
Real	SQL	
Application	Programming

Instructor:	Shel	Finkelstein

Reference:
A	First	Course	in	Database	Systems,	
3rd edition,	Chapter	9

Important	Notices
• Midterm	with	Answers	is	on	Piazza.

• Grades	were	posted	on	Canvas	on	Monday,	Nov	13.
• Median	was	83;	no	curve.

• Exam	was	returned	in	class	on	Nov	13	and	Nov	15.
• Send	email	if	you	haven’t	received	it	yet,	and	I’ll	bring	it	to	class.

• Lab3	assignment	was	posted	on	Sunday,	Nov	5,	and	is	due	by	
Sunday,	Nov	19,	11:59pm.
• Lab3	has	lots	of	parts	(some	hard),	and	is	worth	13	points.
• Please	attend	Labs	to	get	help	with	Lab3.

• Lab4	assignment	should	be	posted	on	Monday,	Nov	20	or	before,	
due	on	Sunday,	Dec	3,	11:59pm.
• Subject	of	Lab4	is	Lecture	10	(Application	Programming).

• Gradiance #4	will	also	be	assigned	before	Thanksgiving.
• No	UCSC	classes,	Lab	Sections,	etc.	on	Thu	Nov	23	and	Fri	Nov	24.

3

SQL	in	Real	Programs

• We have seen only how SQL is used at a
generic query interface --- an environment
where we sit at a terminal and ask queries of
(or modify) a database.

• Reality is almost always different!
• Conventional programs written in C or Java,

(or other languages) that interact with
database using SQL.

• Why?

4

Approaches

1. Code in a specialized language is stored
in the database itself (e.g., Stored
Procedure languages such as PSM and
PL/SQL).

2. SQL statements are embedded in a
host language (e.g., C).

3. Connection tools/libraries are used
to allow a conventional language to
access a database (e.g., CLI, JDBC).

5

Approach	1:		Stored	Procedures

• PSM, or “persistent stored modules,”
allows us to store procedures as
database schema elements.

• PSM = a mixture of conventional
statements (if, while, etc.) and SQL.

• Lets us do things we cannot do in SQL
alone.

6

Basic	PSM	Form

CREATE	PROCEDURE	<name>	(
<parameter	list>)
<optional	local	declarations>
<body>;

7

Basic	PSM	Form

CREATE	FUNCTION	<name>	(
<parameter	list>)	RETURNS	<type>
<optional	local	declarations>
<body>;

8

Parameters	in	PSM

• Unlike the usual name-type pairs in languages
like C, PSM uses mode-name-type triples,
where the mode can be:
• IN = procedure uses value, does not change value.
• OUT = procedure changes, does not use.
• INOUT = both.

• Function parameters must be of mode IN.
Functions returns value, but must have no
side-effects on parameters.

9

Example:	Stored	Procedure

• Let’s write a procedure that takes two
arguments b and p, and adds a tuple to
Sells(bar, beer, price) that has bar =
’Joe’’s Bar’, beer = b, and price = p.

• Used by Joe to add to his menu more easily.

10

The	Procedure

CREATE	PROCEDURE	JoeMenu (

IN b CHAR(20),
IN	 p REAL

)

INSERT	INTO	Sells
VALUES(’Joe’’s	Bar’,	b,	p);

Parameters are both
read-only, not changed

The body ---
a single insertion

11

Invoking	Procedures

• Use SQL/PSM statement CALL, with the
name of the desired procedure and
arguments.

• Example:
CALL JoeMenu(’Moosedrool’, 5.00);

• Functions may be used in SQL expressions
wherever a value of their return type is
appropriate.

12

Kinds	of	PSM	statements	– (1)

• RETURN <expression> sets the return
value of a function.
• Unlike C, etc., RETURN does not terminate

function execution.
• DECLARE <name> <type> used to

declare local variables.
• BEGIN . . . END for groups of

statements.
• Separate statements by semicolons.

13

Kinds	of	PSM	Statements	– (2)

• Assignment statements:
SET <variable> = <expression>;

• Example: SET b = ’Bud’;

• Statement labels: give a statement a
label by prefixing a name and a colon.

