
Relational	Algebra

Instructor:	Shel	Finkelstein

Reference:
A	First	Course	in	Database	Systems,	
3rd edition,	Chapter	2.4	– 2.6,	plus	Query	Execution	Plans

Important	Notices

• Midterm	with	Answers	has	been	posted	on	Piazza.
– Midterm	will	be/was	reviewed	briefly	in	class	on	
Wednesday,	Nov	8.

– Grades	were	posted	on	Canvas	on	Monday,	Nov	13.
• Median	was	83;	no	curve.

– Exam	will	be	returned	in	class	on	Nov	13	and	Nov	15.
• Please	send	email	if	you	want	“cheat	sheet”	back.

• Lab3	assignment	was	posted	on	Sunday,	Nov	5,	and	is	due	by	
Sunday,	Nov	19,	11:59pm.
– Lab3	has	lots	of	parts	(some	hard),	and	is	worth	13	points.
– Please	attend	Labs	to	get	help	with	Lab3.

What	is	a	Data	Model?

• A	data	model	is	a	mathematical	formalism	that	consists	of	
three	parts:
1. A	notation	for	describing	and	representing	data	(structure of	the	

data)
2. A	set	of	operations for	manipulating	data.
3. A	set	of	constraints	on	the	data.

• What	is	the	associated	query	language	for	the	relational	
data	model?

Two	Query	Languages	

• Codd proposed	two	different	query	languages	for	the	relational	data	
model.
– Relational	Algebra

• Queries	are	expressed	as	a	sequence	of	operations	on	relations.
• Procedural	language.

– Relational	Calculus
• Queries	are	expressed	as	formulas	of	first-order	logic.
• Declarative	language.

• Codd’s Theorem:	The	Relational	Algebra	query	language	has	the	same	
expressive	power	as	the	Relational	Calculus	query	language.

Procedural	vs.	Declarative	Languages

• Procedural	program
– The	program	is	specified	as	a	sequence	of	operations	to	
obtain	the	desired	the	outcome.	I.e.,	how	the	outcome	is	
to	be	obtained.	

– E.g.,	Java,	C,	…

• Declarative	program
– The	program	specifies	what	is	the	expected	outcome,	and	
not	how	the	outcome	is	to	be	obtained.

– E.g.,	Scheme,	Ocaml,	…

SQL	– Structured	Query	Language

• Is	SQL	a	procedural	or	a	declarative	language?
– SQL	is	usually	described	as	declarative,	but	it’s	not	fully	declarative
– However,	relational	database	systems	usually	try	to	understand	

meaning	of	query,	regardless	of	how	query	is	expressed
• There	may	be	multiple	equivalent	ways	to	write	a	query

• SQL	is	the	principal	language	used	to	describe	and	manipulate	
data	stored	in	relational	database	systems.
– Frequently	pronounced	as	“Sequel”,	but	formally	it’s	“Ess Cue	El”
– Not	the	same	as	Codd’s Relational	Algebra	or	Relational	Calculus

Some	Properties	of	Good	Database	Query	
Languages	and	Database	Systems

1. Physical	database	independence
– Programmers	should	be	able	to	write	queries	without	understanding	

the	mechanics	of	the	physical	layer
– What	was	logical	data	independence?

2. Highly	expressive
– Programmers	should	be	able	to	formulate	simple	and	complex	

queries	using	the	language.
3. Efficient	execution

– Systems	should	be	able	to	compute	answers	to	queries	with	“good”	
response	time	and	throughput.

• Physical	data	independence	is	achieved	by	most	query	languages	today.
• Increased	expressiveness	may	come	at	the	expense	of	not-so-good	

performance	on	some	complex	queries

Relational	Algebra

• Relational	Algebra:	a	query	language	for	manipulating	data	in	the	
relational	data	model.
– Not	used	directly	as	a	query	language

• Internally,	Relational	Database	Systems	transform	SQL	queries	into	
trees/graphs	that	are	similar	to	relational	algebra	expressions.
– Query	analysis,	transformation	and	optimization	are	performed	based	

on	these	relational	algebra	expression-like	representations.
– Relational	Databases	use	multi-sets/bags,	but	Relational	Algebra	is	

based	on	sets.
• There	are	multi-set	variations	of	Relational	Algebra	that	permit	
duplicates,	and	that’s	more	realistic	for	Relational	Database	…

• … but	we’ll	only	discuss	set-based	Relational	Algebra.

