
Basic	SQL

Instructor:		Shel	Finkelstein

Reference:
A	First	Course	in	Database	Systems,	
3rd edition,	Chapter	2.3,	6.1



Important	Notices

• You	should	have	Gradiance	access	this	week,	via	Lab	Sections	
with	Akhil	and	Aniket.
– First	Gradiance	Assignment will	be	posted	this	Friday.

• Lab1	assignment	was	posted	on	Monday,	Oct	2	on	Piazza	
under	Resources.		General	Information	about	Labs	has	already	
been	posted.			See	Piazza	announcement.
– Lab1	will	be	discussed	at	Lab	Sections.
– Due	Sunday,	October	15,	by	11:59pm.
– Your	solution	should	be	submitted	via	Canvas	as	zip	file.
– Canvas	will	be	used	for	both	Lab	submission	and	grading.



Practice	Homework

• If	D1 has	n1 elements	and	D2 has	n2 elements,	then	how	many	elements	
are	there	in	D1 × D2?
– That	is,	if	|D1|=	n1,	|D2|=	n2,	what	is	|D1× D2|?

• If	Di has	ni elements,	then	how	many	elements	are	there	
in	the	Cartesian	product	D1 × …	× Dk?	

• If	Di has	ni elements,	then	how	many	relations	can	one	construct	from	D1 ×
…	× Dk ?



Summary	of	Previous	Lecture

• A	data	model
• A	relation	schema
– Attributes	or	column	names
– Tuples	or	rows
– Columns
– Arity (number	of	columns/attributes)

• A	relation	(an	instance	of	a	relation	schema)
• A	relational	database	schema
• A	database	(an	instance	of	a	database	schema)
• Logical	and	physical	data	independence



A	Relation	Database	Schema

• A	relation	database	schema or,	simply,	a	database	schema	is	a	set	of	
relation	schemas	with	disjoint	relation	names.

• A	university	database	schema:
– Student(studentID,	name,	major,	gender,	avgGPA)
– Course(courseID,	description,	department)
– Teach(profID,	courseID,	quarter,	year)
– Enroll(studentID,	courseID,	grade)
– Professor(profID,	name,	department,	level)



Instance	of	a	Database	Schema

• An	instance	of	a	database	schema	{R1,	…	Rk}	(or	a	database	instance	in	
short)	is	a	set	{r1,	…,	rk}	of	relations	such	that	ri is	an	instance	of	Ri,	for	
1	≤	i	≤	k.

studentID name major gender avgGPA

112 Ann Computer	
Science

F 3.95

327 Bob Computer	
Science

M 3.90

835 Carl Physics M 4.00

courseID description department

CMPS101 Algo. CS

BINF223 Intro.	to	bio. Biology

Teach,	Enroll,	Professor,	…

Student

Course



What	is	a	Data	Model?

• A	data	model	is	a	mathematical	formalism	that	consists	of	
three	parts:
1. Structure	of	the	data
2. Operations	on	the	data
3. Constraints	on	the	data

• This	course	focuses	mainly	on	the	relational	data	model

• What	is	the	associated	query	language	commonly	
used	for	the	relational	data	model?



Two	Query	Languages	

• Codd	proposed	two	different	query	languages	for	the	
relational	data	model.
– Relational	Algebra

• Queries	are	expressed	as	a	sequence	of	operations	on	relations
• Procedural	language

– Relational	Calculus
• Queries	are	expressed	as	formulas	of	first-order	logic
• Declarative	language

• Codd’s	Theorem:	The	Relational	Algebra	query	language	has	
the	same	expressive	power	as	the	Relational	Calculus	query	
language.



Procedural	vs.	Declarative	Languages

• Procedural	program
– The	program	is	specified	as	a	sequence	of	operations	to	
obtain	the	desired	the	outcome.	I.e.,	how	the	outcome	is	
to	be	obtained.	

– E.g.,	Java,	C,	…

• Declarative	program
– The	program	specifies	what	is	the	expected	outcome,	and	
not	how	the	outcome	is	to	be	obtained.