14

IF	Statements

• Simplest form:
IF <condition> THEN
<statements(s)>
END IF;

• Add ELSE <statement(s)> if desired, as
IF . . . THEN . . . ELSE . . . END IF;

• Add additional cases by ELSEIF <statements(s)>:
IF … THEN … ELSEIF … THEN … ELSEIF …
THEN … ELSE … END IF;

15

Example:	IF

• Let’s	rate	bars	by	how	many	customers	they	
have,	based	on	Frequents(drinker,bar).
• <	100	customers:	‘unpopular’.
• 100-199	customers:	‘average’.
• >=	200	customers:	‘popular’.

• Function	Rate(b) rates	bar	b.

16

Example:	IF	(continued)

CREATE FUNCTION Rate (IN b CHAR(20))
RETURNS CHAR(10)
DECLARE cust INTEGER;

BEGIN
SET cust = (SELECT COUNT(*) FROM Frequents

WHERE bar = b);
IF cust < 100 THEN RETURN ’unpopular’
ELSEIF cust < 200 THEN RETURN ’average’
ELSE RETURN ’popular’
END IF;

END;

Number of
customers of
bar b

Return occurs here, not at
one of the RETURN statements

Nested
IF statement

17

Loops

• Basic	form:
<loop	name>:	LOOP

<statements>	
END	LOOP;

• Exit	from	a	loop	by:
LEAVE	<loop	name>;

18

Example:	Exiting	a	Loop

loop1: LOOP
. . .
LEAVE loop1;
. . .

END LOOP;

If this statement is executed . . .

Control winds up here

19

Other	Loop	Forms

• WHILE <condition>
DO <statements>

END WHILE;

• REPEAT <statements>
UNTIL <condition>

END REPEAT;

20

Queries

• General	SELECT-FROM-WHERE	queries	are	
not permitted	in	PSM.

• There	are	three	ways	to	get	the	effect	of	a	
query:
1. Queries	producing	one	value	can	be	the	

expression	in	an	assignment.
2. Single-row	SELECT	.	.	.	INTO	…
3. Cursors

21

Example:	Assignment/Query

• Using	local	variable	p and	Sells(bar,	beer,	price),	we	
can	get	the	price	Joe	charges	for	Bud	by:

SET p = (SELECT price FROM Sells

WHERE bar = ’Joe’’s Bar’

AND beer = ’Bud’);

22

SELECT	.	.	.	INTO	…

• Another	way	to	get	the	value	of	a	query	that	returns	
one	tuple	is	by	placing	INTO	<variable> after	the	
SELECT	clause.

• Example:
SELECT price INTO p

FROM Sells

WHERE bar = ’Joe’’s Bar’

AND beer = ’Bud’;

23

Cursors

• A	cursor is	essentially	a	tuple-variable	that	
ranges	over	all	tuples	in	the	result	of	some	
query.

• Declare	a	cursor	c by:
DECLARE	c	CURSOR	FOR	<query>;

24

Opening	and	Closing	Cursors

• To	use	cursor	c,	we	must	issue	the	command:
OPEN	c;
• The	query	of	c is	evaluated,	and	c	 is	set	to	point	
to	the	first	tuple	of	the	result.

• When	finished	with	c,	issue	command:
CLOSE	c;

25

Fetching	Tuples	From	a	Cursor

• To	get	the	next	tuple	from	cursor	c,	issue	
command:

FETCH	FROM	c	INTO	x1,	x2,…,	xn ;

• The	x	’s	are	a	list	of	variables,	one	for	each	
component	of	the	tuples	referred	to	by	c.

• c	is	moved	automatically	to	the	next	tuple.

26

Breaking	Cursor	Loops	– (1)

• The	usual	way	to	use	a	cursor	is	to	create	a	loop	with	
a	FETCH	statement,	and	do	something	with	each	
tuple	fetched.

• A	tricky	point	is	how	we	get	out	of	the	loop	when	the	
cursor	has	no	more	tuples	to	deliver.

27

Breaking	Cursor	Loops	– (2)

• Each	SQL	operation	returns	a	status,	which	is	a	5-
digit	character	string.
• For	example:
• ‘00000’	means	“Everything	OK,”
• ‘02000’	means	“Failed	to	find	a	tuple.”

• In	PSM,	we	can	get	the	value	of	the	status	in	a	
variable	called	SQLSTATE.

28

Breaking	Cursor	Loops	– (3)

• We	may	declare	a	condition,	which	is	a	boolean
variable	that	is	true	if	and	only	if	SQLSTATE	has	a	
particular	value.

