	no	default	value	is	declared	explicitly	and	no	value	is	entered	for	an	

attribute,	then	the	value	of	the	attribute	will	default	to	NULL.
– NULL	is		a	special	value	in	SQL	to	represent	unknown	values.
– A	Constraint	(which	we’ll	discuss	soon)	can	prevent	a	column	from	

having	null	values.

More	Examples	of	Default	Values

CREATE	TABLE	MovieStar	(
name CHAR(30),
address VARCHAR(255)				 DEFAULT 'Hollywood',
gender CHAR(1)				 DEFAULT '?',
birthdate DATE DEFAULT '1990-08-26'

);

ALTER	TABLE	MovieStar	ADD	phone	CHAR(16)	DEFAULT	'unlisted';

Reminder:		Keys

• A	key	constraint	(or	a	key	in	short)	of	a	relation	schema	R	is	a	subset	K	of	
attributes	of	R	such	that
1. For	every	instance	r	of	R,	every	two	distinct	tuples	of	r	must	differ	in	

their	values	from	K.
• Contrapositive:	if	two	tuples	agree	on	their	values	from	K,	then	

they	must	be	the	same	tuple.
2. Minimal:	no	proper	subset	of	K	has	the	above	property.

• A	superkey	is	a	set	of	attributes	of	R	that	includes	a	key	of	R.
– Fact.	All	keys	are	superkeys	but	some	superkeys	are	not	keys.

Reminder:		Key	Examples

– Student(studentID,	name,	major,	gender,	avgGPA).
• {studentID}	is	a	key.	It	is	also	a	superkey.
• {studentID,	name}	is	a	superkey but	not	a	key.
• {studentID,	name,	major,	gender,	avgGPA}	is	a	superkey but	not	a	key.

– There	can	be	multiple	keys	in	general.
• One	key	is	chosen	and	define	as	the	primary	key,	while	the	rest	are	

candidate	keys.
– Student(studentID,	name,	dob,	major,	gender,	avgGPA)

• {studentID},	{name,	dob}	are	keys	and	also	superkeys.
– {studentID}	is	the	primary	key.	
– {name,	dob}	is	the	candidate	key.

• {name,	dob,	avgGPA}	is	a	superkey.

Declaring	Keys

Two	ways	to	declare	a	single	attribute	to	be	a	key	in	the	CREATE	
TABLE	statement:

CREATE	TABLE	MovieStar	(
name	 CHAR(30)	PRIMARY	KEY,
address	 VARCHAR(255),
gender	 CHAR(1),
birthdate	 DATE

);

CREATE	TABLE	MovieStar	(
name	 CHAR(30),
address	 VARCHAR(255),
gender	 CHAR(1),
birthdate	 DATE,
PRIMARY	KEY (name)

);

Declaring	Keys	(continued)

If	the	key	consists	of	multiple	attributes,	then	those	attributes	can	be	
declared	as	a	key	as	follows:

CREATE	TABLE	Movies	(
title CHAR(100),
year	 INT,
length INT,
genre CHAR(10),
studioName CHAR(30),
producerC# INT,
PRIMARY	KEY	(title,	year)

);

PRIMARY	KEY	vs.	UNIQUE

• In	the	previous	examples,	the	keyword	“PRIMARY	KEY”	can	be	replaced	by	
“UNIQUE”.
– Both	specific	that	attributes	are	keys,	but	PRIMARY	KEY	is	not identical	

to	UNIQUE.

• In	the	standard,	SQL	Tables	aren’t	required	to	have	a	key	(primary	
or	otherwise),	but	some	implementations	require	it	(or	create	it).	

CREATE	TABLE	MovieStar	(
name	 CHAR(30),
address	 VARCHAR(255),
gender	 CHAR(1),
birthdate	 DATE,
UNIQUE	(name)

);

CREATE	TABLE	MovieStar	(
name	 CHAR(30),
address	 VARCHAR(255),
gender	 CHAR(1),
birthdate	 DATE,
PRIMARY	KEY (name)

);

PRIMARY	KEY	vs.	UNIQUE		(continued)

• None	of	the	rows	in	MovieStar	
can	have	null	name values.

