
SQL	(Part	4)
Database	Modification	Statements

and
Transactions	in	SQL

Instructor:	Shel	Finkelstein

• Database	Modification	Reference:	A	First	Course	in	Database	Systems,	
3rd edition,	Chapter	6.5

• Transactions	Reference:		Transactions	Reference:		A	First	Course	in	
Database	Systems,	3rd edition,	Chapter	6.6	– 6.7

Important	Notices
• Lab2	assignment	is	due	on Sunday,	Oct	29,	11:59pm	on	Canvas	as	a	zip	file.

• No late	submissions,	no make-up	assignments
– A	load	script	for	Lab2	was	also	posted	on	Piazza.

• Reminder:		Midterm	is	on	Monday,	Nov	6 is	usual	classroom,	at	usual	time.
– No	make-ups,	no	early/late	exams.
– You	may	bring	a	single	two-sided	8.5”	x	11”	sheet	of	paper with	as	much	info	

written	(or	printed)	on	it	as	you	can	fit	and	read	unassisted.		
• No	sharing	of	these	sheets	will	be	permitted.		
• Hand	in	these	sheets	at	the	end	of	the	exam.

– Exam	will	cover	all	material	up	to	and	including	Lecture	7 (Views/Indexes).
– No	devices	are	permitted	during	exam.
– You	must	show	your	UCSC	ID	at	the	end	of	the	exam.
– Hope	that	everyone	who	needs	DRC	accommodation	has	already	submitted	

form	to	me.
– Winter	2017	Midterm	has	been	posted	on	Piazza;	solution	will	be	posted	next	

week.
• Sign-up	for	LSS	tutoring	with	Alexander	Ou … if	there’s	room.

Database	Modification	Statements

Instructor:	Shel	Finkelstein

Database	Modification	Reference:
A	First	Course	in	Database	Systems,	
3rd edition,	Chapter	6.5

Database	Modification	Statements

• SQL	statements	for:	
– Inserting	some	tuples	into	a	relation
– Deleting	some	tuples	from	a	relation
– Updating	values	of	some	columns	of	some	existing	tuples

• INSERT,	DELETE,	and	UPDATE	are	referred	to	as	modification	operations.
– They	are	Data	Manipulation	Language	(DML)	statements,	as	is	SELECT.

• Modification	operations	change	the	state of	the	database.
– They	do	not return	a	collection	of	rows	or	other	values.
– They	may	return	errors/error	codes.

Insert	Statement	with	Values

INSERT	INTO	R(A1,	…,	An)	
VALUES	(v1,	…,	vn);

• A	tuple	(v1,	…,	vn)	is	inserted	into	the	relation	R,	where	attribute	Ai =	vi and	
default	values	(perhaps	NULL)	are	entered	for	all	missing	attributes.

INSERT	INTO	StarsIn(movieTitle,	movieYear,	starName)
VALUES	(‘The	Maltese	Falcon’,	1942,	‘Sydney	Greenstreet’);

• The	tuple (‘The	Maltese	Falcon’,	1942,	‘Sydney	Greenstreet’)	will	be	added	
to	the	relation	StarsIn.

INSERT	INTO	StarsIn
VALUES	(‘The	Maltese	Falcon’,	1942,	‘Sydney	Greenstreet’);

INSERT	Statement	with	Subquery

Movies(title,	year,	length,	genre,	studioName,	producerC#)
Studio(name,	address,	presC#)

INSERT	INTO	Studio(name)
SELECT	DISTINCT	studioName
FROM	Movies
WHERE	studioName NOT	IN	

(SELECT	name
FROM	Studio);

• Add	to	the	relation	Studio	all	the	names	that	appear	in	the	studioName
column	of	Movies	but	do	not	already	occur	in	the	names	in	the	Studio	
relation.

DELETE	Statement

DELETE	FROM	R	
WHERE	<condition>;

DELETE	FROM	StarsIn
WHERE	movieTitle =	‘The	Maltese	Falcon’	AND	

movieYear =	1942	AND	
starName =	‘Sydney	Greenstreet’;

• The	tuple	(‘The	Maltese	Falcon’,	1942,	‘Sydney	Greenstreet’)	will	be	
deleted	from	the	relation	StarsIn.

• What	if	we	wanted	to	delete	tuples	from	StarsIn for	all movies	starring	
Sydney	Greenstreet?

More	DELETE	Examples

DELETE	FROM	MovieExec
WHERE	netWorth <	10000000;

• Deletes	all	movie	executives	whose	net	worth	is	less	than	10	million	dollars.

