
Constraints	and	Triggers

Instructor:	Shel	Finkelstein

Reference:
A	First	Course	in	Database	Systems,	
3rd edition,	Chapter	7	(but	not	section	7.4)

Important	Notices

• Reminder:		Midterm	is	on	Monday,	Nov	6 is	usual	classroom,	at	usual	time.
• No	make-ups,	no	early/late	exams.
• You	may	bring	a	single	two-sided	8.5”	x	11”	sheet	of	paper with	as	much	info	

written	(or	printed)	on	it	as	you	can	fit	and	read	unassisted.		
• No	sharing	of	these	sheets	will	be	permitted.		
• Hand	in	these	sheets	at	the	end	of	the	exam.

• Midterm	will	cover	all	material	up	to	and	including	Lecture	7 (Views/Indexes).
• No	devices	are	permitted	during	exam.
• You	must	show	your	UCSC	ID	at	the	end	of	the	exam.
• Hope	that	everyone	who	needs	DRC	accommodation	has	already	submitted	

form	to	me.
• Winter	2017	Midterm	has	been	posted	on	Piazza;	solution	will	be	posted	next	

week.
• Gradiance	#3	is	due	on	Friday,	November	3;	one	problem	uses	Views!
• Sign-up	for	LSS	tutoring	with	Alexander	Ou … if	there’s	room.

3

Constraints	and	Triggers

• A	constraint is	a	relationship	among	data	elements	that	the	
DBMS	is	required	to	enforce.
• Example:	key	constraints.

• Triggers/Rules are	only	executed	when	a	specified	condition	
occurs,	e.g.,	insertion	of	a	tuple.
• Easier	to	implement	than	complex	constraints.

4

Kinds	of	Constraints

• Keys/Unique	constraints
• Foreign-key,	or	referential-integrity	constraints
• Value-based constraints

• Constrain	values	of	a	particular	attribute
• Tuple-based constraints

• Relationship	among	components	of	tuple
• Assertions

• Any	SQL	boolean expression	(not	implemented	in	most	
relational	DBMS,	not	discussed	in	this	lecture)

5

Review:	Single-Attribute	Keys
• Place	PRIMARY	KEY	or	UNIQUE	after	the	type	in	the	declaration	of	the	

attribute.
• Example:

CREATE TABLE Beers (
name CHAR(20) UNIQUE,

manf CHAR(20)

);

6

Review:	Multi-Attribute	Key

• The	bar	and	beer	together	are	the	key	for	Sells:
CREATE TABLE Sells (

bar CHAR(20),

beer VARCHAR(20),

price REAL,

PRIMARY KEY (bar, beer)

);

Review:		NULL
CREATE TABLE Sells (

bar CHAR(20),

beer VARCHAR(20),

price REAL NOT NULL,

PRIMARY KEY (bar, beer)

);

If	the	CREATE	statement	didn’t include	NOT	NULL	for	price:

ALTER TABLE Sells ALTER COLUMN price SET NOT NULL;

ALTER TABLE Sells ALTER COLUMN price DROP NOT NULL;

8

Foreign	Keys

• Values	appearing	in	attributes	of	one	relation	must	
also	appear	together	in	specific	attributes	of	
another	relation.

• Example:	
• In	Sells(bar,	beer,	price),	we	might	expect	that	a	
beer value	also	appears	in	Beers.name (the	
name	column	of	the	Beers	table,	the	primary	
key	for	that	table).

• Like	a	link/pointer,	but	based	on	value.

9

Expressing	Foreign	Keys

• Use	keyword	REFERENCES,	either:
1. After	an	attribute	(for	one-attribute	keys)
2. As	an	element	of	the	schema:
FOREIGN	KEY	(<list	of	attributes>)
REFERENCES	<relation>	(<attributes>)

• Referenced	attributes	must	be	declared	as	either	
PRIMARY	KEY	or	UNIQUE.

• (Why?)