• Rows	are	uniquely	identified	by	
their	name values.

• There	can	be	at	most	one	primary	
key	for	a	table.

• Rows	in	MovieStar	can contain	
null	name values.

• Rows	in	MovieStar	with	non-null	
name values	are	uniquely	
identified	by	their	name values.

• There	can	be	multiple	unique	
constraints	for	a	table,	in	addition	
to	a	primary	key.

CREATE	TABLE	MovieStar	(
name	 CHAR(30),
address	 VARCHAR(255),
gender	 CHAR(1),
birthdate	 DATE,
UNIQUE	(name)

);

CREATE	TABLE	MovieStar	(
name	 CHAR(30),
address	 VARCHAR(255),
gender	 CHAR(1),
birthdate	 DATE,
PRIMARY	KEY (name)

);

More	on	NULL

CREATE	TABLE	MovieStar	(
name CHAR(30)			PRIMARY	KEY,
address VARCHAR(255)			NOT	NULL		DEFAULT 'Hollywood',
gender CHAR(1),
birthdate DATE		NOT	NULL

);

• If	no	default	value	is	declared	explicitly and	no	value	is	entered	for	an	
attribute,	then	the	value	of	the	attribute	will	default	to	NULL.
– NULL	is		a	special	value	in	SQL	to	represent	unknown	values.
– NOT	NULL	constraint	prevents	a	column	from	having	null	values.
– Attributes	that	don’t	have	NOT	NULL	specified	may	be	null.
– …	but	remember	that attributes	in	the	PRIMARY	KEY	can’t	be	null.

PostgreSQL	Meta	Commands

• \l
– List	the	databases.

After	you	connect	to	a	database,	you	can	perform	the	following:
• \d

– List	the	tables	of	a	database.
• \d	table

– List	the	columns	of	a	table.

http://www.postgresqlforbeginners.com/2010/11/interacting-with-postgresql-
psql.html

SQL	DDL	and	SQL	DML

• Two	main	aspects	to	SQL:
– Data	Definition	Language	(DDL)

• Sublanguage	of	SQL	used	to	create,	delete,	modify		the	definition	
of	tables	and	views.

• For	declaring	database	schemas.
– Data	Manipulation	Language	(DML)

• Sublanguage	of	SQL	that	allows	users	to	insert,	delete,	and	modify	
rows	of	tables	and	pose	queries	to	retrieve	data.

• For	asking	questions	about	the	database	and	modifying	the	
database.

Reference:
A	First	Course	in	Database	Systems,	
3rd edition,	Chapter	6.1

Database	Schema	for	Our	Running	Example

• Let’s	assume	we	have	a	database	schema	with	five	relation	schemas.

Movies(title,	year,	length,	genre,	studioName,	producerC#)
StarsIn(movieTitle,	movieYear,	starName)
MovieStar(name,	address,	gender,	birthdate)
MovieExec(name,	address,	cert#,	netWorth)
Studio(name,	address,	presC#)

In	this	schema,	cert# is	just	an	attribute	for	a	MovieExec’s “certificate	
number”;	producerC#	and	presC#	should	refer	to	the	cert#	of	the	producer	of	a	
Movie	and	president	of	a	Studio,	respectively.		Nothing	special	about	these	
column	names/attributes	for	SQL—it’s	just	an	example.

And	note	that	the	# symbol	is	not allowed	in	identifiers	(such	as	column	names	
and	table	names)	in	PostgreSQL,	even	though	our	textbook	uses	it.

A	Simple	SQL	Query

• Find	all	movies	produced	by	Disney	Studios	in	1990.

