Relational Algebra

Instructor: Shel Finkelstein

Reference: A First Course in Database Systems, 3rd edition, Chapter 2.4 – 2.6, plus Query Execution Plans

Important Notices

- Midterm with Answers has been posted on Piazza.
 - Midterm will be/was reviewed briefly in class on Wednesday, Nov 8.
 - Grades were posted on Canvas on Monday, Nov 13.
 - Median was 83; no curve.
 - Exam will be returned in class on Nov 13 and Nov 15.
 - Please send email if you want "cheat sheet" back.
- Lab3 assignment was posted on Sunday, Nov 5, and is due by Sunday, Nov 19, 11:59pm.
 - Lab3 has lots of parts (some hard), and is worth 13 points.
 - Please attend Labs to get help with Lab3.

What is a Data Model?

- A *data model* is a mathematical formalism that consists of three parts:
 - 1. A notation for describing and representing data (<u>structure</u> of the data)
 - 2. A set of <u>operations</u> for manipulating data.
 - 3. A set of constraints on the data.
- What is the associated query language for the relational data model?

Two Query Languages

- Codd proposed two different query languages for the relational data model.
 - Relational Algebra
 - Queries are expressed as a sequence of operations on relations.
 - Procedural language.
 - Relational Calculus
 - Queries are expressed as formulas of first-order logic.
 - Declarative language.
- **Codd's Theorem**: The Relational Algebra query language has the same *expressive power* as the Relational Calculus query language.

Procedural vs. Declarative Languages

Procedural program

- The program is specified as a sequence of operations to obtain the desired the outcome. I.e., *how* the outcome is to be obtained.
- E.g., Java, C, ...
- Declarative program
 - The program specifies *what* is the expected outcome, and not *how* the outcome is to be obtained.
 - E.g., Scheme, Ocaml, ...

SQL – Structured Query Language

- Is SQL a procedural or a declarative language?
 - SQL is usually described as declarative, but it's not fully declarative
 - However, relational database systems usually try to understand meaning of query, regardless of how query is expressed
 - There may be multiple equivalent ways to write a query
- SQL is the principal language used to describe and manipulate data stored in relational database systems.
 - Frequently pronounced as "Sequel", but formally it's "Ess Cue El"
 - Not the same as Codd's Relational Algebra or Relational Calculus

Some Properties of Good Database Query Languages and Database Systems

- 1. Physical database independence
 - Programmers should be able to write queries without understanding the mechanics of the physical layer
 - What was logical data independence?
- 2. Highly expressive
 - Programmers should be able to formulate simple and complex queries using the language.
- 3. Efficient execution
 - Systems should be able to compute answers to queries with "good" response time and throughput.
- Physical data independence is achieved by most query languages today.
- Increased expressiveness may come at the expense of not-so-good performance on some complex queries

Relational Algebra

- Relational Algebra: a query language for manipulating data in the relational data model.
 - Not used directly as a query language
- Internally, Relational Database Systems transform SQL queries into trees/graphs that are similar to relational algebra expressions.
 - Query analysis, transformation and optimization are performed based on these relational algebra expression-like representations.
 - Relational Databases use multi-sets/bags, but Relational Algebra is based on <u>sets</u>.
 - There are multi-set variations of Relational Algebra that permit duplicates, and that's more realistic for Relational Database ...
 - ... but we'll only discuss <u>set-based</u> Relational Algebra.

Composition

- Each Relational Algebra operator is either a unary or a binary operator.
- A complex Relational Algebra expression is built up from basic ones by composing simpler expressions.
- This is similar to SQL queries and views.