10

Example:	With	Attribute

CREATE TABLE Beers (

name CHAR(20) PRIMARY KEY,

manf CHAR(20));

CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20) REFERENCES Beers(name),

price REAL);

11

Example:	As	Schema	Element

CREATE TABLE Beers (
name CHAR(20) PRIMARY KEY,
manf CHAR(20));

CREATE TABLE Sells (
bar CHAR(20),
beer CHAR(20),
price REAL,
FOREIGN KEY(beer) REFERENCES
Beers(name));

12

Example:	Adding	Foreign	Key
CREATE TABLE Beers (
name CHAR(20) PRIMARY KEY,
manf CHAR(20));

CREATE TABLE Sells (
bar CHAR(20),
beer CHAR(20),
price REAL);

ALTER TABLE Sells
ADD FOREIGN KEY (beer)
REFERENCES Beers(name);

13

Enforcing	Foreign-Key	Constraints
(Referential	Integrity,	RI)

• If	there	is	a	foreign-key	constraint	from	referring	
relation	R to	referenced	relation	S,	then	violations	
may	occur	two	ways:
1. An	insert	or	update	to	R introduces	values	that	

are	not	found	in	S,	or
2. A	deletion	or	update	to	S	causes	some	tuples	of	

R to	“dangle”, referencing a value that no
longer exists

14

Actions	Taken	--- (1)

• Example:	suppose	R =	Sells,	S =	Beers.
• That	is,	Sells	refers	to	Beers

• An	insert	or	update	to	Sells that	introduces	a	
nonexistent	beer	must	be	rejected.

• A	deletion	or	update	to	Beers that	removes	a	beer	
value	found	in	some	tuples	of	Sells can	be	handled	in	
one	of	three	ways	(next	slide).

15

Actions	Taken	--- (2)

1. Default :	Reject	the	modification.
2. Cascade :	Make	the	same	changes	in	Sells.

• Deleted	beer:	delete	Sells	tuple.
• Updated	beer:	also	change	value	in	Sells	…

• …	so	that	Sells.beer has	the	same	new	
value	as	Beers.name

3. Set	NULL :	Change	Sells.beer to	NULL.

16

Example:	Cascade

• Upon	Delete	of	the	Bud	tuple	from	Beers:
• Delete	all	tuples	from	Sells	that	have	
beer	=	’Bud‘

• Upon	Update	of	the	Bud	tuple	by	changing	‘Bud’ to	
‘Budweiser’:
• Change	all	Sells	tuples	that	have	beer	=	‘Bud’ to	
have		beer	=	‘Budweiser’

17

Example:	Set	NULL

• Upon	Delete	of	the	Bud	tuple	from	Beers:
• Change	all	tuples	of	Sells	that	have	beer	=	‘Bud’ to	
have	beer	=	NULL.

• Upon	Update	of	the	Bud	tuple,	changing	‘Bud’ to	
‘Budweiser’:
• Make	the	same	change	to	tuples	of	Sells	that	have	
beer=‘Bud’	as	for	deletion	(making	beer=NULL).

18

Choosing	a	Referential	Integrity	Policy

• When	we	declare	a	foreign	key,	we	may	choose	
policies	SET	NULL	or	CASCADE	independently	for	
deletions	and	updates.

• Follow	the	foreign-key	declaration	with:
ON	[UPDATE,	DELETE][SET	NULL,	CASCADE]

• Two	such	clauses	may	be	used,	one	for	UPDATE	and	
one	for	DELETE

• Otherwise,	the	DEFAULT	(Reject)	is	used.

19

Example:	Setting	Policy
CREATE TABLE Sells (
bar CHAR(20),
beer CHAR(20),
price REAL,
FOREIGN KEY(beer)
REFERENCES Beers(name)
ON DELETE SET NULL
ON UPDATE CASCADE

);

20

Attribute-Based	Check

• Constraint	on	the	value	of	a	particular	attribute.
• CHECK(<condition>)	may	be	added	to	the	declaration	
for	the	attribute.
• Condition	must	evaluate	to	TRUE	or	UNKNOWN;	can’t	be	
FALSE.