SELECT *
FROM Movies	
WHERE studioName	=	'Disney' AND	year	=	1990;

35

Basic	Form	of	a	SQL	Query

• Basic	form:

SELECT [DISTINCT] c1, c2, …, cm
FROM R1, R2, …, Rn
[WHERE condition]

• We	will	focus	on	one	relation	R1 for	now.
• What	is	the	semantics	(that	is,	the	meaning)	of	this	query?

Attribute	names

Relation	names

A	Simple	SQL	Query

• Find	all	movies	produced	by	Disney	Studios	in	1990.
SELECT	*
FROM	Movies	
WHERE	studioName	=	'Disney' AND	year	=	1990;

Title Year Length Genre studioName producerC#

Pretty	
Woman

1990 119 true Disney 999

Monster’s	
Inc.

1990 121 true Dreamworks 223

Jurassic
Park

1998 145 NULL Disney 675

Movies

The	symbol	“*”	is	a	shorthand	for	all	
attributes	of	relations	in	the	FROM	clause.

A	Simple	SQL	Query	(Result)

• Find	all	movies	produced	by	Disney	Studios	in	1990.
SELECT	*
FROM	Movies	
WHERE	studioName	=	'Disney' AND	year	=	1990;

Title Year Length Genre studioName producerC#

Pretty	
Woman

1990 119 true Disney 999

Result

An	Even	Simpler	SQL	Query

• Find	all	movies.
SELECT	*
FROM	Movies;	

Title Year Length Genre studioName producerC#

Pretty	
Woman

1990 119 true Disney 999

Monster’s	
Inc.

1990 121 true Dreamworks 223

Jurassic
Park

1998 145 NULL Disney 675

Movies

Equivalent	to:
SELECT	*
FROM	Movies
WHERE	true;

An	Even	Simpler	SQL	Query	(Result)

• Find	all	movies.
SELECT	*
FROM	Movies;	

Title Year Length Genre studioName producerC#

Pretty	
Woman

1990 119 true Disney 999

Monster’s	
Inc.

1990 121 true Dreamworks 223

Jurassic
Park

1998 145 NULL Disney 675

Result

A	Simple	SQL	Query	with	Projection

• Return	the	title	and	year	of	all	movies.
SELECT	title,	year
FROM	Movies;	

Title Year

Pretty	
Woman

1990

Monster’s	
Inc.

1990

Jurassic
Park

1998

Result

A	Projection	Query:
• Only	a	subset	of	attributes	from	the	
relation(s)	in	the	FROM	clause	is	selected.

A	Simple	SQL	Query	with	Projection	and	
Selection

• Return	the	title	and	year	of	all	movies	produced	by	Disney	
Studios	in	1990.
SELECT	title,	year
FROM	Movies
WHERE	studioName	=	'Disney' AND	year	=	1990;

Title Year

Pretty	
Woman

1990

Result

Distinct:		Sets	vs Multisets/Bags

• Return	the	years	of	all	movies	with	length	less	than	140.
SELECT	year
FROM	Movies	
WHERE	length	<	140;

Year

1990

1990

Result

SELECT	DISTINCT	year
FROM	Movies	
WHERE	length	<	140;

Year

1990

Result

Multiset or	bag	semantics Set	semantics

Bags	(or	Multisets)	vs.	Sets

• From	basic	set	theory:

• Every	element	in	a	set	is	distinct
– E.g.,	{2,4,6}	is	a	set	but	{2,4,6,2,2}	is	not	a	set	

• …	or	is	same	set	as	{2,4,6}

• A	bag	(or	multiset)	may	contain	repeated	elements.
– E.g.,	{{2,4,6}}	is	a	bag.	So	is	{{2,4,6,2,2}}.						

• Note	that	double	set	brackets	in	{{2,4,6}}	indicate	it’s	a	bag,	not	a	set
– Equivalently	written	as	{{2[3],4[1],6[1]}}.