• Example:	We	can	declare	condition	NotFound to	
represent	02000	by:
DECLARE NotFound CONDITION FOR

SQLSTATE ’02000’;

29

Breaking	Cursor	Loops	– (4)

• The	structure	of	a	cursor	loop	is	thus:

cursorLoop: LOOP
…
FETCH c INTO … ;
IF NotFound THEN LEAVE cursorLoop;
END IF;
…

END LOOP;

30

Example:	Cursor

• Let’s	write	a	procedure	that	examines	
Sells(bar,	beer,	price),	and	raises	by	one	dollar	
the	price	of	all	beers	at	Joe’s	Bar	that	are	
under	three	dollars.

• Yes,	we	could	write	this	as	a	simple	UPDATE,	but	
the	details	are	instructive	anyway.

31

The	Needed	Declarations

CREATE	PROCEDURE	JoeGouge()
DECLARE	theBeer CHAR(20);
DECLARE	thePrice REAL;
DECLARE	NotFound CONDITION	FOR
SQLSTATE	’02000’;
DECLARE	c	CURSOR	FOR
(SELECT	beer,	price	FROM	Sells
WHERE	bar	=	’Joe’’s	Bar’);

Used to hold
beer-price pairs
when fetching
through cursor c

Returns Joe’s menu

32

The	Procedure	Body
BEGIN

OPEN c;
menuLoop: LOOP

FETCH c INTO theBeer, thePrice;
IF NotFound THEN LEAVE menuLoop END IF;
IF thePrice < 3.00 THEN

UPDATE Sells SET price = thePrice + 1.00
WHERE bar = ’Joe’’s Bar’ AND beer = theBeer;

END IF;
END LOOP;
CLOSE c;

END;

Check if the recent
FETCH failed to
get a tuple

If Joe charges less than $3 for
the beer, raise its price at
Joe’s Bar by $1.

33

The	Procedure	Body:		
Using	CURRENT	OF	Cursor

BEGIN
OPEN c;
menuLoop: LOOP

FETCH c INTO theBeer, thePrice;
IF NotFound THEN LEAVE menuLoop END IF;
IF thePrice < 3.00 THEN

UPDATE Sells SET price = thePrice + 1.00
WHERE CURRENT OF c;

END IF;
END LOOP;
CLOSE c;

END;

Check if the recent
FETCH failed to
get a tuple

If Joe charges less than $3 for
the beer, raise its price at
Joe’s Bar by $1.

34

PL/SQL

• Oracle	uses	PL/SQL,	a	variation of	SQL/PSM	that	
helped	inspire	PSM.

• PL/SQL	not	only	allows	you	to	create	and	store	
procedures	or	functions,	but	it	also	can	be	run	
from	Oracle’s	generic	query	interface	(SQL*Plus),	
just	like	any	SQL	statement.

• PostgreSQL:		PL/pgSQL (needed	for	Lab4)
• IBM	DB2:		SQL	PL
• MS	SQL	Server	and	Sybase:		Transact-SQL	(T-SQL)

Triggers	and	Stored	Procedures

Trigger
• Event :		typically	a	type	of	database	modification,	e.g.,	
“insert	on	Sells”

• Condition :	Any	SQL	boolean-valued	expression
• Action :	Any	SQL	statements

• Triggers	may	invoke	Stored	Procedures.
• A	typical	trigger	body	(actions)	may	itself	be	thought	of	as	an	

unnamed	Stored	Procedure.
• In	some	systems,	the	trigger	body	may	include	many	of	the	
kinds	of	statements	that	can	be	in	a	Stored	Procedure.

36

Approach	2:		Embedded	SQL

• Key	idea:	A	pre-processor	turns	SQL	statements	into	
procedure	calls	that	fit	with	the	surrounding	host-
language	code.

• All	embedded	SQL	statements	begin	with	EXEC	SQL,	
so	the	pre-processor	can	find	them	easily.

37

Shared	Variables

• To	connect	SQL	and	the	host-language	
program,	the	two	parts	must	share	some	
variables.

• Declarations	of	shared	variables	are	
bracketed	by:
EXEC	SQL	BEGIN	DECLARE	SECTION;
<host-language	declarations>
EXEC	SQL	END	DECLARE	SECTION;

Always
needed

38

Use	of	Shared	Variables

• In	SQL,	the	shared	variables	must	be	preceded	by	a	
colon.
• They	may	be	used	as	if	they	were	constants	
provided	by	the	host-language	program.

• They	may	get	values	from	SQL	statements	and	
pass	those	values	to	the	host-language	program.

• In	the	host	language,	shared	variables	behave	like	
any	other	variable.