9

Composition

• Each	Relational	Algebra	operator	is	either	a	unary	or	a	binary	operator.

• A	complex	Relational	Algebra	expression	is	built	up	from	basic	ones	by	
composing	simpler	expressions.

• This	is	similar	to	SQL	queries	and	views.

Relation	Algebra	Operators

• Queries	in	relational	algebra	are	composed	using	basic	operations	or	
functions.
– Selection	(σ)
– Projection	(π)
– Set-theoretic	operations:

• Union	(⋃)
• Set-difference	(-)
• Cross-product	(x)
• Intersection	(⋂)

– Renaming	(ρ)
– Natural	Join		(),		Theta-Join	()	
– Division	(/	or	÷)

⧖ ⧖

θ

Relation	Algebra	Operators

• Codd proved	that	the	relational	algebra	operators	(s , p ,	x	,	U	,	-)	are	
independent	of	each	other.		That	is,	you	can’t	define	any	of	these	
operators	using	the	others.

• However,	there	are	other	important	operators	that	can	be	expressed	using	
(s , p ,	x	,	U	,	-)	
– Theta	Join,	Join,	Natural	Join,	Semi-Join
– Set	Intersection
– Division
– Outer	Join	(sections	5.2.7	and	6.3.8),	which	we’ll	discuss	when	we	get	

to	OLAP,	On-Line	Analytic	Processing	(section	10.6)

12

Selection:		scondition(R)

• Unary	operation
– Input: Relation	with	schema	R(A1,	…,	An)
– Output:		Relation	with	attributes	A1,	…,	An

– Meaning:	Takes	a	relation	R	and	extracts	only	the	rows	from	R	that	
satisfy	the	condition

– Condition	is	a	logical	combination	(using	AND,	OR,	NOT)	of	
expressions	of	the	form:
<expr>	<op>	<expr>
where	<expr>	is	an	attribute	name,	a	constant,	a	string,	and	op	

is	one	of	(=,	≤,	≥,	<,	>,	<>)
– E.g.,	“age	>	20	OR	height	<	6”,	
– “name	LIKE	“Anne%”	AND	salary	>	200000”
– “NOT	(age	>	20	AND	salary	<	100000)”

13

Example	of	s
• srating >	6 (Hotels)	

name address rating capacity
Windsor 54th ave 6.0 135
Astoria 5th ave 8.0 231
BestInn 45th st 6.7 28
ELodge 39 W st 5.6 45
ELodge 2nd E st 6.0 40

name address rating capacity
Astoria 5th ave 8.0 231
BestInn 45th st 6.7 28

Hotels

14

Example	of	s with	AND	in	Condition	
• srating	>	6	AND	capacity	>	50 (Hotel)

name address rating capacity
Windsor 54th ave 6.0 135
Astoria 5th ave 8.0 231
BestInn 45th st 6.7 28
ELodge 39 W st 5.6 45
ELodge 2nd E st 6.0 40

name address rating capacity
Astoria 5th ave 8.0 231

• Is	sC1 (sC2 (R))	=	sC1	AND	C2(R) ?
• Prove	or	give	a	counter-

example.

• Is	sC1 (sC2 (R))	=	sC2 (sC1 (R))?
• Prove	or	give	a	counter-

example.	

15

Projection:		p<attribute	list>(R)

• Unary	operation	
– Input	: Relation	with	schema	R(A1,	…	,	An)
– Output:	 Relation	with	attributes	in	attribute	list,	which	must	be	

attributes	of	R
– Meaning: For	every	tuple	in	relation	R,	output	only	the	attributes	

appearing	in	attribute	list
• May	be	duplicates;	for	Codd’s Relational	Algebra,	duplicates	are	always	

eliminated	(set-oriented	semantics)
– Reminder:		For	relational	database,	duplicates	matter.
– Why?