• The	order	among	elements	in	a	set	or	bag	is	not	important
– E.g.,	{2,4,6}	=	{4,2,6}	=	{6,4,2}
– {{2,4,6,2,2}}	=	{{2,2,2,6,4}}	=	{{6,2,2,4,2}}.

43

Aliasing	Attributes

• Allows	you	to	rename	the	attributes	of	the	result.
• Example:		Return	the	title	and	length	of	all	movies	as	

attributes	name	and	duration.
SELECT	title	AS	name,	length	AS	duration
FROM	Movies;	

name duration

Pretty	
Woman

119

Monster’s	
Inc.

121

Jurassic Park 145

Result

Expressions	in	the	SELECT	Clause

• Expressions	are	allowed	in	the	SELECT	clause.
• Return	the	title	and	length	of	all	movies	as	name	and	duration	

in	seconds	(durationInSeconds)
SELECT	title	AS	name,	length	*	60	AS	durationInSeconds
FROM	Movies;

name durationInSeconds

Pretty	Woman 7140

Monster’s	Inc. 7260

Jurassic Park 8700

Result

Constants	in	the	Result

• Constants	can	also	included	in	the	SELECT	clause.
• Every	row	will	have	the	same	constant	specified	in	the	SELECT	clause.

SELECT	title	AS	name,	length	*	60		AS	durationInSeconds,	
‘seconds’	AS	inSeconds

FROM	Movies;	

name durationInSeconds inSeconds

Pretty	
Woman

7140 seconds

Monster’
s	Inc.

7260 seconds

Jurassic
Park

8700 seconds

Result

More	on	the	Conditions	
in	the	WHERE	Clause

• WHERE	studioName	=	'Disney' AND	year	=	1990;
• Comparison	operators:

o =,		<>,		<,		>,		<=,		>=
o Equal,	not	equal,	less	than,	greater	than,	less	than	or	equal,	greater	

than	or	equal
o E.g.,	WHERE	year	<=	1990

• Logical	connectives:
o AND,	OR,	NOT
o E.g.,	WHERE	NOT	(studioName	=	'DISNEY' AND	year	<=	1990)

• Arithmetic	expressions:
o +,		-,		*,		/,	etc.	
o E.g.,	WHERE	((length*0.01667)	>	2	OR	(length	<	100))	AND	year	>	2000

48

More	on	the	Conditions	
in	the	WHERE	Clause	(cont’d)

• In	general,	the	WHERE	clause	consists	of	a	boolean	
combination	of	conditions	using	logical	connectives	AND,	OR,	
and	NOT.

• Each	condition	is	of	the	form	
expression op	expression

– expression	is	a	column	name,	a	constant,	or	an	arithmetic	
or	string	expression

– op	is	a	comparison	operator	(=,	<>,	<,	>,	<=,	>=,	LIKE)

(More	on	this	soon)

String	Comparisons

• Strings	are	compared	in	lexicographical	order.
– Let	a1.a2.	…	.an and	b1.b2.	…	bm be	two	strings.	
– Then	a1.a2.	…	.an <	b1.b2.	…	bm if	either:

1. a1.a2.	…	.an is	a	proper	prefix	of	b1.b2.	…	bm ,	or,
2. For	some	1	<=	i	<	n,	we	have	a1=b1,	a2=b2,	…,	ai-1=bi-1

and	ai <	bi.

• Examples:	
– ‘Pretty’	<	'Pretty	Woman',		
– ‘butterfingers’	<	'butterfly'

Pattern	Matching	in	SQL

• LIKE	operator			
– s	LIKE	p,	s	NOT	LIKE	p
– s	is	a	string,	p	is	a	pattern

• '%' (stands	for	0	or	more	arbitrary	chars)
• '_' (stands	for	exactly	one	arbitrary	char)

SELECT	*
FROM	Movies
WHERE	title	LIKE	'Pretty%' title	LIKE	'P_etty%'

50

Pattern	Matching	in	SQL

• How	do	you	match	titles	with	a	quote	symbol	in	them?	
– E.g.,	'Monster's	Inc.'