39

Example:	Looking	Up	Prices

• We’ll use	C	with	embedded	SQL	to	sketch	the	
important	parts	of	a	function	that	obtains	a	
beer	and	a	bar,	and	looks	up	the	price	of	that	
beer	at	that	bar.

• Assumes	database	has	the	Sells(bar,	beer,	
price) relation.

40

Example:	C	with	SQL

EXEC	SQL	BEGIN	DECLARE	SECTION;
char	theBar[21],	theBeer[21];
float	thePrice;

EXEC	SQL	END	DECLARE	SECTION;
/*	obtain	values	for	theBar and	theBeer */
EXEC	SQL	SELECT	price	INTO	:thePrice
FROM	Sells
WHERE	bar	=	:theBar AND	beer	=	:theBeer;

/*	do	something	with	thePrice */

Note 21-char
arrays needed
for 20 chars +
endmarker

SELECT-INTO
as in PSM

41

Embedded	Queries

• Embedded	SQL	has	the	same	limitations	as	PSM	
regarding	queries:
• SELECT-INTO	for	a	query	guaranteed	to	produce	a	
single	tuple.

• Otherwise,	you	have	to	use	a	cursor.
• Small	syntactic	differences,	but	the	key	ideas	
are	the	same.

42

Cursor	Statements

• Declare	a	cursor	c with:
EXEC	SQL	DECLARE	c CURSOR	FOR	<query>;
• Open	and	close	cursor	c	with:
EXEC	SQL	OPEN	CURSOR	c;
EXEC	SQL	CLOSE	CURSOR	c;
• Fetch	from	c by:
EXEC	SQL	FETCH	c	INTO	<variable(s)>;

• You	can	write	a	macro	NOT_FOUND	that	is	true	if	and	only	if	
the	FETCH	fails	to	find	a	tuple.

• If	c	is	a	cursor,	you	may	use	… WHERE	CURRENT	OF	c,	
just	as	in	Stored	Procedures.

43

Example:	Print	Joe’s	Menu

• Let’s	write	C	+	SQL	to	print	Joe’s	menu	– the	list	of	
beer-price	pairs	that	we	find	in	Sells(bar,	beer,	price)
with	bar	=	Joe’s	Bar.

• A	cursor	will	visit	each	Sells	tuple	that	has	bar	=	Joe’s	
Bar.

44

Example:	Declarations

EXEC	SQL	BEGIN	DECLARE	SECTION;
char	theBeer[21];	float	thePrice;

EXEC	SQL	END	DECLARE	SECTION;
EXEC	SQL	DECLARE	c	CURSOR	FOR
SELECT	beer,	price	FROM	Sells
WHERE	bar	=	’Joe’’s	Bar’;

The cursor declaration goes
outside the declare-section

45

Example:	Executable	Part

EXEC	SQL	OPEN	CURSOR	c;
while(1)	{
EXEC	SQL	FETCH	c

INTO	:theBeer,	:thePrice;
if	(NOT_FOUND)	break;
/*	format	and	print	theBeer and	thePrice */

}
EXEC	SQL	CLOSE	CURSOR	c;

The C style
of breaking
loops

46

Need	for	Dynamic	SQL

• Most	applications	use	specific	queries	and	
modification	statements	to	interact	with	the	
database.
• The	DBMS	compiles	EXEC	SQL	…	statements	into	
specific	procedure	calls	and	produces	an	
ordinary	host-language	program	that	uses	a	
library.

47

Dynamic	SQL

• Preparing	a	query:
EXEC	SQL	PREPARE	<query-name>

FROM	<text	of	the	query>;

• Executing	a	query:
EXEC	SQL	EXECUTE	<query-name>;

• “Prepare”means	optimize	query.
• Prepare	once,	Execute	many	times.

48

Example:	A	Generic	Interface

EXEC	SQL	BEGIN	DECLARE	SECTION;
char	query[MAX_LENGTH];

EXEC	SQL	END	DECLARE	SECTION;
while(1)	{
/*	issue	SQL>	prompt	*/
/*	read	user’s	query	into	array	query	*/
EXEC	SQL	PREPARE	q	FROM	:query;
EXEC	SQL	EXECUTE	q;

}
q is an SQL “query variable”
representing the optimized
form of whatever statement
is typed into :query

49

Execute-Immediate

• If	we	are	only	going	to	execute	the	query	once,	we	
can	combine	the	PREPARE	and	EXECUTE	steps	into	
one.