Relation Algebra Operators

- Queries in relational algebra are composed using basic operations or functions.
 - Selection (σ)
 - Projection (π)
 - Set-theoretic operations:
 - Union (\cup)
 - Set-difference ()
 - Cross-product (x)
 - Intersection (\cap)
 - Renaming (ρ)
 - Natural Join (\bowtie), Theta-Join (\bowtie_{Θ})
 - Division (/ or ÷)

Relation Algebra Operators

- Codd proved that the relational algebra operators (σ, π, x, U, -) are independent of each other. That is, you can't define any of these operators using the others.
- However, there are other important operators that can be expressed using (σ , π , x , U ,)
 - Theta Join, Join, Natural Join, Semi-Join
 - Set Intersection
 - Division
 - Outer Join (sections 5.2.7 and 6.3.8), which we'll discuss when we get to OLAP, On-Line Analytic Processing (section 10.6)

Selection: σ_{condition}(R)

- Unary operation
 - Input: Relation with schema $R(A_1, ..., A_n)$
 - Output: Relation with attributes A₁, ..., A_n
 - Meaning: Takes a relation R and extracts only the rows from R that satisfy the *condition*
 - Condition is a logical combination (using AND, OR, NOT) of expressions of the form:

<expr> <op> <expr>

where <expr> is an attribute name, a constant, a string, and op is one of $(=, \leq, \geq, <, >, <>)$

- E.g., "age > 20 OR height < 6",</p>
- "name LIKE "Anne%" AND salary > 200000"
- "NOT (age > 20 AND salary < 100000)"</p>

Example of $\boldsymbol{\sigma}$

• $\sigma_{rating > 6}$ (Hotels)

name	address	rating	capacity	
 Windsor	54 th ave	6.0	135	
Astoria	5 th ave	8.0	231	
BestInn	45 th st	6.7	28	
 ELodge	39 W st	5.6	45	
 ELodge	2nd E st	6.0	40	

name	address	rating	capacity
Astoria	5 th ave	8.0	231
BestInn	45 th st	6.7	28

Example of $\sigma\,$ with AND in Condition

• $\sigma_{\text{rating} > 6 \text{ AND capacity} > 50}$ (Hotel)

name	address	rating	capacity
Windsor	54 th ave	6.0	135
Astoria	5 th ave	8.0	231
BestInn	45 th st	6.7	28
ELodge	39 W st	5.6	45
ELodge	2nd E st	6.0	40

•	Is σ_{C1}	(σ _{c2}	(R)) =	σ_{C1}	AND C2	(R)	?
---	-------------------------	------------------	--------	----------------------	--------	-----	---

- Prove or give a counterexample.
- Is $\sigma_{c1} (\sigma_{c2} (R)) = \sigma_{c2} (\sigma_{c1} (R))$?
- Prove or give a counterexample.

name	address	rating	capacity
Astoria	5 th ave	8.0	231

Projection: π_{<attribute list>}(R)

- Unary operation
 - Input : Relation with schema $R(A_1, \dots, A_n)$
 - Output: Relation with attributes in *attribute list*, which must be attributes of R
 - Meaning: For every tuple in relation R, output only the attributes appearing in *attribute list*
- May be duplicates; for Codd's Relational Algebra, duplicates are always eliminated (set-oriented semantics)
 - Reminder: For relational database, duplicates matter.
 - Why?

Example of π

• $\pi_{\text{name, address}}$ (Hotels)

name	address
Windsor	54 th ave
Astoria	5 th ave
BestInn	45 th st
ELodge	39 W st
ELodge	2nd E st

• Suppose that name and address form the key of the Hotels relation. Is the cardinality of the output relation the same as the cardinality of Hotels? Why?

Example of π

• π_{name} (Hotel)

name
Windsor
Astoria
BestInn
ELodge

• Note that there are no duplicates.

Set Union: R \cup S

- Binary operator
 - Input: Two relations R and S which must be union-compatible
 - They have the same arity, i.e., the same number of columns.
 - For every column i, the i'th column of R has the same type as the i'th column of S.
 - Note that field names are <u>not</u> used in defining union-compatibility.
 - We can think of relations R and S as being union-compatible if they are sets of records having the same record type.
 - Output: Relation that has the same type as R (or same type as S).
 - Meaning: The output consists of the set of all tuples in either R or S (or both)

Example of \cup

Dell_Desktops U HP_Desktops

Dell_Desktops

Harddisk	Speed	OS
20G	500Mhz	Windows
30G	1.0Ghz	Windows
20G	750Mhz	Linux

HP_Desktops

Harddisk	Speed	OS
30G	1.2Ghz	Windows
20G	500Mhz	Windows

All tuples in R occurs in R \cup S. All tuples in S occurs in R \cup S. $R \cup S$ contains tuples that either occur in R or S (or both).