SELECT	*
FROM	Movies
WHERE	title	LIKE	'Monster's	Inc.'

Wrong!!!

WHERE	title	LIKE	'Monster''s	Inc.'

51

Pattern	Matching	in	SQL

• How	do	you	match	just	a	quote	symbol?	
WHERE	title	LIKE	'''' //	matches	'

• How	do	you	match	two	quote	symbols?	
WHERE	title	LIKE	'''''' //	matches	''

• How	do	you	match	%	or	_?
WHERE	title	LIKE	'!%%!_' ESCAPE	'!' //	!	could	be	any	character

Would	this	match:				 'ABC%D' '%ABC' '%ABC_' 'ABCD’ '%_'
No No Yes No Yes

52

Date	and	Time

• DATE	and	TIME	(and	TIMESTAMP)
– Separate	data	types
– Constants	are	character	strings	of	a	specific	form

• DATE		'2015-01-13'
• TIME		'16:45:33'
• TIMESTAMP		'2015-01-13	16:45:33'

– DATE,	TIME	and	TIMESTAMP	can	be	compared	using	ordinary	
comparison	operators
• …	WHERE	ReleaseDate	<=	DATE	'1990-06-19' ...

– See	Chapter	6.1.5	of	Textbook	(page	251)	for	some	more	details.
– There	are	some	implementation-specific	differences	on	formats.

SQL’s	Three-Valued	Logic

• What	is	the	result	of	this	comparison?
major	=	'Computer	Science' AND	avgGPA	>	3

• Three-valued	logic	TRUE,	FALSE,	UNKNOWN
• If	major	is	NULL,	then	“	major= 'Computer	Science' ”	evaluates	to	

UNKNOWN.
• If	avgGPA	is	NULL,	then	“avgGPA	>	3”	evaluates	to	UNKNOWN.

Students studentID name major gender avgGPA

112 Ann Computer	
Science

F NULL

327 Bob NULL M 3.90

835 Carl Physics M 4.00

SQL’s	three-valued	logic	(cont’d)

55

SQL’s	Three-Valued	Logic:		Truth	Table

Example	of	Three-Value	Logic

SELECT	*
FROM	Students
WHERE	major	=	'Computer	Science' AND	avgGPA	>	3.0;

• If	the	condition	evaluates	to	UNKNOWN,	then	the	tuple	will	
not be	returned.

• Both	Ann	and	Bob	will	not	be	returned.	
• In	fact,	none	of	the	tuples	will	be	returned.

• Is	UNKNOWN	the	same	as	FALSE?
– No;	why	not?

Some	Facts	About	Nulls

• Almost	all	comparisons	with	NULL	will	evaluate	to	unknown.		If	Salary	is	
NULL,	then	the	following	will	be	UNKNOWN:
– Salary	=	10
– Salary	<>	10
– 90	>	Salary	OR	90	<=		Salary
– Salary	=	NULL
– Salary	<>	NULL

• Use	of	IS	NULL	and	NOT	IS	NULL
– Salary	IS	NULL		will	be	true	if	Salary	is NULL,	false	otherwise
– Salary	IS	NOT	NULL	will	be	true	if	Salary	isn’t NULL,	false	otherwise

Some	More	Examples	For	Nulls

• If	Salary1	has	value	NULL	and	Salary2	has	value	NULL,	then	what	will	be	
the	value	for	these	predicates?
– Salary1	=	Salary2
– Salary1	<>	Salary2
– Salary1	IS	NULL
– Salary2	IS	NOT	NULL
– Salary1	IS	NULL	OR	Salary2	IS	NOT	NULL

• Write	a	query	that	returns	the	names	of	students	whose	Major	is	either	
Computer	Science	or	NULL.

• Write	a	query	that	returns	the	names	of	students	whose	Major	isn’t	NULL	
and	whose	avgGPA	is	NULL.