– E.g.,	Scheme,	Ocaml,	…



An	Example:		Travel	from	Baskin	Engineering,	
UC	Santa	Cruz	to	Soda	Hall,	UC	Berkeley

Declarative	(non-procedural):

• Go	from	Baskin	Engineering,	at	McLaughlin	Dr.	
and	Heller	Dr.	in	Santa	Cruz,	CA,	to	Soda	Hall,	
at	Hearst	Ave.	and	Oxford	St.	in	Berkeley,	CA



An	Example:		Travel	from	Baskin	Engineering,	
UC	Santa	Cruz	to	Soda	Hall,	UC	Berkeley

Procedural	(first	part)
• Turn	left	onto	Heller	Dr,
• Turn	left	onto	Empire	Grade
• Continue	onto	High	St
• High	St	turns	right	and	becomes	Storey	St,
• Turn	left	onto	King	St
• Turn	left	onto	CA-1	S/Mission	St	
• Continue	to	follow	CA-1	S
• Take	the	CA-17	exit	on	the	left	toward	San	Jose/Oakland
• Continue	onto	CA-17	N	
• Keep	left	to	continue	on	I-880	N	



An	Example:		Travel	from	Baskin	Engineering,	
UC	Santa	Cruz	to	Soda	Hall,	UC	Berkeley

Procedural	(continued):
• Keep	right	at	the	fork,	follow	signs	for	CA-24/I-980/Walnut	Cr.	

Continue	onto	I-980	E	
• Keep	left	to	continue	on	CA-24	E	
• Take	the	exit	toward	51st	Street
• Turn	right	onto	52nd	St	
• Take	the	1st	left	onto	Shattuck	Ave	
• Turn	right	onto	University	Ave	
• Turn	left	onto	Oxford	St	
• Turn	right	onto	Hearst	Ave	
• Turn	left;	destination	will	be	on	the	right



SQL	– Structured	Query	Language

• Is	SQL	a	procedural	or	a	declarative	language?
– SQL	is	usually	described	as	declarative,	but	it’s	not	fully	declarative.

• SQL	is	the	principal	language	used	to	describe	and	manipulate	data	
stored	in	relational	database	systems.
– Frequently	pronounced	as	“Sequel”,	but	formally	it’s	“Ess	Cue	El”
– Not	exactly	the	same	as	Codd’s	relational	algebra	or	relational	calculus

• Several	iterations	of	the	standard	from	cooperating	groups	
– SQL-86,	SQL-89,	SQL-92	(SQL2),	SQL:1999	(SQL3),	SQL:2003,	SQL:2006,	

SQL:2008,	SQL:2011
– ANSI	(American	National	Standards	Institute)	
– ISO	(International	Organization for	Standards)
– Implementations	usually	offer	their	own	extensions	of	SQL.



SQL	DDL	and	SQL	DML

Two	main	aspects	to	SQL:
• Data	Definition	Language	(DDL)
– CREATE	TABLE,	DROP	TABLE
– CREATE	SCHEMA,	DROP	SCHEMA
– …

• Data	Manipulation	Language	(DML)
– SELECT
– INSERT
– UPDATE
– DELETE
– …



Relations	in	SQL

• Three	types	of	relations
1. Stored	relations	(or	tables)

• These	are	tables	that	contain	tuples	and	can	be	modified	or	
queried.

2. Views
• Views	are	relations	that	are	defined	in	terms	of	other	relations	

but	they	are	not	stored.	They	are	constructed	only	when	needed.
3. Temporary	tables

• These	are	(intermediate)	tables	that	are	constructed	by	the	SQL	
execution	engine	during	the	processing	of	SQL	queries	and	
discarded	when	done.



Most	of	the	Primitive	Data	Types	in	SQL

• CHAR(n):	fixed-length	string	of	up	to	n	characters	(blank-
padded)

• VARCHAR(n):	also	a	string	of	up	to	n	characters
• BIT(n)
• BIT	VARYING(n)
• BOOLEAN:	true/false				(unknown)
• INT	or	INTEGER
– Analogous	to	int in	C

• SHORTINT
– Analogous	to	short	int in	C



Primitive	Data	Types	in	SQL	(continued)

• DECIMAL(n,d)
– Total	of	n	decimal	digits;	d	of	them	to	the	right	of	the	
decimal	point

• FLOAT(p),	FLOAT	and	REAL	(Implementation-specific)
– DOUBLE	PRECISION
• Analogous	to	double in	C

• DATE,	TIME,	TIMESTAMP,	INTERVAL
– Separate	data	types
– Constants	are	character	strings	of	a	specific	form,	e.g.,	
DATE	‘2017-09-13’	and	TIME	‘16:45:33’