16

Example	of	p

• pname,	address	(Hotels)

• Suppose	that	name	and	address	form	the	key	of	the	Hotels	relation.		Is	
the	cardinality	of	the	output	relation	the	same	as	the	cardinality	of	
Hotels?	Why?

name address
Windsor 54th ave
Astoria 5th ave
BestInn 45th st
ELodge 39 W st
ELodge 2nd E st

17

Example	of	p

• pname (Hotel)

• Note	that	there	are	no	duplicates.

name
Windsor
Astoria
BestInn
ELodge

18

Set	Union:		R	∪ S

• Binary operator
– Input: Two	relations	R	and	S which	must	be	union-compatible

• They	have	the	same	arity,	i.e.,	the	same	number	of	columns.
• For	every	column	i,	the	i’th column	of	R	has	the	same	type	as	the	
i’th column	of	S.

• Note	that	field	names	are	not used	in	defining	union-compatibility.	
– We	can	think	of	relations	R	and	S	as	being	union-compatible	if	
they	are	sets	of	records	having	the	same	record	type.

– Output:	 Relation	that	has	the	same	type	as	R	(or	same	type	as	S).

– Meaning:	 The	output	consists	of	the	set of	all	tuples	in	either	R	or	S
(or	both)

19

Example	of	∪

Dell_Desktops∪ HP_Desktops

Harddisk Speed OS

20G 500Mhz Windows

30G 1.0Ghz Windows

20G 750Mhz Linux

Harddisk Speed OS
30G 1.2Ghz Windows

20G 500Mhz Windows

Harddisk Speed OS

20G 500Mhz Windows

30G 1.0Ghz Windows

20G 750Mhz Linux

30G 1.2Ghz Windows

HP_Desktops

Dell_Desktops
All	tuples in	R	occurs	in	R∪ S.
All	tuples in	S	occurs	in	R∪ S.
R∪ S	contains	tuples	that	either	
occur	in	R	or	S	(or	both).

20

Properties	of	∪

Dell_Desktops∪ HP_Desktops

Harddisk Speed OS

20G 500Mhz Windows

30G 1.0Ghz Windows

20G 750Mhz Linux

Harddisk Speed OS
30G 1.2Ghz Windows

20G 500Mhz Windows

Harddisk Speed OS

20G 500Mhz Windows

30G 1.0Ghz Windows

20G 750Mhz Linux

30G 1.2Ghz Windows

HP_Desktops

Dell_Desktops
R∪S	=	S∪R		(commutativity)
(R∪S)∪T	=	R∪(S∪T)	 (associativity)

21

Set	Difference:		R	- S

• Binary operator.
– Input: Two	relations	R	and	S which	must	be	union-compatible
– Output:	 Relation	with	the	same	type	as	R	(or	same	type	as	S)

– Meaning:		Output	consists	of	all	tuples	in	R	but	not in	S

22

Example	of	-

• Dell_Desktops - HP_Desktops

Harddisk Speed OS

20G 500Mhz Windows

30G 1.0Ghz Windows

20G 750Mhz Linux

Harddisk Speed OS
30G 1.2Ghz Windows

20G 500Mhz Windows

HP_Desktops

Dell_Desktops

Harddisk Speed OS
30G 1.0Ghz Windows

20G 750Mhz Linux

Dell_Desktops – HP_Desktops

23

Properties	of	-

• HP_Desktops – Dell_Desktops

Harddisk Speed OS

20G 500Mhz Windows

30G 1.0Ghz Windows

20G 750Mhz Linux

Harddisk Speed OS
30G 1.2Ghz Windows

20G 500Mhz Windows

HP_Desktops

Dell_Desktops

Harddisk Speed OS
30G 1.2Ghz Windows

HP_Desktops – Dell_Desktops

Is	it	commutative?
Is	it	associative?