• The	condition	may	refer	to	the	attribute	of	the	
relation	that	is	being	checked.

• But	for	the	condition	to	reference	any	other	tuples	or	
relations, a	subquery	must	be	used.
• Note:		PostgreSQL	does	not	support	CHECK	with	subquery.		
Sigh.

21

Example:	Attribute-Based	Check

CREATE TABLE Sells (

barCHAR(20),
beer CHAR(20) CHECK (beer IN

(SELECT name FROM Beers)),
price REAL CHECK (price <= 5.00)

);

22

Example:	Named Constraints
CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20) CHECK (beer IN

(SELECT name FROM Beers)),

price REAL
CONSTRAINT price_is_cheap

CHECK (price <= 5.00)

);

ALTER TABLE Sells DROP CONSTRAINT price_is_cheap;

ALTER TABLE Sells ADD CONSTRAINT price_is_cheap

CHECK (price <= 5.00);

23

Timing	of	Attribute-Based	Check

• Attribute-based	checks	are	performed	only when	a	
value	for	that	attribute is	inserted	or	updated.
• Example:	CHECK (price <= 5.00) checks	
every	new	price	and	rejects	the	modification	(for	
that	tuple)	if	the	price	in	Sells	is	more	than	$5.

• Example:	CHECK (beer IN (SELECT name
FROM Beers)) is	not checked	if	a	beer	is	
deleted	from	Beers	(unlike	foreign-keys).

24

Tuple-Based	Checks

• CHECK	(<condition>)	may	be	added	as	a	relation-
schema	element.

• The	condition	may	refer	to	any	attribute	of	the	
relation	(same	tuple).

• But	for	the	condition	to	reference	any	other	
tuples	or	relations, a	subquery	must	be	used.
• Condition	is	checked	only on	INSERT	or	UPDATE	into	
relation	that	has	the	CHECK.

25

Example:	Tuple-Based	Check

• Only	Joe’s	Bar	can	sell	beer	for	more	than	$5:
CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20),

price REAL,

CHECK (bar = ’Joe’’s Bar’ OR

price <= 5.00)

);

26

When	are	Constraints	Checked	and	
Handled?

• In	the	CONSTRAINT	clause,	you	may	specify	a	constraint	to	be	
DEFERRABLE or NOT DEFERRABLE
• DEFERRABLE INITIALLY DEFERRED or
• DEFERRABLE INITIALLY IMMEDIATE

• Within	a	transaction,	SET	CONSTRAINTS	determines	whether:	
• SET	CONSTRAINTS	{	ALL	|	name	[,	...]	}	IMMEDIATE;		

• Deferrable	constraints	are	checked	immediately	for	each	SQL	
statement, or

• SET	CONSTRAINTS	{	ALL	|	name	[,	...]	}		DEFERRED;
• Checking	is	deferred	until	the	end	of	the	transaction.

27

Example:	Deferred	Constraint
CREATE TABLE Sells (

bar CHAR(20),
beer CHAR(20) CHECK (beer IN

(SELECT name FROM Beers)),
price REAL

CONSTRAINT price_is_cheap
CHECK (price <= 5.00)
DEFERRABLE INITIALLY DEFERRED

);

SET CONSTRAINTS price_is_cheap IMMEDIATE;

28

Assertions

• These	are	database-schema	elements,	like	relations	
or	views.

• Defined	by:
CREATE	ASSERTION	<name>

CHECK	(<condition>);
• Condition	may	refer	to	any	relation	or	attribute	in	the	
database	schema.

• (Not	implemented	in	most	Relational	DBMS	because	
they’re	too	complicated	and	expensive!)

29

Triggers:	Motivation

• Assertions	are	powerful,	but	the	DBMS	often	
can’t	tell	when	they	need	to	be	checked	…
• …	and	they’re	probably	not	implemented	by	
the	DBMS.

• Attribute- and	tuple-based	checks	are	checked	at	
known	times,	but	they	are	not	that	powerful.

• Triggers	let	the	user	(often	the	DBA)	decide	when	
to	check	for	any	condition.

