Constraints and Triggers

Instructor: Shel Finkelstein

Reference:
A First Course in Database Systemes,
3 edition, Chapter 7 (but not section 7.4)

Important Notices

* Reminder: Midterm is on Monday, Nov 6 is usual classroom, at usual time.

No make-ups, no early/late exams.

You may bring a single two-sided 8.5” x 11” sheet of paper with as much info
written (or printed) on it as you can fit and read unassisted.

* No sharing of these sheets will be permitted.

* Hand in these sheets at the end of the exam.
Midterm will cover all material up to and including Lecture 7 (Views/Indexes).
No devices are permitted during exam.
You must show your UCSC ID at the end of the exam.

Hope that everyone who needs DRC accommodation has already submitted
form to me.

Winter 2017 Midterm has been posted on Piazza; solution will be posted next
week.

e Gradiance #3 is due on Friday, November 3; one problem uses Views!

e Sign-up for LSS tutoring with Alexander Ou ... if there’s room.

Constraints and Triggers

A constraint is a relationship among data elements that the
DBMS is required to enforce.

: key constraints.

* Triggers/Rules are only executed when a specified condition
occurs, e.g., insertion of a tuple.

* Easier to implement than complex constraints.

Kinds of Constraints

constraints
, or referential-integrity constraints
constraints
e Constrain values of a particular attribute
constraints
e Relationship among components of tuple

* Any SQL boolean expression (not implemented in most
relational DBMS, not discussed in this lecture)

Review: Single-Attribute Keys

* Place PRIMARY KEY or UNIQUE after the type in the declaration of the
attribute.

CREATE TABLE Beers (
name CHAR (20) UNIQUE,
manf CHAR(20)

) ;

Review: Multi-Attribute Key

* The bar and beer together are the key for Sells:
CREATE TABLE Sells (
bar CHAR (20),
beer VARCHAR (20),
price REAL,
PRIMARY KEY (bar, beer)

Review: NULL

CREATE TABLE Sells (
bar CHAR (20) ,
beer VARCHAR (20),
price REAL NOT NULL,
PRIMARY KEY (bar, beer)

) ;

If the CREATE statement didn’t include NOT NULL for price:

ALTER TABLE Sells ALTER COLUMN price SET NOT NULL;

ALTER TABLE Sells ALTER COLUMN price DROP NOT NULL;

Foreign Keys

* Values appearing in attributes of one relation must

also appear together in specific attributes of
another relation.

* In Sells(bar, beer, price), we might expect that a
beer value also appears in Beers.name (the

name column of the Beers table, the primary
key for that table).

* Like a link/pointer, but based on value.

Expressing Foreign Keys

e Use keyword REFERENCES, either:

1. After an attribute (for one-attribute keys)
2. As an element of the schema:
FOREIGN KEY (<list of attributes>)
REFERENCES <relation> (<attributes>)

e Referenced attributes must be declared as either
PRIMARY KEY or UNIQUE.

* (Why?)

: With Attribute

CREATE TABLE Beers (
name CHAR (20) PRIMARY KEY,
manf CHAR (20));
CREATE TABLE Sells (
bar CHAR(20),
beer CHAR (20) REFERENCES Beers (name),
price REAL);

: As Schema Element

CREATE TABLE Beers (
name CHAR(20) PRIMARY KEY,
manft CHAR(20));
CREATE TABLE Sells (
bar CHAR(20),
beer CHAR (20),
price REAL,

FOREIGN KEY (beer) REFERENCES
Beers (name)) ;

: Adding Foreign Key

CREATE TABLE Beers (
name CHAR(20) PRIMARY KEY,
manf CHAR(20));
CREATE TABLE Sells (
bar CHAR (20),
beer CHAR(20),
price REAL);

ATL.TER TABLE Sells
ADD FOREIGN KEY (beer)
REFERENCES Beers (name) ;

Enforcing Foreign-Key Constraints
(Referential Integrity, RI)

 If there is a foreign-key constraint from referring

relation R to referenced relation S, then violations
may occur two ways:

1. Aninsert or update to R introduces values that
are not found in S, or

2. A deletion or update to S causes some tuples of

R to “dangle”, referencing a value that no
longer exists

Actions Taken --- (1)

: suppose R = Sells, S = Beers.
e That s, Sells refers to Beers

* An insert or update to Sells that introduces a
nonexistent beer must be rejected.