Product:		R	x	S

• Binary	operator
– Input:		Two	relations	R	and	S,	where	R	has		relation	schema	

R(A1,	…,	Am)	and	S	has	relation	schema	S(B1,	…,	Bn).
– Output:	 Relation	of	arity m+n

– Meaning:	
R	x	S	=	{	(a1,	…,	am,	b1,	…,	bn)	|	(a1,	…,	am)	∈ R	and	(b1,	…,	bn)	∈ S)	}.
• Read	 “|”	as	“such	that”
• Read		“∈”		as	“belongs	to”

25

Example	and	Properties	of	Product

A B C
a1 b1 c1

a2 b2 c2

D E
d1 e1

d2 e2

d3 e3

R S

A B C D E
a1 b1 c1 d1 e1

a1 b1 c1 d2 e2

a1 b1 c1 d3 e3

a2 b2 c2 d1 e1

a2 b2 c2 d2 e2

a2 b2 c2 d3 e3

R	x	S

• Is	it	commutative?
• Is	it	associative?
• Is	it	distributive	across	∪?	 That	is,

does	Rx(S∪T)	=	(RxS)∪ (RxT)	?

26

Product	and	Common	Attributes

A.1 B C A.2 E
a1 b1 c1 d1 e1

a1 b1 c1 d2 e2

a1 b1 c1 d3 e3

a2 b2 c2 d1 e1

a2 b2 c2 d2 e2

a2 b2 c2 d3 e3

• What	happens	when	we	compute	the	Product	of	R	and	S	if	R	
and	S	contain	common	attributes,	e.g.,	for	R(A,B,C)	and	
S(A,E)?

Derived	Operators

• So	far,	we	have	learned:
– Selection
– Projection
– Product
– Union
– Difference

• Some	other	operators	can	be	derived	by	composing	the	operators	we	have	
learned	so	far:
– Theta-Join,	Join,	Natural	Join,	Semi-Join
– Set	Intersection
– Division/Quotient
– Outer	Join	(to	be	discussed	when	we	get	to	OLAP)

Theta-Join:		R					S

• Binary	operator
– Input:		R(A1,	…,	Am),	S(B1,	…,	Bn)
– Output:	 Relation	consisting	of	all	attributes	A1,	…,	Am	and	all	attributes	

B1,	…,	Bn.		Identical	attributes	in	R	and	S	are	disambiguated	with	the	
relation	names.		

– Meaning	of		R	⋈ S:		The	θ-Join	outputs	those	tuples	from	R	x	S	that	
satisfy	the	condition	θ.

• Compute	R	x	S,	then	keep	only	those	tuples	in	R	x	S	that	satisfy	θ.
• Equivalent	to	writing	sθ(R	x	S)

• If	θ always	evaluates	to	true,	then	R									S	=	sθ(R	x	S)	=	R	x	S.	

⧖

θ

⧖

Θ

Θ

Example	of	Theta-Join

Enrollment(esid,	ecid,	grade)
Course(cid,	cname,	instructor-name)

Please	give	me	an	example	of	a	Theta-Join	to	write	on	the	board	where	ecid
in	Enrollment	equals	cid in	Course.

• Joins	involving	equality	predicates	(usually	just	called	Joins	or	Equi-Joins)	
are	very	common	in	database;	other	joins	are	less	common.
– Enrollment Course,	where	θ could	be:

“Enrollment.ecid =	Course.cid”

• Could	write	any condition	involving	attributes	of	Enrollment	and	Course	as	
θ,	just	as	with	s.

⧖

Θ

30

Natural	Join:		R			S

• Often	a	query	over	two	relations	can	be	formulated	using	Natural	Join.
• Binary	operator:

– Input: Two	relations	R	and	S	where	{	A1,	…,	Ak }	is	the	set	of	common	
attributes	(column	names)	between	R	and	S.