Harddisk	Speed	OS
20G	500Mhz	Windows
30G	1.0Ghz	Windows
20G	750Mhz	Linux
30G	1.2Ghz	Windows

Properties of $\,\cup\,$

 $\textbf{Dell_Desktops} ~\cup~ \textbf{HP_Desktops}$

Dell_Desktops

Harddisk	Speed	OS
20G	500Mhz	Windows
30G	1.0Ghz	Windows
20G	750Mhz	Linux

HP_Desktops

Harddisk	Speed	OS
30G	1.2Ghz	Windows
20G	500Mhz	Windows

 $R \cup S = S \cup R$ (commutativity) ($R \cup S$) $\cup T = R \cup (S \cup T)$ (associativity)

Harddisk	Speed	OS
20G	500Mhz	Windows
30G	1.0Ghz	Windows
20G	750Mhz	Linux
30G	1.2Ghz	Windows

Set Difference: R - S

- Binary operator.
 - Input: Two relations R and S which must be union-compatible
 - Output: Relation with the same type as R (or same type as S)
 - Meaning: Output consists of all tuples in R but <u>not</u> in S

Example of -

• Dell_Desktops - HP_Desktops

Dell_Desktops

Harddisk	Speed	OS
20G	500Mhz	Windows
30G	1.0Ghz	Windows
20G	750Mhz	Linux

HP_Desktops

Harddisk	Speed	OS
30G	1.2Ghz	Windows
20G	500Mhz	Windows

Dell_Desktops – HP_Desktops

Harddisk	Speed	OS
30G	1.0Ghz	Windows
20G	750Mhz	Linux

Properties of -

• HP_Desktops – Dell_Desktops

Dell_Desktops

Harddisk	Speed	OS
20G	500Mhz	Windows
30G	1.0Ghz	Windows
20G	750Mhz	Linux

HP_Desktops

Harddisk	Speed	OS
30G	1.2Ghz	Windows
20G	500Mhz	Windows

HP_Desktops – Dell_Desktops

Harddisk	Speed	OS
30G	1.2Ghz	Windows

Is it commutative? Is it associative?

Product: R x S

- Binary operator
 - Input: Two relations R and S, where R has relation schema R(A₁, ..., A_m) and S has relation schema S(B₁, ..., B_n).
 - Output: Relation of arity m+n
 - Meaning:

$$\mathsf{R} \ \mathsf{x} \ \mathsf{S} = \{ \ (\mathsf{a}_1, \, ..., \, \mathsf{a}_m, \, \mathsf{b}_1, \, ..., \, \mathsf{b}_n) \ | \ (\mathsf{a}_1, \, ..., \, \mathsf{a}_m) \in \mathsf{R} \ \mathsf{and} \ (\mathsf{b}_1, \, ..., \, \mathsf{b}_n) \in \mathsf{S}) \ \}.$$

- Read "|" as "such that"
- Read "∈" as "belongs to"

Example and Properties of Product

R		
А	В	С
a ₁	b ₁	C ₁
a ₂	b ₂	C ₂

R x S

А	В	С	D	E
a ₁	b ₁	С ₁	d ₁	e ₁
a ₁	b ₁	С ₁	d_2	e ₂
a ₁	b ₁	С ₁	d ₃	e ₃
a ₂	b ₂	C ₂	d ₁	e ₁
a ₂	b ₂	C ₂	d_2	e ₂
a ₂	b ₂	C ₂	d ₃	e ₃

- Is it commutative?
- Is it associative?
- Is it distributive across ∪? That is, does Rx(S∪T) = (RxS) ∪ (RxT)?

Product and Common Attributes

• What happens when we compute the Product of R and S if R and S contain common attributes, e.g., for R(A,B,C) and S(A,E)?