* A deletion or update to Beers that removes a beer
value found in some tuples of Sells can be handled in
one of three ways (next slide).

Actions Taken --- (2)

: Reject the modification.
: Make the same changes in Sells.
* Deleted beer: delete Sells tuple.
* Updated beer: also change value in Sells ...

e ...so that Sells.beer has the same new
value as Beers.name

: Change Sells.beer to NULL.

: Cascade

 Upon Delete of the Bud tuple from Beers:

* Delete all tuples from Sells that have
beer =" Bud "
* Upon Update of the Bud tuple by changing ‘Bud’ to
‘Budweiser’:

* Change all Sells tuples that have beer = ‘Bud’ to
have beer = ‘Budweiser’

: Set NULL

 Upon Delete of the Bud tuple from Beers:

* Change all tuples of Sells that have beer = ‘Bud’ to
have beer = NULL.

* Upon Update of the Bud tuple, changing ‘Bud’ to
‘Budweiser’:

* Make the same change to tuples of Sells that have
beer=‘Bud’ as for deletion (making beer=NULL).

Choosing a Referential Integrity Policy

* When we declare a foreign key, we may choose

PO
de

* Fo

icies SET NULL or CASCADE independently for
etions and updates.

low the foreign-key declaration with:
ON [UPDATE, DELETE][SET NULL, CASCADE]

 Two such clauses may be used, one for UPDATE and
one for DELETE

e Otherwise, the DEFAULT (Reject) is used.

: Setting Policy

CREATE TABLE Sells (

bar CHAR (20),

beer CHAR(20),

price REAL,

FOREIGN KEY (beer)
REFERENCES Beers (name)
ON DELETE SET NULL
ON UPDATE CASCADE

) ;

Attribute-Based Check

* Constraint on the value of a particular attribute.

 CHECK(<condition>) may be added to the declaration
for the attribute.

e Condition must evaluate to TRUE or UNKNOWN; can’t be
FALSE.

* The condition may refer to the attribute of the
relation that is being checked.

e But for the condition to reference any other tuples or
relations, a subquery must be used.

* Note: PostgreSQL does not support CHECK with subquery.
Sigh.

20

: Attribute-Based Check

CREATE TABLE Sells (
barCHAR (20),
beer CHAR(20) CHECK (beer IN
(SELECT name FROM Beers)),
price REAL CHECK (price <= 5.00)

) ;

Example: Named Constraints

CREATE TABLE Sells (
bar CHAR (20),
beer CHAR(20) CHECK (beer IN
(SELECT name FROM Beers)),
price REAL
CONSTRAINT price is cheap
CHECK (price <= 5.00)

) ;

ALTER TABLE Sells DROP CONSTRAINT price 1s cheap;
ALTER TABLE Sells ADD CONSTRAINT price 1s cheap
CHECK (price <= 5.00);

22

Timing of Attribute-Based Check

e Attribute-based checks are performed only when a
value for that attribute is inserted or updated.

: CHECK (price <= 5.00) checks
every new price and rejects the modification (for
that tuple) if the price in Sells is more than S5.

: CHECK (beer IN (SELECT name
FROM Beers)) is not checked if a beer is
deleted from Beers (unlike foreign-keys).

Tuple-Based Checks

 CHECK (<condition>) may be added as a relation-
schema element.

* The condition may refer to any attribute of the
relation (same tuple).

 But for the condition to reference any other
tuples or relations, a subquery must be used.

* Condition is checked only on INSERT or UPDATE into
relation that has the CHECK.

24

: Tuple-Based Check

* Only Joe’ s Bar can sell beer for more than $5:
CREATE TABLE Sells (

bar CHAR (20),

beer CHAR (20),

price REAL,

CHECK (bar = Joe 's Bar OR
price <= 5.00)

) ;

When are Constraints Checked and
Handled?

* Inthe CONSTRAINT clause, you may specify a constraint to be
DEFERRABLE or NOT DEFERRABLE

 DEFERRABLE INITIALLY DEFERRED or
* DEFERRABLE INITIALLY IMMEDIATE

 Within a transaction, SET CONSTRAINTS determines whether:

e SET CONSTRAINTS { ALL | name [, ...] } IMMEDIATE;

* Deferrable constraints are checked immediately for each SQL
statement, or

 SET CONSTRAINTS { ALL | name [, ...] } DEFERRED;
* Checking is deferred until the end of the transaction.