• A	few	others	…
• PostgreSQL	has	non-standard	TEXT,	for	variable	strings	of	any	length



More	on	DATE,	TIME,	TIMESTAMP,	INTERVAL

• Some	information	sources
– Limited	stuff	in	textboosk;	see	Sections	2.3.2	and	6.1.5
– Too	much	in	PostgreSQL	manual

• 8.5.	Date/Time	Types
• 9.9.	Date/Time	Functions	and	Operators

• Some	examples	of	constants
– DATE	‘2017-09-13’	and	TIME	‘16:45:33’
– TIMESTAMP	‘2017-09-13	16:45:33’
– INTERVAL	‘2	HOURS	30	MINUTES’

• Arithmetic
– Subtracting	one	TIME	from	another	results	in	an	INTERVAL
– Taking	a	TIME	and	adding	an	INTERVAL	results	in	a	TIME
– Similarly	for	TIMESTAMP	and	DATE	(instead	of	TIME)



Defining	a	Table

CREATE	TABLE	Movies	(
title	 CHAR(100),
year INT,
length INT,
genre CHAR(10),
studioName CHAR(30),
producerC# INT

);

title year length genre studioName producerC#

Think	of	producerC#	as	the	Certificate	Number	for	the	movie’s	producer,	
where	Certificate	Number	is	a	key	uniquely	identifying	a	Movie	Executive.



Defining	a	Table	(continued)

CREATE	TABLE	MovieStar	(
name CHAR(30),
address VARCHAR(255),
gender CHAR(1),
birthdate DATE

);

name address gender birthdate



Modifying	Relation	Schemas

• DROP	TABLE	Movies;
– The	entire	table	is	removed	from	the	database	schema.

• ALTER	TABLE	MovieStar	ADD	phone	CHAR(16);
– Adds	an	attribute	“phone”	with	type	CHAR(16)	to	the	table	MovieStar.

• ALTER	TABLE	MovieStar	DROP	birthdate;

name address gender birthdate

name address gender birthdate phone

name address gender phone



Default	Values

CREATE	TABLE	MovieStar	(
name CHAR(30),
address VARCHAR(255)				DEFAULT 'Hollywood',
gender CHAR(1),
birthdate DATE

);
• If	a	new	row	is	inserted	and	no	value	is	specified	for	the	attribute	address,	

then	the	value	for	this	attribute	will	default	to	'Hollywood'.
• If	no	default	value	is	declared	explicitly	and	no	value	is	entered	for	an	

attribute,	then	the	value	of	the	attribute	will	default	to	NULL.
– NULL	is		a	special	value	in	SQL	to	represent	unknown	values.
– A	Constraint	(which	we’ll	discuss	soon)	can	prevent	a	column	from	

having	null	values.



More	Examples	of	Default	Values

CREATE	TABLE	MovieStar	(
name CHAR(30),
address VARCHAR(255)				 DEFAULT  'Hollywood',
gender CHAR(1)				 DEFAULT  '?',
birthdate DATE DEFAULT  '1990-08-26'

);

ALTER	TABLE	MovieStar	ADD	phone	CHAR(16)	DEFAULT	'unlisted';



Reminder:		Keys

• A	key	constraint	(or	a	key	in	short)	of	a	relation	schema	R	is	a	subset	K	of	
attributes	of	R	such	that
1. For	every	instance	r	of	R,	every	two	distinct	tuples	of	r	must	differ	in	

their	values	from	K.
• Contrapositive:	if	two	tuples	agree	on	their	values	from	K,	then	

they	must	be	the	same	tuple.
2. Minimal:	no	proper	subset	of	K	has	the	above	property.

• A	superkey	is	a	set	of	attributes	of	R	that	includes	a	key	of	R.
– Fact.	All	keys	are	superkeys	but	some	superkeys	are	not	keys.



Reminder:		Key	Examples

– Student(studentID,	name,	major,	gender,	avgGPA).
• {studentID}	is	a	key.	It	is	also	a	superkey.
• {studentID,	name}	is	a	superkey but	not	a	key.
• {studentID,	name,	major,	gender,	avgGPA}	is	a	superkey but	not	a	key.