– Output:	A	relation	where	its	attributes	are	attr(R)	U	attr(S).	In	other	
words,	the	attributes	consists	of	the	attributes	in	R	x	S	without	repeats	
of	the	common	attributes	{	A1,	…,	Ak }	

• Meaning:	
R					S	=	p (attr(R)	∪ attr(S))	(sR.A1=S.A1	AND	R.A2	=	S.A2	AND	…	AND	R.Ak=S.Ak (R	x	S))

1. Compute	R	x	S
2. Keep	only	those	tuples	in	R	x	S	satisfying:

R.A1=S.A1	AND	R.A2	=	S.A2	AND	…	AND	R.Ak=S.Ak
3. Output	is	projection	on	the	set	of	attributes	in	R	U	S	(without	repeats	of	the	

attributes	that	appear	in	both)

⧖

⧖

Example	of	Natural	Join

Enrollment(sid,	cid,	grade)
Course(cid,	cname,	instructor-name)

cid	is	the	only	common	attribute	appearing	in	both	relations.

• Want:	Course-grade(sid,	cid,	grade,	cname,	instructor-name)
• p (sid,	cid,	grade,	cname,	instructor-name)	(sEnrollment.cid=Course.cid (Enrollment	x	Course))

• What	happens	when	R	and	S	have	no	common	attributes?
• What	happens	when	R	and	S	have	only	common	attributes?

Semi-Join:		R	⧔S

• Meaning:	R	⧔ S	=		p attr(R)	(R				S)

1. Compute	Natural	Join	of	R	and	S
2. Output	the	projection	of	that	on	just	the	attributes	of	R

• Find	all	courses	that	have	some	enrollment:
Course	⧔ Enrollment

• Find	all	faculty	who	are	advising	at	least	one	student:
Faculty	⧔ Student

• How	does	Semi-Join	relate	to	EXISTS	in	SQL?

⧖

Set	Intersection:	R∩S
Find	all	desktops	sold	by	both	Dell	and	HP.

Dell_Desktops ∩	HP_Desktops

Harddisk Speed OS

20G 500Mhz Windows

Harddisk Speed OS

20G 500Mhz Windows

30G 1.0Ghz Windows

20G 750Mhz Linux

Harddisk Speed OS
30G 1.2Ghz Windows

20G 500Mhz Windows

HP_Desktops

Dell_Desktops

Intersect

• How	would	you	write	Dell_desktops ∩	HP_desktops in	SQL?

SELECT	*
FROM	Dell_desktops

INTERSECT

SELECT	*
FROM	HP_desktops;

• Intersection	is	a	Derived	Operator in	Relational	Algebra:

R	∩ S	 =			R	– (R	– S)
=			S	– (S	– R)

Division:	R	÷ S	(also	written	R/S)

• Input:	Two	relations	R	and	S,	where	both:
– attr(S)	⊂ attr(R)	and	
– attr(S)	is	non-empty

• Output:	 Relation	whose	attributes	are	in	attr(R)	– attr(S).

• Example:	R(A,B,C,D),	S(B,D).
– Meaning:	R	÷ S	=	{	(a,	c)	|	for	all (b,d)	∈S,	we	have	(a,b,c,d)	∈R	}

• Example:		Find	the	names	of	drinkers	who	like	all beers
– Likes(drinker,	beer)	÷ πbeer (BeersInfo(beer,	maker))

• The	quotient	(or	division)	R	÷ S	is	the	relation	consisting	of	all	tuples	
(a1,…,ar-s)	such	that:
For	every tuple	(b1,…,bs)	in	S,	the	tuple	(a1,…,ar-s,	b1,…,bs)	is	in	R

Example	of	Division

Enrollment(sid,	cid,	grade)
Course(cid,	cname,	instructor-name)

• Find	the	sids of	students	who	are	enrolled	in	all	courses

psid,cid(Enrollment)	÷ pcid(Course)

• Find	the	sids of	all	students	who	are	enrolled	in	all	courses	taught	by	
“Ullman”

psid,cid(Enrollment)	÷ pcid (s instructor-name=‘Ullman’ (Course))

Example	of	Division

R

A B C

a1 b1 c1

a1 b2 c2

a2 b1 c1

a1 b3 c3

a4 b2 c2

a3 b2 c2

a4 b1 c1

B C

b1 c1

b2 c2

S

A

a1

a4

R	÷ S

Quotient	(or	Division)	(cont’d)

• Can	we	express	R	÷ S	with	basic	operators	(select,	project,	
cross	product,	union,	difference)?