26

Example: Deferred Constraint

CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20) CHECK (beer IN
(SELECT name FROM Beers)),

price REAL

CONSTRAINT price 1s cheap

CHECK (price <= 5.00)
DEFERRABLE INITIALLY DEFERRED

) ;

SET CONSTRAINTS price 1s cheap IMMEDIATE;

27

Assertions

These are database-schema elements, like relations
Oor Views.

Defined by:
CREATE ASSERTION <name>
CHECK (<condition>);

Condition may refer to any relation or attribute in the
database schema.

(Not implemented in most Relational DBMS because
they’re too complicated and expensive!)

Triggers: Motivation

e Assertions are powerful, but the DBMS often
can’ t tell when they need to be checked ...

e ... and they’re probably not implemented by
the DBMS.

e Attribute- and tuple-based checks are checked at
known times, but they are not that powerful.

* Triggers let the user (often the DBA) decide when
to check for any condition.

Event-Condition-Action Rules

* Another name for “trigger” is an ECA Rule, or
Event-Condition-Action Rule

. typically a type of database modification,
e.g., insert on Sells”

: Any SQL boolean-valued expression
: Any SQL statements

Preliminary : A Trigger

* |Instead of using a foreign-key constraint and
rejecting insertions into Sells(bar, beer, price) with
unknown beers, a trigger can add that beer to
Beers, with a NULL manufacturer.

Example: Trigger Definition

CREATE TRIGGER BeerTri?/ The event
AFTER INSERT ON Sells

REFERENCING NEW ROW AS NewTuple
FOR EACH ROW

WH

The condition

EN (NewTuple.beer NOT IN
(SELECT name FROM Beers))

INSERT INTO Beers(name)

VALUES(NewTuple.beer); " The action

32

CREATE TRIGGER

* Either:
CREATE TRIGGER <hame>
* Or:
CREATE OR REPLACE TRIGGER <nhame>

e Useful if there is a trigger with that name and you
want to modify the trigger.

Options: The Event

 AFTER INSERT can be BEFORE INSERT.
* Also, can be INSTEAD OF, if the relation is a view.

* A clever way to execute view modifications is to
have triggers translate them to appropriate
modifications on the base tables.

* INSERT can be DELETE or UPDATE.

 And UPDATE can be UPDATE ON a particular
attribute.

Options: FOR EACH ROW

Triggers are either “row-level” or “statement-
level.”

FOR EACH ROW indicates row-level; its absence
indicates statement-level.

Row level triggers : Execute once for each
modified tuple.

Statement-level triggers : Execute once for a SQL
statement, regardless of how many tuples are
modified.

35

Options: REFERENCING

e INSERT statements imply a new tuple (for row-level)
or new table (for statement-level).

* The “table” is the set of inserted tuples.
 DELETE implies an old tuple or table.
 UPDATE implies both.

e Refer to these by
INEW OLD] [TUPLE TABLE] AS <name>

Options: The Condition

* Any boolean-valued condition.

e Evaluated on the database as it would exist before
or after the triggering event, depending on
whether BEFORE or AFTER is used.

* But always before the changes take effect.

* Access the new/old tuple/table through the
names in the REFERENCING clause.

Options: The Action

e There can be more than one SQL statement in the
action.

e Surround by BEGIN . .. END if there is more than
one.

* But queries make no sense in an action, so we are
really limited to modifications.

Another Example

* Using Sells(bar, beer, price) and a unary relation
RipoffBars(bar), maintain a list of RipoffBars that
raise the price of some beer by more than S$1.

39

The Trigger

The event —
only ;hanges
CREATE TRIGGER PriceTrig to prices
AFTER UPDATE OF price ON Sells

REFERENCING

Updates let us

OLD ROW AS ooo — talk about old Condition:
nnn We need to consider price > $1
FOR EACH ROW T each price change
WHEN(nnn.price > ooo.price + 1.00)
INSERT INTO RipoffBars When the price change
: ‘ — is great enough, add
VALUES(nnn.bar); the bar to RipoffBars

40