DELETE	FROM	MovieExec
WHERE	cert#	IN

(SELECT	m.producerC#
FROM	Movies	m,	StarsIn s
WHERE	 m.title =	s.movieTitle AND	m.year =	s.movieYear

AND	s.starName =	‘Sydney	Greenstreet’);

• Deletes	all	movie	executives	who	produced	movies	starring	Sydney	
Greenstreet

DELETE:		Careful

What	does:

DELETE	FROM	MovieExec;

without	a	WHERE	clause	do?

Answer:		Deletes	all the	tuples	from	MovieExec!!!

UPDATE	Statement

UPDATE	R	
SET	<new-value-assignments>	
WHERE	<condition>;

• <new-value-assignment>	:-
<attribute>	=	<expression>,	…,	<attribute>	=	<expression>

UPDATE	Employees
SET	salary	=	85000,	dept =	‘SALES’
WHERE	SSnum=‘123456789’;

UPDATE	Employees
SET	salary	=	25000	
WHERE	salary	IS	NULL;

UPDATE	Employees
SET	salary	=	salary	*	1.1
WHERE	salary	>	100000;

UPDATE	with	Subquery

UPDATE	R	
SET	<new-value-assignments>	
WHERE	<condition>;

• <new-value-assignment>:-
<attribute>	=	<expression>,	…,	<attribute>	=	<expression>

UPDATE	MovieExec
SET	name	=	‘Pres.	’	||	name
WHERE	cert#	IN	(SELECT	presC#	FROM	Studio);

• 2nd line:	concatenates	the	string	‘Pres.	’	with	name.

Semantics	of	Modifications

• Database	modification	statements	are	completely	evaluated	on	the	old	state	of	the	
database,	producing		a	new	state	of	the	database.
– What	does	this	statement	do?		Is	it	deterministic	or	not?

UPDATE	MovieExec e	
SET	e.NetWorth =	6M																																														
WHERE	NOT	EXISTS	(SELECT	*	FROM	MovieExec e2

WHERE	e2.Networth	=	6M);

name address cert# netWorth

S. Spielberg X 38120 3M

G. Lucas Y 43918 4M

W.	Disney Z 65271 5M

MovieExec

Should	write	6000000,	but	this	is	clearer

Transactions	in	SQL

Instructor:	Shel	Finkelstein

Transactions	Reference:
A	First	Course	in	Database	Systems,	
3rd edition,	Chapter	6.6	– 6.7

One-Statement-At-a-Time	Semantics

• So	far,	we	have	learnt	how	to	query	and	modify	the	database.
• SQL	statements	posed	to	the	database	system	were	executed	one	at	a	

time,	retrieving	data	or	changing	the	data	in	the	database.

DB1 DB2 DBk
Q1 Q2 Qk…

Transactions

• Applications	such	as	web	services,	banking,	airline	reservations	demand	
high	throughput	on	operations	performed	on	the	database.
– Manage	hundreds	of	sales	transactions	every	second.
– Transactions	often	involve	multiple	SQL	statements.
– Database	are	transformed	to	new	state	based	on	(multiple	

statement)	transactions,	not	just	single	SQL	statements.

• It’s	possible	for	two	operations	to	simultaneously	affect	the	same	bank	
account	or	flight,	e.g.	two	spouses	doing	banking	transactions,	or	an	
automatic	deposit	during	a	withdrawal,	or	two	people	reserving	the	
same	seat.
– These	“concurrent”	operations	must	be	handled	carefully.

ACID	Transactions

• Atomicity
• Consistency
• Isolation
• Durability

Simple	Example	of	What	Could	Go	Wrong

Flights(fltNo,	fltDate,	seatNo,	seatStatus,	purchaser)

• Customer1	issues	the	following	query	via	a	web	application.
SELECT	seatNo
FROM	Flights
WHERE	fltNo=123	AND	fltDate=DATE	‘2012-12-25’	

AND	seatStatus=‘available’;

• Customer1	inspects	the	results	and	selects	a	seat,	say	22A.
UPDATE	Flights

SET	seatStatus=‘occupied’,	purchaser=‘Customer1’
WHERE	fltNo=123	AND	fltDate=	DATE	‘2012-12-25’	AND	seatNo=‘22A’;

Simple	Example	of	What	Could	Go	Wrong	
(continued)

• Customer2	is	also	looking	at	the	same	flight	on	the	same	day	
simultaneously	and	decides	to	choose	seat	22A	as	well.	