– There	can	be	multiple	keys	in	general.
• One	key	is	chosen	and	define	as	the	primary	key,	while	the	rest	are	

candidate	keys.
– Student(studentID,	name,	dob,	major,	gender,	avgGPA)

• {studentID},	{name,	dob}	are	keys	and	also	superkeys.
– {studentID}	is	the	primary	key.	
– {name,	dob}	is	the	candidate	key.

• {name,	dob,	avgGPA}	is	a	superkey.



Declaring	Keys

Two	ways	to	declare	a	single	attribute	to	be	a	key	in	the	CREATE	
TABLE	statement:

CREATE	TABLE	MovieStar	(
name	 CHAR(30)	PRIMARY	KEY,
address	 VARCHAR(255),
gender	 CHAR(1),
birthdate	 DATE

);

CREATE	TABLE	MovieStar	(
name	 CHAR(30),
address	 VARCHAR(255),
gender	 CHAR(1),
birthdate	 DATE,
PRIMARY	KEY (name)

);



Declaring	Keys	(continued)

If	the	key	consists	of	multiple	attributes,	then	those	attributes	can	be	
declared	as	a	key	as	follows:

CREATE	TABLE	Movies	(
title CHAR(100),
year	 INT,
length INT,
genre CHAR(10),
studioName CHAR(30),
producerC# INT,
PRIMARY	KEY	(title,	year)

);



PRIMARY	KEY	vs.	UNIQUE

• In	the	previous	examples,	the	keyword	“PRIMARY	KEY”	can	be	replaced	by	
“UNIQUE”.
– Both	specific	that	attributes	are	keys,	but	PRIMARY	KEY	is	not identical	

to	UNIQUE.

• In	the	standard,	SQL	Tables	aren’t	required	to	have	a	key	(primary	
or	otherwise),	but	some	implementations	require	it	(or	create	it).	

CREATE	TABLE	MovieStar	(
name	 CHAR(30),
address	 VARCHAR(255),
gender	 CHAR(1),
birthdate	 DATE,
UNIQUE	(name)

);

CREATE	TABLE	MovieStar	(
name	 CHAR(30),
address	 VARCHAR(255),
gender	 CHAR(1),
birthdate	 DATE,
PRIMARY	KEY (name)

);



PRIMARY	KEY	vs.	UNIQUE		(continued)

• None	of	the	rows	in	MovieStar	
can	have	null	name values.

• Rows	are	uniquely	identified	by	
their	name values.

• There	can	be	at	most	one	primary	
key	for	a	table.

• Rows	in	MovieStar	can contain	
null	name values.

• Rows	in	MovieStar	with	non-null	
name values	are	uniquely	
identified	by	their	name values.

• There	can	be	multiple	unique	
constraints	for	a	table,	in	addition	
to	a	primary	key.

CREATE	TABLE	MovieStar	(
name	 CHAR(30),
address	 VARCHAR(255),
gender	 CHAR(1),
birthdate	 DATE,
UNIQUE	(name)

);

CREATE	TABLE	MovieStar	(
name	 CHAR(30),
address	 VARCHAR(255),
gender	 CHAR(1),
birthdate	 DATE,
PRIMARY	KEY (name)

);



More	on	NULL

CREATE	TABLE	MovieStar	(
name CHAR(30)			PRIMARY	KEY,
address VARCHAR(255)			NOT	NULL		DEFAULT 'Hollywood',
gender CHAR(1),
birthdate DATE		NOT	NULL

);

• If	no	default	value	is	declared	explicitly and	no	value	is	entered	for	an	
attribute,	then	the	value	of	the	attribute	will	default	to	NULL.
– NULL	is		a	special	value	in	SQL	to	represent	unknown	values.
– NOT	NULL	constraint	prevents	a	column	from	having	null	values.
– Attributes	that	don’t	have	NOT	NULL	specified	may	be	null.
– …	but	remember	that attributes	in	the	PRIMARY	KEY	can’t	be	null.



PostgreSQL	Meta	Commands

• \l
– List	the	databases.

After	you	connect	to	a	database,	you	can	perform	the	following:
• \d

– List	the	tables	of	a	database.
• \d	table

– List	the	columns	of	a	table.

http://www.postgresqlforbeginners.com/2010/11/interacting-with-postgresql-
psql.html



SQL	DDL	and	SQL	DML

• Two	main	aspects	to	SQL:
– Data	Definition	Language	(DDL)

• Sublanguage	of	SQL	used	to	create,	delete,	modify		the	definition	
of	tables	and	views.