• Use:
EXEC	SQL	EXECUTE	IMMEDIATE	<text>;

50

Example:	Generic	Interface	Again

EXEC SQL BEGIN DECLARE SECTION;
char query[MAX_LENGTH];

EXEC SQL END DECLARE SECTION;

while(1) {
/* issue SQL> prompt */
/* read user’s query into array query
*/
EXEC SQL EXECUTE IMMEDIATE :query;

}

51

Approach	3:		Host	Language/SQL	
Interfaces	via	Libraries

• The	third	approach	to	connecting	databases	to	
conventional	languages	is	to	use	library	calls.
1. C	+	CLI
2. Java	+	JDBC
3. PHP	+	PEAR/DB

52

Three-Tier	Architecture

• A	common	environment	for	using	a	database	has	
three	tiers	of	processors:
1. Web	servers --- talk	to	the	user.
2. Application	servers --- execute	business	logic.
• Often	not	used—logic	in	web	tier

3. Database	servers --- get	what	the	app	servers	
(or	web	servers)	need	from	the	database.

53

Example:	Amazon

• Database	holds	the	information	about	products,	
customers,	etc.

• Business	logic	includes	things	like	“What	do	I	do	after	
someone	clicks	‘checkout’?”
• Answer:	Show	the	“How	will	you	pay	for	this?”
screen.

• Presentation	layer,	handled	on	web	server	and	web	
browser,	handles	preparation	and	display	of	web	
pages

54

Environments,	Connections,	Queries

• The	database	is,	in	many	DB-access	languages,	an	
environment.

• Database	servers	maintain	some	number	of	
connections,	so	app	servers	can	connect	to	them	
and	ask	queries	or	perform	modifications.

• The	app	server	issues	statements :	queries	and	
modifications,	usually.

55

Diagram	to	Remember

Environment

Connection

Statement

56

SQL/CLI

• Instead	of	using	a	pre-processor	(as	in	embedded	
SQL),	we	can	use	a	library	of	functions.
• The	library	for	C	is	called	SQL/CLI	=	“Call-Level	
Interface.”

• Embedded	SQL’s	pre-processor	will	translate	the	
EXEC	SQL	…	statements	into	CLI	or	similar	calls,	
anyway.

57

Data	Structures

• C	connects	to	the	database	by	structs of	the	
following	types:
1. Environments :	represent	the	DBMS	

installation.
2. Connections :	logins	to	the	database.
3. Statements :	SQL	statements	to	be	passed	to	

a	connection.
4. Descriptions :	records	about	tuples	from	a	

query,	or	parameters	of	a	statement.

58

JDBC

• Java	Database	Connectivity (JDBC)	is	a	library	similar	
to	SQL/CLI,	but	with	Java	as	the	host	language.

• Like	CLI,	but	with	a	few	differences.

• For	JDBC	use	with	PostgreSQL,	see:
• Brief	guide	to	using	JDBC	with	PostgreSQL
• Setting	up	JDBC	Driver,	including	CLASSPATH
• Information	about	queries	and	updates
• Guide	for	defining	stored	procedures/functions

59

Making	a	Connection

import java.sql.*;

Class.forName(com.mysql.jdbc.Driver);

Connection myCon =

DriverManager.getConnection(…);

The	JDBC	classes

The	driver
for	mySql;
others	exist

URL	of	the	database
your	name,	and	password
go	here.

Loaded	by
forName

60

Statements

• JDBC	provides	two	classes:
1. Statement is	an	object	that	can	accept	a	string	

that	is	a	SQL	statement	and	can	execute	such	a	
string.

2. PreparedStatement is	an	object	that	has	an	
associated	SQL	statement	ready	to	execute.

61

Creating	Statements

• The	Connection	class	has	methods	to	create	
Statements	and	PreparedStatements.

Statement	stat1	=	myCon.createStatement();

PreparedStatement stat2	=
myCon.prepareStatement(
”SELECT	beer,	price	FROM	Sells	” +
”WHERE	bar	=	’Joe’ ’s	Bar’ ”
);

62

Executing	SQL	Statements

• JDBC	distinguishes	queries	from	modifications,	which	
it	calls	“updates.”

• Statement	and	PreparedStatement each	have	
methods	executeQuery and	executeUpdate.
• For	Statement:	one	argument:	the	query	or	
modification	to	be	executed.

• For	PreparedStatement:	no	argument.

63

Example:	Update

• stat1	is	a	Statement.