A.1	В	С	A.2	E
a ₁	b ₁	с ₁	d ₁	e ₁
a ₁	b ₁	С ₁	d_2	e ₂
a ₁	b ₁	C ₁	d ₃	e ₃
a ₂	b ₂	C ₂	d ₁	e ₁
a ₂	b ₂	C ₂	d ₂	e ₂
a ₂	b ₂	C ₂	d ₃	e ₃

Derived Operators

- So far, we have learned:
 - Selection
 - Projection
 - Product
 - Union
 - Difference
- Some other operators can be derived by composing the operators we have learned so far:
 - Theta-Join, Join, Natural Join, Semi-Join
 - Set Intersection
 - Division/Quotient
 - Outer Join (to be discussed when we get to OLAP)

- Binary operator
 - Input: R(A₁, ..., A_m), S(B₁, ..., B_n)
 - Output: Relation consisting of all attributes A₁, ..., A_m and all attributes B₁, ..., B_n. Identical attributes in R and S are disambiguated with the relation names.
 - Meaning of R \bowtie_{Θ} S: The θ -Join outputs those tuples from R x S that satisfy the condition θ .
 - Compute R x S, then keep only those tuples in R x S that satisfy θ .
 - Equivalent to writing $\sigma_{\theta}(R \times S)$
- If θ always evaluates to true, then $\mathbb{R} \Join_{\Theta} S = \sigma_{\theta}(\mathbb{R} \times S) = \mathbb{R} \times S$.

Example of Theta-Join

Enrollment(esid, ecid, grade)

Course(cid, cname, instructor-name)

Please give me an example of a Theta-Join to write on the board where ecid in Enrollment equals cid in Course.

- Joins involving equality predicates (usually just called Joins or Equi-Joins) are very common in database; other joins are less common.
 - Enrollment ⋈_⊖ Course, where θ could be:
 "Enrollment.ecid = Course.cid"
- Could write <u>any</u> condition involving attributes of Enrollment and Course as θ , just as with σ .

Natural Join: R⋈S

- Often a query over two relations can be formulated using Natural Join.
- Binary operator:
 - Input: Two relations R and S where { A₁, ..., A_k } is the set of common attributes (column names) between R and S.
 - Output: A relation where its attributes are attr(R) U attr(S). In other words, the attributes consists of the attributes in R x S without repeats of the common attributes { A_1 , ..., A_k }
- Meaning:

 $\mathsf{R} \bowtie \mathsf{S} = \pi_{(\mathsf{attr}(\mathsf{R}) \ \cup \ \mathsf{attr}(\mathsf{S}))} (\sigma_{\mathsf{R}.\mathsf{A1}=\mathsf{S}.\mathsf{A1} \ \mathsf{AND} \ \mathsf{R}.\mathsf{A2}=\mathsf{S}.\mathsf{A2} \ \mathsf{AND} \ \dots \ \mathsf{AND} \ \mathsf{R}.\mathsf{Ak}=\mathsf{S}.\mathsf{Ak}} (\mathsf{R} \ \mathsf{x} \ \mathsf{S}))$

- 1. Compute R x S
- Keep only those tuples in R x S satisfying: R.A1=S.A1 AND R.A2 = S.A2 AND ... AND R.Ak=S.Ak
- 3. Output is projection on the set of attributes in R U S (without repeats of the attributes that appear in both)

Example of Natural Join

Enrollment(sid, cid, grade)

Course(cid, cname, instructor-name)

cid is the only common attribute appearing in both relations.

- Want: Course-grade(sid, cid, grade, cname, instructor-name)
- $\pi_{\text{(sid, cid, grade, cname, instructor-name)}} (\sigma_{\text{Enrollment.cid=Course.cid}} (\text{Enrollment x Course}))$
- What happens when R and S have no common attributes?
- What happens when R and S have only common attributes?

Semi-Join: R ⊨S

- Meaning: $R \ltimes S = \pi_{attr(R)} (R \bowtie S)$
- 1. Compute <u>Natural Join of R and S</u>
- 2. Output the projection of that <u>on just the attributes of R</u>
- Find all courses that have some enrollment: Course K Enrollment
- Find all faculty who are advising at least one student: Faculty ► Student
- How does Semi-Join relate to EXISTS in SQL?

Set Intersection: $R \cap S$

Find all desktops sold by both Dell and HP.