• Operations	of	query	and	update	statements:

• Both	customers	believe	that	they	have	reserved	seat	22A.
• Problem:	Each	SQL	statement	of	both	users	is	executed	correctly,	but	the	

overall	result	is	not	correct.
• However,	a	DBMS	can	provide	the	illusion that	the	actions	of	Customer1	

and	Customer2	are	executed	serially	(i.e.,	one	at	a	time,	with	no	overlap).
– Serializability

<<	Draw	on	Board	>>

Another	Example	of	What	Could	Go	Wrong,
Even	with	a	Single	User

Accounts(acctNo,	balance)

• User1	wants	to	transfer	$100	from	an	account	with	acctNo=123	to	an	
account	with	acctNo=456.	
1. Subtract	$100	from	the	account	with	acctNo=123

UPDATE	Accounts
SET	balance	=	balance	– 100
WHERE	acctNo=123;

2. Add	$100	to	the	account	with	acctNo=456
UPDATE	Accounts

SET	balance	=	balance	+	100
WHERE	acctNo=456;

• What	if	application	or	database	fails	after	step	1,	but	before	step	2?

Atomicity

• Failure	(e.g.,	network	failure,	power	failure	etc.)	could	occur	after	step	1.
– If	this	happens,	money	has	been	withdrawn	from	account	123	…
– …	but	not	not	deposited	into	account	456.

• The	DBMS	should	provide	mechanisms	to	ensure	that	groups	of	
operations	are	executed	atomically.	
– That	is,	either	all the	operations	in	the	group	are	executed	to	

completion	or	none of	the	operations	are	executed.	
– All-or-nothing,	no	in-between

Transactions

• A	transaction	is	a	group	of	operations	that	should	be	executed	atomically,	
all-or-nothing.

• Operations	of	a	transaction	can	be	interleaved	with	operations	of	other	
transactions.	

• However,	with	an	“isolation	level”	called	serializability,	the	illusion is	given	
that	every	transaction	is	executed	one-by-one,	in	a	serial	order.	
– The	DBMS	will	execute	each	transaction	in	its	entirely	or	not	at	all,	

“without	transactions	interfering	with	each	other”.

Transactions	(cont’d)

• START	TRANSACTION		or	BEGIN	TRANSACTION		(can	be	implicit)
– Marks	the	beginning	of	a	transaction,	followed	by	one	or	more	SQL	

statements.

• COMMIT
– Ends	the	transaction.	All	changes	to	the	database	caused	by	the	SQL	

statements	within	the	transaction	are	committed	(i.e.,	they	are	
permanently	there--Durability)	and	visible	in	the	database.

– All	changes	become	visible	at	once	(atomically).
– Before	commit,	changes	to	the	database	caused	by	the	SQL	statements	

are	visible	to	this	transaction,	but	are	not	visible	to	other	transactions.

• ROLLBACK
– Causes	the	transaction	to	abort	or	terminate.		Any	changes	made	by	SQL	

statements	within	the	transaction	are	undone	(“rolled	back”).

Example	Using	Informal	Syntax

BEGIN	TRANSACTION
<SQL	statement	to	check	whether	bank	account	123	has	>=	$100>
If	there	is	no	account	123,	then	ROLLBACK;
If	account	123	has	<	$100,	then	ROLLBACK;

<SQL	statement	to	withdraw	$100	from	account	123>
<SQL	statement	to	add	$100	to	account	456>
If	there	is	no	account	456,	then	ROLLBACK;

COMMIT;

• Scenario	1:		Suppose	bank	account	123	has	$50.
• Scenario	2:		Bank	account	123	has	$200,	bank	account	456	has	$400.
• Scenario	3:		Bank	account	123	has	$200,	bank	account	456	has	$400,	failure	

after	withdrawing	$100	from	account	123.
• Scenario	4:		Bank	account	123	has	$200,	bank	account	456	has	$400,	failure	

after	depositing	$100	to	account	456,	but	before	COMMIT

Read-Only	Transactions

• In	the	previous	examples,	each	transaction	involved	a	read,	then	a	write.	
• If	a	transaction	has	only	read	operations,	it	is	less	likely	to	impact	

serializability.	

• SET	TRANSACTION	READ	ONLY;
– Stated	before	the	transaction	begins.
– Tells	the	SQL	system	that	the	next	transaction	is	read-only.
– SQL	may	take	advantage	of	this	knowledge	to	parallelize	many	read-

only	transactions.