• For	declaring	database	schemas.
– Data	Manipulation	Language	(DML)

• Sublanguage	of	SQL	that	allows	users	to	insert,	delete,	and	modify	
rows	of	tables	and	pose	queries	to	retrieve	data.

• For	asking	questions	about	the	database	and	modifying	the	
database.

Reference:
A	First	Course	in	Database	Systems,	
3rd edition,	Chapter	6.1



Database	Schema	for	Our	Running	Example

• Let’s	assume	we	have	a	database	schema	with	five	relation	schemas.

Movies(title,	year,	length,	genre,	studioName,	producerC#)
StarsIn(movieTitle,	movieYear,	starName)
MovieStar(name,	address,	gender,	birthdate)
MovieExec(name,	address,	cert#,	netWorth)
Studio(name,	address,	presC#)

In	this	schema,	cert# is	just	an	attribute	for	a	MovieExec’s “certificate	
number”;	producerC#	and	presC#	should	refer	to	the	cert#	of	the	producer	of	a	
Movie	and	president	of	a	Studio,	respectively.		Nothing	special	about	these	
column	names/attributes	for	SQL—it’s	just	an	example.

And	note	that	the	# symbol	is	not allowed	in	identifiers	(such	as	column	names	
and	table	names)	in	PostgreSQL,	even	though	our	textbook	uses	it.



A	Simple	SQL	Query

• Find	all	movies	produced	by	Disney	Studios	in	1990.

SELECT *
FROM Movies	
WHERE studioName	=	'Disney' AND	year	=	1990;



35

Basic	Form	of	a	SQL	Query

• Basic	form:

SELECT [DISTINCT] c1, c2, …, cm
FROM R1, R2, …, Rn
[WHERE condition]

• We	will	focus	on	one	relation	R1 for	now.
• What	is	the	semantics	(that	is,	the	meaning)	of	this	query?

Attribute	names

Relation	names



A	Simple	SQL	Query

• Find	all	movies	produced	by	Disney	Studios	in	1990.
SELECT	*
FROM	Movies	
WHERE	studioName	=	'Disney' AND	year	=	1990;

Title Year Length Genre studioName producerC#

Pretty	
Woman

1990 119 true Disney 999

Monster’s	
Inc.

1990 121 true Dreamworks 223

Jurassic
Park

1998 145 NULL Disney 675

Movies

The	symbol	“*”	is	a	shorthand	for	all	
attributes	of	relations	in	the	FROM	clause.



A	Simple	SQL	Query	(Result)

• Find	all	movies	produced	by	Disney	Studios	in	1990.
SELECT	*
FROM	Movies	
WHERE	studioName	=	'Disney' AND	year	=	1990;

Title Year Length Genre studioName producerC#

Pretty	
Woman

1990 119 true Disney 999

Result



An	Even	Simpler	SQL	Query

• Find	all	movies.
SELECT	*
FROM	Movies;	

Title Year Length Genre studioName producerC#

Pretty	
Woman

1990 119 true Disney 999

Monster’s	
Inc.

1990 121 true Dreamworks 223

Jurassic
Park

1998 145 NULL Disney 675

Movies

Equivalent	to:
SELECT	*
FROM	Movies
WHERE	true;



An	Even	Simpler	SQL	Query	(Result)

• Find	all	movies.
SELECT	*
FROM	Movies;	

Title Year Length Genre studioName producerC#

Pretty	
Woman

1990 119 true Disney 999

Monster’s	
Inc.

1990 121 true Dreamworks 223

Jurassic
Park

1998 145 NULL Disney 675

Result



A	Simple	SQL	Query	with	Projection

• Return	the	title	and	year	of	all	movies.
SELECT	title,	year
FROM	Movies;	

Title Year

Pretty	
Woman

1990

Monster’s	
Inc.

1990

Jurassic
Park

1998

Result

A	Projection	Query:
• Only	a	subset	of	attributes	from	the	
relation(s)	in	the	FROM	clause	is	selected.