Dell_Desktops ∩ HP_Desktops

Dell_Desktops

Harddisk	Speed	OS
20G	500Mhz	Windows
30G	1.0Ghz	Windows
20G	750Mhz	Linux

HarddiskSpeedOS20G500MhzWindows

HP_Desktops

Harddisk	Speed	OS
30G	1.2Ghz	Windows
20G	500Mhz	Windows

Intersect

• How would you write Dell_desktops ∩ HP_desktops in SQL?

SELECT * FROM Dell_desktops

INTERSECT

SELECT * FROM HP_desktops;

• Intersection is a <u>Derived Operator</u> in Relational Algebra:

 $R \cap S = R - (R - S)$ = S - (S - R)

Division: R ÷ S (also written R/S)

- Input: Two relations R and S, where both:
 - attr(S) \subset attr(R) and
 - attr(S) is non-empty
- Output: Relation whose attributes are in attr(R) attr(S).
- Example: R(A,B,C,D), S(B,D).
 - Meaning: $R \div S = \{ (a, c) \mid \text{for } \underline{all} (b,d) \in S, \text{ we have } (a,b,c,d) \in R \}$
- Example: Find the names of drinkers who like <u>all</u> beers – Likes(drinker, beer) $\div \pi_{beer}$ (BeersInfo(beer, maker))
- The quotient (or division) R ÷ S is the relation consisting of all tuples (a₁,...,a_{r-s}) such that:

For <u>every</u> tuple $(b_1,...,b_s)$ in S, the tuple $(a_1,...,a_{r-s}, b_1,...,b_s)$ is in R

Example of Division

Enrollment(sid, cid, grade)

Course(cid, cname, instructor-name)

• Find the sids of students who are enrolled in all courses

```
\pi_{sid,cid}(Enrollment) ÷ \pi_{cid}(Course)
```

 Find the sids of all students who are enrolled in <u>all courses taught by</u> <u>"Ullman"</u>

 $\pi_{sid,cid}$ (Enrollment) ÷ π_{cid} ($\sigma_{instructor-name='Ullman'}$ (Course))

Example of Division

Α	В	С
a1	b1	c1
a1	b2	c2
a2	b1	c1
a1	b3	c3
a4	b2	c2
a3	b2	c2
a4	b1	c1

R

В	С
b1	c1
b2	c2

S

 $R \div S$

Α

a1

a4

Quotient (or Division) (cont'd)

- Can we express R ÷ S with basic operators (select, project, cross product, union, difference)?
- Yes. For R(A1, ..., Am, B1, ..., Bn) and S(B1, ..., Bn) R ÷ S = $\pi_{A1...Am}$ (R) - $\pi_{A1...Am}$ ($(\pi_{A1...Am}$ (R) x S) - R)
 - ($\pi_{A1\dots Am}$ (R) x S) combines all the "A values" in R with every row that is in S.
 - $(\pi_{A1...Am}(R) \times S) R$) subtracts R from that, so a tuple will begin with specific "A values" only if those A values didn't match all the rows in S.
 - $\pi_{A1...Am}$ (($\pi_{A1...Am}$ (R) x S) R) says project just the "A attributes", which gives the "A values" that don't belong in the quotient.
 - $\pi_{A1...Am}$ (R) gives all the "A values" of R
 - So R ÷ S = $\pi_{A1...Am}$ (R) $\pi_{A1...Am}$ (($\pi_{A1...Am}$ (R) × S) R)

Independence of Basic Operators

- Many interesting queries can be expressed using the five basic operators (σ , π , x , U ,)
- Can one of the five operators be derived by the other four operators?

Theorem (Codd):

The five basic operators are independent of each other. In other words, for each relational operator *o*, there is no relational algebra expression that is built from the rest that defines *o*.