• SET	TRANSACTION	READ	WRITE;
– Tells	SQL	that	the	next	transaction	may	write	data,	in	addition	to	read.
– Default	option	if	not	specified;	often	(usually)	not	specified.

Dirty	Reads	(Read	Uncommited)

• Dirty	data	refers	to	data	that	is	written	by	a	transaction	but	has	not	yet	
been	committed	by	the	transaction.

• A	dirty	read	 refers	to	the	read	of	dirty	data	written	by	another	
transaction.

• Consider	the	following	transaction	T	that	transfers	an	amount	of	money	
($X)	from	one	account	to	another:

1. Add	$X	to	Account	2.
2. Test	if	Account	1	has	$X.

a) If	there	is	insufficient	money,	remove	$X	from	Account	2.
b) Otherwise,	subtract	$X	from	Account	1.

Dirty	Reads	(cont’d)

• Transaction	T1:	Transfers	$150	from	A1	to	A2.
• Transaction	T2:	Transfers	$250	from	A2	to	A3.
• Initially:		A1:	$100,	A2:	$200,	A3:	$300.
• What	might	be	the	(unexpected,	unwanted)	result	with	Dirty	Reads	if	

execution	of	T1	and	T2	happens	to	interlace	in	a	certain	way?

<<	To	discuss,	and	write	on	board	>>

Should	Transactions	Allow	Dirty	Reads?

• Allow Dirty	Reads
– More	parallelism	between	transactions.
– But	may	cause	serious	problems,	as	previous	example	shows.

• Don’t	Allow	Dirty	Reads
– Less	parallelism,	more	time	is	spent	on	waiting	for	other	transactions	

to	commit	or	rollback.
– More	overhead	in	the	DBMS	to	prevent	dirty	reads.
– Cleaner	semantics.

Isolation	levels

SET	TRANSACTION	READ	WRITE
ISOLATION	LEVEL	READ	UNCOMMITTED;

• First	line:		The	transaction	may	write	data (that’s	the	default).
• Second	line:		The	transaction	can	run	with	isolation	level	“Read	

Uncommitted”,	allowing	Dirty	Reads.

• Default	Isolation	Level	depends	on	system.
– Most	systems	run	with	READ		COMMITTED	or	SNAPSHOT	ISOLATION.

Other	Isolation	Levels

• SET	TRANSACTION	ISOLATION	LEVEL	READ	COMMITTED;
– Only	clean	(committed)	reads,	no	dirty	reads.
– But	you	might	read	data	committed	by	different transactions.

• You	might	not	even	get	the	same	value	even	when	you	read	same	
data	a	second	time	during	a	single	transaction!

• SET	TRANSACTION	ISOLATION	LEVEL	REPEATABLE	READ;	
– Repeated	queries	of	a	tuple	during	a	transaction	will	retrieve	the	same	

value,	even	if	its	value	was	changed	by	another	transaction.
• But	different data	reads	might	return	values	that	were	committed	by	
different transactions	at	different	times.

– Also,	a	second	scan	of	a	range	(e.g.,	salary>10000)	may	return	“phantoms”	
not	originally	present	in	the	scan..
• Phantoms	are	tuples	newly	inserted	while	the	transaction	is	running.

• SET	TRANSACTION	ISOLATION	LEVEL	SERIALIZABLE;

Isolation	Levels

Snapshot	Isolation	(SI)

• SI	and	Read	Committed	are	most	commonly	used	Isolation	Levels.
– Better	performance	(response	time,	throughput)	than	Serializability

• Transaction	reads	data	as	it	existed	when	transaction	began	(repeatable).
– As	usual,	transaction	also	sees	its	own	updates

• Conflicts	on	Writes	are	avoided;	equivalent	of	Serializable	on	Writes.
– …	but	not	on	Read/Write	interactions	between	transactions

• Example:		Two	transactions	that	are	running	under	Serializability change	both	A	
and	B.		If	both	Commit,	then	one	ran	logically	after	the	other.

• SI	Example:		A	is	supposed	to	be	less	than	B.		Initially	A	is	0	and	B	is	100.
– T1	reads	original	A	and	B	values,	and	changes	A	to	60.
– T2	reads	original		A	and	B	values,	and	changes	B	to	20.
– Transactions	T1	and	T2	both	maintained	the	consistency	condition	“A	<	B”	… but	

what	are	the	final	values	of	A	and	B?
– Could	this	happen	with	Serializability?