A	Simple	SQL	Query	with	Projection	and	
Selection

• Return	the	title	and	year	of	all	movies	produced	by	Disney	
Studios	in	1990.
SELECT	title,	year
FROM	Movies
WHERE	studioName	=	'Disney' AND	year	=	1990;

Title Year

Pretty	
Woman

1990

Result



Distinct:		Sets	vs Multisets/Bags

• Return	the	years	of	all	movies	with	length	less	than	140.
SELECT	year
FROM	Movies	
WHERE	length	<	140;

Year

1990

1990

Result

SELECT	DISTINCT	year
FROM	Movies	
WHERE	length	<	140;

Year

1990

Result

Multiset or	bag	semantics Set	semantics



Bags	(or	Multisets)	vs.	Sets

• From	basic	set	theory:

• Every	element	in	a	set	is	distinct
– E.g.,	{2,4,6}	is	a	set	but	{2,4,6,2,2}	is	not	a	set	

• …	or	is	same	set	as	{2,4,6}

• A	bag	(or	multiset)	may	contain	repeated	elements.
– E.g.,	{{2,4,6}}	is	a	bag.	So	is	{{2,4,6,2,2}}.						

• Note	that	double	set	brackets	in	{{2,4,6}}	indicate	it’s	a	bag,	not	a	set
– Equivalently	written	as	{{2[3],4[1],6[1]}}.

• The	order	among	elements	in	a	set	or	bag	is	not	important
– E.g.,	{2,4,6}	=	{4,2,6}	=	{6,4,2}
– {{2,4,6,2,2}}	=	{{2,2,2,6,4}}	=	{{6,2,2,4,2}}.
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Aliasing	Attributes

• Allows	you	to	rename	the	attributes	of	the	result.
• Example:		Return	the	title	and	length	of	all	movies	as	

attributes	name	and	duration.
SELECT	title	AS	name,	length	AS	duration
FROM	Movies;	

name duration

Pretty	
Woman

119

Monster’s	
Inc.

121

Jurassic Park 145

Result



Expressions	in	the	SELECT	Clause

• Expressions	are	allowed	in	the	SELECT	clause.
• Return	the	title	and	length	of	all	movies	as	name	and	duration	

in	seconds	(durationInSeconds)
SELECT	title	AS	name,	length	*	60	AS	durationInSeconds
FROM	Movies;

name durationInSeconds

Pretty	Woman 7140

Monster’s	Inc. 7260

Jurassic Park 8700

Result



Constants	in	the	Result

• Constants	can	also	included	in	the	SELECT	clause.
• Every	row	will	have	the	same	constant	specified	in	the	SELECT	clause.

SELECT	title	AS	name,	length	*	60		AS	durationInSeconds,	
‘seconds’	AS	inSeconds

FROM	Movies;	

name durationInSeconds inSeconds

Pretty	
Woman

7140 seconds

Monster’
s	Inc.

7260 seconds

Jurassic
Park

8700 seconds

Result



More	on	the	Conditions	
in	the	WHERE	Clause

• WHERE	studioName	=	'Disney' AND	year	=	1990;
• Comparison	operators:

o =,		<>,		<,		>,		<=,		>=
o Equal,	not	equal,	less	than,	greater	than,	less	than	or	equal,	greater	

than	or	equal
o E.g.,	WHERE	year	<=	1990

• Logical	connectives:
o AND,	OR,	NOT
o E.g.,	WHERE	NOT	(studioName	=	'DISNEY' AND	year	<=	1990)

• Arithmetic	expressions:
o +,		-,		*,		/,	etc.	
o E.g.,	WHERE	((length*0.01667)	>	2	OR	(length	<	100))	AND	year	>	2000
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More	on	the	Conditions	
in	the	WHERE	Clause	(cont’d)

• In	general,	the	WHERE	clause	consists	of	a	boolean	
combination	of	conditions	using	logical	connectives	AND,	OR,	
and	NOT.

• Each	condition	is	of	the	form	
expression op	expression

– expression	is	a	column	name,	a	constant,	or	an	arithmetic	
or	string	expression

– op	is	a	comparison	operator	(=,	<>,	<,	>,	<=,	>=,	LIKE)

(More	on	this	soon)



String	Comparisons

• Strings	are	compared	in	lexicographical	order.
– Let	a1.a2.	…	.an and	b1.b2.	…	bm be	two	strings.	
– Then	a1.a2.	…	.an <	b1.b2.	…	bm if	either:

1. a1.a2.	…	.an is	a	proper	prefix	of	b1.b2.	…	bm ,	or,
2. For	some	1	<=	i	<	n,	we	have	a1=b1,	a2=b2,	…,	ai-1=bi-1

and	ai <	bi.

