
Design	Theory:		
Functional	Dependencies
and	Normal	Forms,	Part	I

Instructor:	Shel	Finkelstein

Reference:
A	First	Course	in	Database	Systems,	
3rd edition,	Chapter	3



Important	Notices
• CMPS	180	Final	Exam	is	on	Wednesday,	December	13,	noon-3pm,	

in	our	usual	classroom.
– Includes	a	Multiple	Choice	Section	and	a	Longer	Answers	Section.

• Scantron sheets	for	Multiple	Choice;	might	be	supplied	by	Student	Union	Assembly.

– Covers	entire	term,	with	greater	emphasis	on	second	half	of	term.
– You	may	bring	in	an	8.5	by	11	sheet	of	paper,	with	anything	that	you	can	

read	unassisted	printed	or	written	on	both	sides	of	the	paper.
• No	sharing	of	sheets	is	permitted.

– Final	from	Winter	2017	(2	Sections)	has	been	posted	(ResourcesàExams).
• Answers	to	that	Final	will	be	posted	by	Monday,	December	4.

• Lab4	assignment	was	posted	on	Sunday,	Nov		19,	due	on	Sunday,	
Dec	3,	11:59pm.
– Subject	of	Lab4	is	Lecture	10	(Application	Programming).

• Gradiance #4	is	due	on	Friday,	Dec	1,	11:59pm.
– It	was	assigned	on	Friday,	Nov	24.



Database	Schema	Design
• So	far,	we	have	learned	database	query	languages:	

– SQL,	Relational	Algebra

• How	can	you	tell	whether	a	given	database	schema	is	“good”	or	
“bad”?

• Design	theory:
– A	set	of	design	principles	that	allows	one	to	decide	what	

constitutes	a	“good”	or	“bad”	database	schema	design.
– A	set	of	algorithms	for	modifying	a	“bad”	design	to	a	“better”	

one.



Example

• If	we	know	that	rank	determines	the	salary	scale,	which	is	a	
better	design?	Why?

• Employees(eid,	name,	addr,	rank,	salary_scale)

OR

• Employees(eid,	name,	addr,	rank)
Salary_Table(rank,	salary_scale)



Lots	of	Duplicate	Information
eid name addr rank salary_scale
34-133 Jane Elm St. 6 70-90
33-112 Hugh Pine St. 3 30-40
26-002 Gary Elm St. 4 35-50
51-994 Ann South St. 4 35-50

45-990 Jim Main St. 6 70-90
98-762 Paul Walnut St. 4 35-50

• Lots	of	duplicate information
– Employees	who	have	the	same	rank	have	the	same	salary	
scale.



Update	Anomaly
eid name addr rank salary_scale
34-133 Jane Elm St. 6 70-90
33-112 Hugh Pine St. 3 30-40
26-002 Gary Elm St. 4 35-50
51-994 Ann South St. 4 35-50

45-990 Jim Main St. 6 70-90
98-762 Paul Walnut St. 4 35-50

• Update	anomaly
– If	one	copy	of	salary	scale	is	changed,	then	all	copies	of	
that	salary	scale	(of	the	same	rank)	have	to	be	changed.



Insertion	Anomaly
eid name addr rank salary_scale
34-133 Jane Elm St. 6 70-90
33-112 Hugh Pine St. 3 30-40
26-002 Gary Elm St. 4 35-50
51-994 Ann South St. 4 35-50

45-990 Jim Main St. 6 70-90
98-762 Paul Walnut St. 4 35-50

• Insertion	anomaly
– How	can	we	store	a	new	rank	and	salary	scale	information	
if	currently,	no	employee	has	that	rank?

– Use	NULLS?



Deletion	Anomaly
eid name addr rank salary_scale
34-133 Jane Elm St. 6 70-90
33-112 Hugh Pine St. 3 30-40
26-002 Gary Elm St. 4 35-50
51-994 Ann South St. 4 35-50

45-990 Jim Main St. 6 70-90
98-762 Paul Walnut St. 4 35-50

• Deletion	anomaly
– If	Hugh	is	deleted,	how	can	we	retain	the	rank	and	salary	
scale	information?