- X
- π
- σ
- U
- _

Renaming: $\rho_{S(A1, ..., An)}$ (R)

- To specify the attributes of a relational expression.
- Input: a relation, a relation symbol R, and a set of attributes {B1, ..., Bn}
- Output: the same relation with name S and attributes A1, ..., An.
- Meaning: rename relation R to S with attributes A1, ..., An.
- Example: ρ_{BeersInfo(beer,maker)} Beers(name, manuf)

Example

R		
А	В	С
a ₁	b ₁	C ₁
a ₂	b ₂	C ₂

 $\text{R x } \rho_{\text{T(X,D)}} \text{ S}$

А	В	С	X	D
a ₁	b ₁	С ₁	d ₁	e ₁
a ₁	b ₁	С ₁	d ₂	e ₂
a ₁	b ₁	С ₁	d ₃	e ₃
a ₂	b ₂	С ₂	d ₁	e ₁
a ₂	b ₂	C ₂	d_2	e ₂
a ₂	b ₂	C ₂	d ₃	e ₃

S

С	D
d ₁	e ₁
d ₂	e ₂
d ₃	e ₃

More Complex Queries

• Relational operators can be composed to form more complex queries. We have already seen examples of this in SQL.

Enrollments(<u>esid, ecid</u>, grade) Courses(<u>cid</u>, cname, instructor-name)

• Query 1: Find the student id, grade and instructor where the student had a grade that was more than 80 points in a course.

 $\sigma_{\text{grade}>80} (\pi_{\text{esid, grade, instructor-name}} (\sigma_{\text{Enrollments.ecid} = \text{Courses.cid}} (\text{Enrollments x Courses})))$

Query 2

Enrollments(<u>esid, ecid</u>, grade) Courses(<u>cid</u>, cname, instructor-name) Students(<u>sid</u>, sname)

• Find the student name and course name where the student had a grade that was more than 80 points in a course.

An Execution Plan for Query 2

• Find the student name and course name where the student had a grade more than 80 points in a course.

Another Execution Plan for Query 2

• Find the student name and course name where the student had a grade more than 80 points in a course.

A Third Execution Plan for Query 2

`

Query Transformations

• What were some of the query equivalences that we talked about earlier?

• What other query equivalences do you know about?

Execution Plans

- When do you do SELECTION?
 - Predicate pushdown is always a good idea.
- How do you access each table?
 - Scan, index (which index), hash, ...
- What's the order in which you Join tables?
 - Join/Equi-join is common; <u>avoid</u> Cartesian product
 - But which table do you start with?
 - Predicates on indexed columns are often useful in picking first table, then next table, to join, ...
- What join method do you use for each join?
 - Nested loop join, merge join, hash-join, ...
- How much parallelism do you use?
 - How do you schedule tasks to hardware?
- Do you need to sort? If so, when do you sort?

Query Optimization

- Comparing Execution Plans and finding a "good" (not necessarily best) plan
- Statistics that DBMS may keep to help calculate approximate query cost
 - Cardinality (number of rows) in table
 - Highest and lowest (non-null) value in column
 - Column cardinality (number of different values in column)
 - Number of appearances of the top 10 most frequent value in each column
 - Join cardinality between tables for particular equi-join
 - May be calculated, not stored; not well-defined if there are conditions (predicates) on the tables
 - Many other statistics are calculated approximately
- How frequently are stored statistics updated?
- Cost: CPU? I/O? Network? How do these get combined to compare plans?

EXPLAIN Statement

- Shows information about query plan
 - Each DBMS that has EXPLAIN has its own variation
 - Try it with PostgreSQL
- You may want to try to rewrite query yourself to find better execution plan if Query Optimizer isn't smart enough to do so
- Should Optimizer take advice from users?

Practice Homework 5

Sailors(<u>sid</u>, sname, rating, age) // sailor id, sailor name, rating, age Boats(<u>bid</u>, bname, color) // boat id, boat name, color of boat Reserves(<u>sid, bid</u>, day) // sailor id, boat id, date that sid reserved bid.

- Use Relational Algebra to write the following 8 queries.
- How might you optimize execution of queries using ideas in this Lecture, per discussion in slides 44-48?
- 1. Find the names of sailors who reserved boat 103.
- 2. Find the colors of boats reserved by Lubber.
- 3. Find the names of sailors who reserved at least one boat.

Practice Homework 5 (cont'd)

- 4. Find the names of sailors whose age > 20 and have not reserved any boats.
- 5. Find the names of sailors who have reserved a red or a green boat.
- 6. Find the names of sailors who have reserved a red and a green boat.
- 7. Find the names of sailors who have reserved at least 2 different boats.
- 8. Find the names of sailors who have reserved exactly 2 different boats.