• Examples:	
– ‘Pretty’	<	'Pretty	Woman',		
– ‘butterfingers’	<	'butterfly'



Pattern	Matching	in	SQL

• LIKE	operator			
– s	LIKE	p,	s	NOT	LIKE	p
– s	is	a	string,	p	is	a	pattern

• '%' (stands	for	0	or	more	arbitrary	chars)
• '_' (stands	for	exactly	one	arbitrary	char)

SELECT	*
FROM	Movies
WHERE	title	LIKE	'Pretty%' title	LIKE	'P_etty%'
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Pattern	Matching	in	SQL

• How	do	you	match	titles	with	a	quote	symbol	in	them?	
– E.g.,	'Monster's	Inc.'

SELECT	*
FROM	Movies
WHERE	title	LIKE	'Monster's	Inc.'

Wrong!!!

WHERE	title	LIKE	'Monster''s	Inc.'
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Pattern	Matching	in	SQL

• How	do	you	match	just	a	quote	symbol?	
WHERE	title	LIKE	'''' //	matches	'

• How	do	you	match	two	quote	symbols?	
WHERE	title	LIKE	'''''' //	matches	''

• How	do	you	match	%	or	_?
WHERE	title	LIKE	'!%%!_' ESCAPE	'!' //	!	could	be	any	character

Would	this	match:				  'ABC%D'  '%ABC' '%ABC_' 'ABCD’ '%_'
No No Yes No Yes
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Date	and	Time

• DATE	and	TIME	(and	TIMESTAMP)
– Separate	data	types
– Constants	are	character	strings	of	a	specific	form

• DATE		'2015-01-13'
• TIME		'16:45:33'
• TIMESTAMP		'2015-01-13	16:45:33'

– DATE,	TIME	and	TIMESTAMP	can	be	compared	using	ordinary	
comparison	operators
• …	WHERE	ReleaseDate	<=	DATE	'1990-06-19' ...

– See	Chapter	6.1.5	of	Textbook	(page	251)	for	some	more	details.
– There	are	some	implementation-specific	differences	on	formats.



SQL’s	Three-Valued	Logic

• What	is	the	result	of	this	comparison?
major	=	'Computer	Science' AND	avgGPA	>	3

• Three-valued	logic	TRUE,	FALSE,	UNKNOWN
• If	major	is	NULL,	then	“	major= 'Computer	Science' ”	evaluates	to	

UNKNOWN.
• If	avgGPA	is	NULL,	then	“avgGPA	>	3”	evaluates	to	UNKNOWN.

Students studentID name major gender avgGPA

112 Ann Computer	
Science

F NULL

327 Bob NULL M 3.90

835 Carl Physics M 4.00



SQL’s	three-valued	logic	(cont’d)
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SQL’s	Three-Valued	Logic:		Truth	Table



Example	of	Three-Value	Logic

SELECT	*
FROM	Students
WHERE	major	=	'Computer	Science' AND	avgGPA	>	3.0;

• If	the	condition	evaluates	to	UNKNOWN,	then	the	tuple	will	
not be	returned.

• Both	Ann	and	Bob	will	not	be	returned.	
• In	fact,	none	of	the	tuples	will	be	returned.

• Is	UNKNOWN	the	same	as	FALSE?
– No;	why	not?



Some	Facts	About	Nulls

• Almost	all	comparisons	with	NULL	will	evaluate	to	unknown.		If	Salary	is	
NULL,	then	the	following	will	be	UNKNOWN:
– Salary	=	10
– Salary	<>	10
– 90	>	Salary	OR	90	<=		Salary
– Salary	=	NULL
– Salary	<>	NULL

• Use	of	IS	NULL	and	NOT	IS	NULL
– Salary	IS	NULL		will	be	true	if	Salary	is NULL,	false	otherwise
– Salary	IS	NOT	NULL	will	be	true	if	Salary	isn’t NULL,	false	otherwise



Some	More	Examples	For	Nulls

• If	Salary1	has	value	NULL	and	Salary2	has	value	NULL,	then	what	will	be	
the	value	for	these	predicates?
– Salary1	=	Salary2
– Salary1	<>	Salary2
– Salary1	IS	NULL
– Salary2	IS	NOT	NULL
– Salary1	IS	NULL	OR	Salary2	IS	NOT	NULL

• Write	a	query	that	returns	the	names	of	students	whose	Major	is	either	
Computer	Science	or	NULL.