SQL’s	Three-Valued	Logic

• What	is	the	result	of	this	comparison?
– major	=	'Computer	Science' AND	avgGPA	>	3

• Three-valued	logic	TRUE,	FALSE,	UNKNOWN
• If	major	is	NULL,	then	“	major= 'Computer	Science' ”	evaluates	to	

UNKNOWN.
• If	avgGPA	is	NULL,	then	“avgGPA	>	3”	evaluates	to	UNKNOWN.

Students studentID name major gender avgGPA

112 Ann Computer	
Science

F NULL

327 Bob NULL M 3.90

835 Carl Physics M 4.00

Ordering	the	Result

SELECT [DISTINCT] <list of attributes>
FROM R1, R2, …, Rn

[WHERE condition]
[ORDER BY <list of attributes>]

• ORDER BY presents the result in a sorted order.
• By default, the result will be ordered in ascending order.

For descending order, you write:
– ORDER BY <list of attributes> DESC

ORDER	BY

SELECT	*
FROM	Movies
WHERE	studioName	=	'Disney' AND	year	=	1990
ORDER	BY	length,	title;

• The	result	will	list	movies	that	satisfy	the	condition	in	the	WHERE	clause	in	
ascending	(ASC)	order	of	length,	then	by	ascending	title.
– Shortest	length	movies	will	be	listed	first.	
– Among	all	movies	with	the	same	length,	the	movies	will	be	sorted	in	

ascending	order	of	title.
• ORDER	BY	length	DESC,	title;

– Longest length	movies	will	be	listed	first.
– Among	all	movies	with	the	same	length,	the	movies	will	be	sorted	in	

ascending	order	of	title.

63

Meaning	of	an	SQL	Query	with	One	Relation	in	
the	FROM	Clause

SELECT [DISTINCT] c1, c2, …, cm

FROM R1

[WHERE condition]
[ORDER BY < list of attributes [ASC|DESC] >]

• Let	Result	denote	an	empty	multiset	of	tuples.
• For	every tuple t from	R1,

– if	t satisfies	condition	(i.e.,	if	condition	evaluates	to	true),	then add	the	
tuple	that	consists	of	c1,	c2,	…,	cm components	of	t into	Result.

• If	DISTINCT	is	in	the	SELECT	clause,	then	remove	duplicates	in Result.	
• If	ORDER	BY	<list	of	attributes>	exists,	then	order	the	tuples	in	Result	

according	to	ORDER	BY	clause.
• Return	Result.

More	on	ORDER	BY

• You	can	ORDER	BY	expressions,	not	just	attributes
– ORDER	BY	Quantity	*	Price
– ORDER	BY	Quantity	*	Price	DESC

• ORDER	BY	works	with	attributes	that	can	have	NULL	values
– NULL	will	probably	be	smallest	or	largest	value
– Not	specified	by	SQL	standard,	so	it	depends	on	the	implementation

Practice	Homework	2

• Define	the	following	two	relational	schemas	in	SQL	using	reasonable	datatypes	
for	each	attribute.
– Sells	(bar,	beer,	price):	indicates	the	price	of	each	beer	sold	at	each	bar	

(note	that	each	bar	can	sell	many	beers	and	many	bars	can	sell	the	same	
beer,	at	possibly	different	prices).	

– Frequents	(drinker,	bar):	indicates	which	drinker	frequents	which	bars	
(note	that	each	drinker	may	frequent	many	bars	and	many	drinkers	may	
frequent	the	same	bar).

– Likes	(drinker,	beer):	indicates	which	drinker	likes	which	beers	(note	that	a	
drinker	may	like	many	beers	and	many	drinkers	may	like	the	same	beer)

• Add	a	column	“size”	to	Sells	relation	schema	using	the	“ALTER	TABLE”	
command.

• Write	an	SQL	query	to	retrieve	all	beers	sold	by	the	bar	“99	bottles”.
• Write	an	SQL	query	to	retrieve	all	beers	that	are	priced	above	$3.

65