• Yes.		For	R(A1,	…,	Am,	B1,	…,	Bn)	and	S(B1,	…,	Bn)
R	÷ S	=		πA1…Am (R)	 – π A1…	Am	((π A1…Am (R)		x	S)	- R)

– (π A1…Am (R)		x	S)		combines	all	the	“A	values”	in	R	with	every	row	that	
is	in	S.

– (π A1…Am (R)		x	S) – R)	subtracts	R	from	that,	so	a	tuple	will	begin	with	
specific	“A	values”	only	if	those	A	values	didn’t	match	all	the	rows	in	S.

– π A1…	Am ((π A1…Am (R)		x	S)	- R)	says	project	just	the	“A	attributes”,	
which	gives	the	“A	values”	that	don’t	belong	in	the	quotient.

– πA1…Am (R)	gives	all	the	“A	values”	of	R

– So	R	÷ S	=		πA1…Am (R)		– π A1…	Am	((π A1…Am (R)		x	S)	- R)

Independence	of	Basic	Operators

• Many	interesting	queries	can	be	expressed	using	the	five	basic	operators	
(s , p ,	x	,	U	,	-)

• Can	one	of	the	five	operators	be	derived	by	the	other	four	operators?

Theorem	(Codd):
The	five	basic	operators	are	independent	of	each	other.	In	other	words,	for	
each	relational	operator	o,	there	is	no	relational	algebra	expression	that	is	
built	from	the	rest	that	defines	o.

• x	
• p
• s
• U	
• -

40

Renaming:	rS(A1,	…,	An) (R)

• To	specify	the	attributes	of	a	relational	expression.
• Input:	a	relation,	a	relation	symbol	R,	and	a	set	of	attributes	{B1,	…	,Bn}
• Output:	the	same	relation	with	name	S	and	attributes	A1,	…,	An.

• Meaning:	rename	relation	R	to	S	with	attributes	A1,	…,	An.

• Example:		rBeersInfo(beer,maker)	Beers(name,	manuf)

41

Example

A B C
a1 b1 c1

a2 b2 c2

C D
d1 e1

d2 e2

d3 e3

R S

A B C X D
a1 b1 c1 d1 e1

a1 b1 c1 d2 e2

a1 b1 c1 d3 e3

a2 b2 c2 d1 e1

a2 b2 c2 d2 e2

a2 b2 c2 d3 e3

R	x rT(X,D) S

42

More	Complex	Queries

• Relational operators	can	be	composed	to	form	more	complex	queries.	We	
have	already	seen	examples	of	this	in	SQL.

Enrollments(esid,	ecid,	grade)
Courses(cid,	cname,	instructor-name)

• Query	1:		Find	the		student	id,	grade	and	instructor	where	the	student	had	
a	grade	that	was	more	than	80	points	in	a	course.

sgrade>80 (pesid,	grade,	instructor-name (
sEnrollments.ecid =	Courses.cid (Enrollments	x	Courses)))

43

Query	2

Enrollments(esid,	ecid,	grade)
Courses(cid,	cname,	instructor-name)
Students(sid,	sname)

• Find	the	student	name	and	course	name	where	the	student	had	a	grade	
that	was	more	than	80	points	in	a	course.

pStudents.sname,	Courses.cname (
s Enrollments.ecid =	Courses.cid (Enrollments	x	Courses	x	Students))

AND	Enrollments.esid =	Students.sid

AND	Enrollments.grade >	80

44

An	Execution	Plan	for	Query	2

• Find	the	student	name	and	course	name	where	the	student	had	a	grade	
more	than	80	points	in	a	course.

Enrollments Courses

x

pStudents.sname,	Courses.cname

Students

sEnrollments.sid =	Students.sid AND	Enrollments.cid =	Courses.cid AND	Enrollments.grade>80

x

45

Another Execution	Plan	for	Query	2

• Find	the	student	name	and	course	name	where	the	student	had	a	grade	
more	than	80	points	in	a	course.