• Write	a	query	that	returns	the	names	of	students	whose	Major	isn’t	NULL	
and	whose	avgGPA	is	NULL.



SQL’s	Three-Valued	Logic

• What	is	the	result	of	this	comparison?
– major	=	'Computer	Science' AND	avgGPA	>	3

• Three-valued	logic	TRUE,	FALSE,	UNKNOWN
• If	major	is	NULL,	then	“	major= 'Computer	Science' ”	evaluates	to	

UNKNOWN.
• If	avgGPA	is	NULL,	then	“avgGPA	>	3”	evaluates	to	UNKNOWN.

Students studentID name major gender avgGPA

112 Ann Computer	
Science

F NULL

327 Bob NULL M 3.90

835 Carl Physics M 4.00



Ordering	the	Result

SELECT [DISTINCT] <list of attributes>
FROM R1, R2, …, Rn

[WHERE condition]
[ORDER BY <list of attributes>]

• ORDER BY presents the result in a sorted order.
• By default, the result will be ordered in ascending order. 

For descending order, you write:
– ORDER BY <list of attributes> DESC



ORDER	BY

SELECT	*
FROM	Movies
WHERE	studioName	=	'Disney' AND	year	=	1990
ORDER	BY	length,	title;

• The	result	will	list	movies	that	satisfy	the	condition	in	the	WHERE	clause	in	
ascending	(ASC)	order	of	length,	then	by	ascending	title.
– Shortest	length	movies	will	be	listed	first.	
– Among	all	movies	with	the	same	length,	the	movies	will	be	sorted	in	

ascending	order	of	title.
• ORDER	BY	length	DESC,	title;

– Longest length	movies	will	be	listed	first.
– Among	all	movies	with	the	same	length,	the	movies	will	be	sorted	in	

ascending	order	of	title.
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Meaning	of	an	SQL	Query	with	One	Relation	in	
the	FROM	Clause

SELECT [DISTINCT] c1, c2, …, cm

FROM R1

[WHERE condition]
[ORDER BY < list of attributes [ASC|DESC] >]

• Let	Result	denote	an	empty	multiset	of	tuples.
• For	every tuple t from	R1,

– if	t satisfies	condition	(i.e.,	if	condition	evaluates	to	true),	then add	the	
tuple	that	consists	of	c1,	c2,	…,	cm components	of	t into	Result.

• If	DISTINCT	is	in	the	SELECT	clause,	then	remove	duplicates	in Result.	
• If	ORDER	BY	<list	of	attributes>	exists,	then	order	the	tuples	in	Result	

according	to	ORDER	BY	clause.
• Return	Result.



More	on	ORDER	BY

• You	can	ORDER	BY	expressions,	not	just	attributes
– ORDER	BY	Quantity	*	Price
– ORDER	BY	Quantity	*	Price	DESC

• ORDER	BY	works	with	attributes	that	can	have	NULL	values
– NULL	will	probably	be	smallest	or	largest	value
– Not	specified	by	SQL	standard,	so	it	depends	on	the	implementation



Practice	Homework	2

• Define	the	following	two	relational	schemas	in	SQL	using	reasonable	datatypes	
for	each	attribute.
– Sells	(bar,	beer,	price):	indicates	the	price	of	each	beer	sold	at	each	bar	

(note	that	each	bar	can	sell	many	beers	and	many	bars	can	sell	the	same	
beer,	at	possibly	different	prices).	

– Frequents	(drinker,	bar):	indicates	which	drinker	frequents	which	bars	
(note	that	each	drinker	may	frequent	many	bars	and	many	drinkers	may	
frequent	the	same	bar).

– Likes	(drinker,	beer):	indicates	which	drinker	likes	which	beers	(note	that	a	
drinker	may	like	many	beers	and	many	drinkers	may	like	the	same	beer)

• Add	a	column	“size”	to	Sells	relation	schema	using	the	“ALTER	TABLE”	
command.

• Write	an	SQL	query	to	retrieve	all	beers	sold	by	the	bar	“99	bottles”.
• Write	an	SQL	query	to	retrieve	all	beers	that	are	priced	above	$3.
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