30

Event-Condition-Action	Rules

• Another	name	for	“trigger” is	an	ECA	Rule,	or	
Event-Condition-Action Rule

• Event :		typically	a	type	of	database	modification,	
e.g.,	“insert	on	Sells”

• Condition :	Any	SQL	boolean-valued	expression
• Action :	Any	SQL	statements

31

Preliminary	Example:	A	Trigger

• Instead	of	using	a	foreign-key	constraint	and	
rejecting	insertions	into	Sells(bar,	beer,	price) with	
unknown	beers,	a	trigger	can	add	that	beer	to	
Beers,	with	a	NULL	manufacturer.

32

Example:	Trigger	Definition

CREATE TRIGGER BeerTrig
AFTER INSERT ON Sells
REFERENCING NEW ROW AS NewTuple
FOR EACH ROW
WHEN (NewTuple.beer NOT IN

(SELECT name FROM Beers))
INSERT INTO Beers(name)

VALUES(NewTuple.beer);

The event

The condition

The action

33

CREATE	TRIGGER

• Either:
CREATE	TRIGGER	<name>

• Or:
CREATE	OR	REPLACE	TRIGGER	<name>
• Useful	if	there	is	a	trigger	with	that	name	and	you	
want	to	modify	the	trigger.

34

Options:	The	Event

• AFTER	INSERT	can	be	BEFORE	INSERT.
• Also,	can	be	INSTEAD	OF,	if	the	relation	is	a	view.

• A	clever	way	to	execute	view	modifications is	to	
have	triggers	translate	them	to	appropriate	
modifications	on	the	base	tables.

• INSERT	can	be	DELETE	or	UPDATE.
• And	UPDATE	can	be	UPDATE	ON	a	particular	
attribute.

35

Options:	FOR	EACH	ROW

• Triggers	are	either	“row-level” or	“statement-
level.”

• FOR	EACH	ROW	indicates	row-level;	its	absence	
indicates	statement-level.

• Row	level	triggers :	Execute	once	for	each	
modified	tuple.

• Statement-level	triggers :	Execute	once	for	a	SQL	
statement,	regardless	of	how	many	tuples	are	
modified.

36

Options:	REFERENCING

• INSERT	statements	imply	a	new	tuple	(for	row-level)	
or	new	table	(for	statement-level).
• The	“table” is	the	set	of	inserted	tuples.

• DELETE	implies	an	old	tuple	or	table.
• UPDATE	implies	both.
• Refer	to	these	by
[NEW	OLD]	[TUPLE	TABLE]	AS	<name>

37

Options:	The	Condition

• Any	boolean-valued	condition.
• Evaluated	on	the	database	as	it	would	exist	before	
or	after	the	triggering	event,	depending	on	
whether	BEFORE	or	AFTER	is	used.
• But	always	before	the	changes	take	effect.

• Access	the	new/old	tuple/table	through	the	
names	in	the	REFERENCING	clause.

38

Options:	The	Action

• There	can	be	more	than	one	SQL	statement	in	the	
action.
• Surround	by	BEGIN	.	.	.	END	if	there	is	more	than	
one.

• But	queries	make	no	sense	in	an	action,	so	we	are	
really	limited	to	modifications.

39

Another	Example

• Using	Sells(bar,	beer,	price) and	a	unary	relation	
RipoffBars(bar),	maintain	a	list	of	RipoffBars that	
raise	the	price	of	some	beer	by	more	than	$1.

40

The	Trigger

CREATE	TRIGGER	PriceTrig
AFTER	UPDATE	OF	price	ON	Sells
REFERENCING
OLD	ROW	AS	ooo
NEW	ROW	AS	nnn
FOR	EACH	ROW
WHEN(nnn.price >	ooo.price +	1.00)
INSERT	INTO	RipoffBars
VALUES(nnn.bar);

The event –
only changes
to prices

Updates let us
talk about old
and new tuples

We need to consider
each price change

Condition:
a raise in
price > $1

When the price change
is great enough, add
the bar to RipoffBars