Enrollments Courses

x

sEnrollments.ecid =	Courses.cid AND Enrollments.grade>80

pStudents.sname,	Courses.cname

Students

x

sC1	AND	C2	AND	C3 (E	x C	x S)	=
sC1	(sC2 AND	C3 (E	x C	x S))	=
sC1	(sC2 AND	C3 (E	x C)	x S)		

sEnrollments.esid =	Students.sid

46

A	Third Execution	Plan	for	Query	2

`

Enrollments Courses

x

sEnrollments.ecid =	Courses.cid Students

sEnrollments.grade>	80

How	could	we	do	projections
earlier	in	plan	to	avoid	carrying	
along	unnecessary	attributes?

pStudents.sname,	Courses.cname

x

sEnrollments.esid =	Students.sid

How	could	we	do	Joins,	instead
of	Products	to	make	plan	
more	efficient?

Query	Transformations

• What	were	some	of	the	query	equivalences	that	we	talked	about	earlier?

• What	other	query	equivalences	do	you	know	about?

Execution	Plans

• When	do	you	do	SELECTION?
– Predicate	pushdown	is	always	a	good	idea.

• How	do	you	access	each	table?
– Scan,	index	(which	index),	hash,	…

• What’s	the	order	in	which	you	Join	tables?
– Join/Equi-join	is	common;	avoid Cartesian	product
– But	which	table	do	you	start	with?

• Predicates	on	indexed	columns	are	often	useful	in	picking	first	
table,	then	next	table,	to	join,	…

• What	join	method	do	you	use	for	each	join?
– Nested	loop	join,	merge	join,	hash-join,	…

• How	much	parallelism	do	you	use?
– How	do	you	schedule	tasks	to	hardware?

• Do	you	need	to	sort?		If	so,	when	do	you	sort?

Query	Optimization

• Comparing	Execution	Plans	and	finding	a	“good”	(not	necessarily	best)	plan
• Statistics	that	DBMS	may	keep	to	help	calculate	approximate	query	cost

– Cardinality	(number	of	rows)	in	table
– Highest	and	lowest	(non-null)	value	in	column
– Column	cardinality	(number	of	different	values	in	column)
– Number	of	appearances	of	the	top	10	most	frequent	value	in	each	column
– Join	cardinality	between	tables	for	particular	equi-join

• May	be	calculated,	not	stored;	not	well-defined	if	there	are	conditions	
(predicates)	on	the	tables

– Many	other	statistics	are	calculated	approximately
• How	frequently	are	stored	statistics	updated?
• Cost:		CPU?		I/O?		Network?		How	do	these	get	combined	to	compare	plans?

EXPLAIN	Statement

• Shows	information	about	query	plan
– Each	DBMS	that	has	EXPLAIN	has	its	own	variation
– Try	it	with	PostgreSQL

• You	may	want	to	try	to	rewrite	query	yourself	to	find	better	
execution	plan	if	Query	Optimizer	isn’t	smart	enough	to	do	so

• Should	Optimizer	take	advice	from	users?

Practice	Homework	5

Sailors(sid,	sname,	rating,	age)	//	sailor	id,	sailor	name,	rating,	age
Boats(bid,	bname,	color)	//	boat	id,	boat	name,	color	of	boat
Reserves(sid,	bid,	day)	//	sailor	id,	boat	id,	date	that	sid reserved	bid.

• Use	Relational	Algebra	to	write	the	following	8	queries.
• How	might	you	optimize	execution	of	queries	using	ideas	in	this	Lecture,	

per	discussion	in	slides	44-48?

1. Find	the	names	of	sailors	who	reserved	boat	103.

2. Find	the	colors	of	boats	reserved	by	Lubber.

3. Find	the	names	of	sailors	who	reserved	at	least	one	boat.

Practice	Homework	5	(cont’d)

4. Find	the	names	of	sailors	whose	age	>	20	and	have	not	reserved	any	
boats.

5. Find	the	names	of	sailors	who	have	reserved	a	red	or	a	green	boat.

6. Find	the	names	of	sailors	who	have	reserved	a	red	and	a	green	boat.

7. Find	the	names	of	sailors	who	have	reserved	at	least	2	different	boats.

8. Find	the	names	of	sailors	who	have	reserved	exactly	2	different	boats.