• We	can	use	it	to	insert	a	tuple:

stat1.executeUpdate(

”INSERT INTO Sells ” +

”VALUES(’Brass Rail’,’Bud’,3.00)”
);

64

Example:	Query

• stat2	is	a	PreparedStatement holding	the	
query	”SELECT	beer,	price	FROM	Sells	WHERE	bar	
=	’Joe’’s	Bar’ ”.

• executeQuery returns	an	object	of	class	ResultSet;	
we’ll examine	that	soon.

• The	query:
ResultSet Menu	=	stat2.executeQuery();

65

Accessing	the	ResultSet

• An	object	of	type	ResultSet is	a	lot	like	a	cursor.
• Method	next() advances	the	“cursor” to	the	next	
tuple.
• The	first	time	next() is	applied,	it	gets	the	first	
tuple.

• If	there	are	no	more	tuples,	next() returns	the	
value	false.

66

Reminder	of	Example:	Query

• stat2	is	a	PreparedStatement holding	the	
query	”SELECT	beer,	price	FROM	Sells	WHERE	bar	
=	’Joe’’s	Bar’ ”.

• executeQuery returns	an	object	of	class	ResultSet;	
we’ll examine	that	soon.

• The	query:
ResultSet Menu	=	stat2.executeQuery();

67

Accessing	Components	of	Tuples
• When	a	ResultSet refers	to	a	tuple,	we	can	get	the	
components	of	that	tuple	by	applying	certain	
methods	to	the	ResultSet.

• Method	getX (i),	where	X	 is	some	type,	and	i is	the	
component	number,	returns	the	value	of	that	
component.
• The	value	must	have	type	X.

68

Example:	Accessing	Components

• Menu	is	the	ResultSet for	query	“SELECT	beer,	price	
FROM	Sells	WHERE	bar	=	’Joe’ ’s	Bar’ ”.

• Access	beer	and	price	from	each	tuple	by:
while (Menu.next()) {

theBeer = Menu.getString(1);

thePrice = Menu.getFloat(2);

/* do something with theBeer and
thePrice */

}

69

ExecuteQuery,	ExecuteUpdate and	
Execute

• executeQuery():		Executes	a	SQL	SELECT	statement,	and	
returns	a	ResultSet object.

• executeUpdate():	Executes	a	SQL	UPDATE,	INSERT	or	
DELETE	statement,	and	returns	the	number	of	affected	
rows.
• May	also	be	used	with	DDL,	e.g.,	CREATE,	DROP

• execute():		Executes	either	query	or	modification,	and	
returns	TRUE	if	query	and	FALSE	if	modification
• stat.getResultSet for	query	result
• stat.getUpdateCount for	modification

• All	methods	may	throw	Exceptions

70

Executing	a	Stored	Procedure	GoodBeers
Assume	GoodBeers somehow	finds	all	the	good	beers	that	are	sold	at		a	
specific	bar	(theBar)	that	sell	for	under	a	particular	price	(thePrice).	

• We	won’t	tell	you	the	secret	of	how	GoodBeers procedure	works.

PreparedStatement stmt =	mycon.prepareStatement(
"SELECT	*	FROM	GoodBeers(?,	?)");												

stmt.setString(1,theBar);									/*	first	parameter	*/			
stmt.setFloat(2,thePrice);						/*	second	parameter	*/	
ResultSet result	=	stmt.executeQuery();																							
while(result.next())				 {
theBeer=	result.getString(1);	
/*	do	something	with	theBeer */								

}

71

Executing	a	Stored	Function

• Executing	a	Stored	Function	is	similar	to	executing	a	
Stored	Procedure,	except	that	what’s	returned	is	the	
result	of	the	Stored	Function.
• Can	be	a	scalar	value	(as	in	Lab4)	or	a	table.
• If	it’s	a	scalar	value,	that	can	be	treated	that	as	a	
table	with	one	row.

• There	is	another	way	to	execute	Stored	Procedures	and	
Stored	Functions,	using	the	CallableStatement class	
(instead	of	Statement	or	PreparedStatement).

• This	is	not	described	well	in	the	PostgreSQL	
documentation,	but	it’s	a	good	approach,	and	you	may	
use	it	if	you	can	figure	it	out.

72

Approaches

When/Why do you use each?
1. Stored Procedure languages such as

PSM and PL/SQL)
2. SQL statements embedded in a host

language (e.g., C)
3. Connection tools/libraries such as,

CLI, and JDBC