– Is	using	NULL	a	good	choice?
• (Why	not?)



So	What	Would	Be	a	Good	Schema	
Design	for	this	Example?

• salary_scale is	dependent	only	on	rank
– Hence	associating	employee	information	such	as	name,	
addr with	salary_scale causes	redundancy.

• Based	on	the	constraints	given,	we	would	like	to	refine	the	
schema	so	that	such	redundancies	cannot occur.

• Note however, that sometimes database designers may choose to live 
with redundancy in order to improve query performance. 
– Ultimately, a good design is depends on the query workload.  
– But understanding anomalies and how to deal with them is still 

important.



Functional	Dependencies
• The	information	that	rank	determines	salary_scale is	a	type	of	

integrity	constraint	known	as	a	functional	dependency	(FD).

• Functional	dependencies	can	help	us	detect	anomalies	that	
may	exist	in	a	given	schema.

• The	FD	“rank→ salary_scale”	suggests	that		
Employees(eid,	name,	addr,	rank,	salary_scale)	

should	be	decomposed	into	two	relations:	
Employees(eid,	name,	addr,	rank)
Salary_Table(rank,	salary_scale).



Meaning	of	an	FD	
• We	have	seen	a	kind	of	functional	dependency	before.
• Keys:

– Emp(ssn,	name,	addr)
– If	two	tuples	agree	on	the	ssn value,	then	they	must	also	agree	on	the	

name	and	address	values.	(ssn→ name,	addr).

• Let	R be	a	relation	schema.	A	functional	dependency	(FD)	is	an	integrity	
constraint	of	the	form:	

X	→ Y		(read	as	“X	determines Y	or	X	functionally	determines	Y”)
where	X	and	Y	are	non-empty	subsets	of	attributes	of	R.

• A	relation	instance	r	of	R satisfies the	FD	X	→ Y	if	
for	every	pair	of	tuples	t	and	t’ in	r,	if	t[X]	=	t’[X],	then	t[Y]	=	t’[Y]

Denotes	the	X	value(s)	of	tuple	t,	i.e.,
project	t	on	the	attributes	in	X.	



• Relation	schema	R	with	the	FD	A1,	…,	Am→ B1,	…,	Bnwhere	
{	A1,	…,	Am,	B1,	…,	Bn }	⊆ attributes(R).

vvvvvvvvvvvvvvv yyyyyyyyyy uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu OK

xxxxxxxxxxxxxxx vvvvvvvvvv uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
VIOLATION!

xxxxxxxxxxxxxxx			yyyyyyyyyy				zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

xxxxxxxxxxxxxxx yyyyyyyyyy wwwwwwwwwwwwwwwwwwwwwww

Illustration	of	the	Semantics	of	an	FD

A1 A2 …	Am B1 …	Bn the	rest	of	the	attributes	in	R,	if	any

t

t’

The	actual	values	do	not	matter,	but	
they	cannot	be	the	same	if	R	is	a	set.



More	on	Meaning	of	an	FD

• Relation	R	satisfies	X	→ Y	
– Pick	any	two	(not	necessarily	distinct)	tuples	t	and	t’	of	an	
instance	r	of	R.		If	t	and	t’	agree	on	the	X	attributes,	then	
they	must	also	agree	on	the	Y	attributes.

– The	above	must	hold	for	every	possible	instance	r	of	R.	

• An	FD	is	a	statement	about	all	possible	legal	instances	of	a	
schema.	We	cannot just	look	at	an	instance	(or	even	at	a	set	
of	instances)	to	determine	which	FDs	hold.
– Looking	at	an	instance	may	enable	us	to	determine	that	some	FDs	are	

not	satisfied.



Reasoning	about	FDs
R(A,B,C,D,E)
Suppose	A	→ C	and	C→ E.		Is	it	also	true	that	A	→ E	?	
In	other	words,	suppose	an	instance	r	satisfies	A	→ C	and	C	→ E,	
is	it	true	that	r	must	also	satisfy	A	→ E	?

YES
Proof:		?



Implication	of	FDs
• We	say	that	a	set	F of	FDs	implies an	FD	F	if	for	every	instance	

r that	satisfies	F,	it	must	also	be	true	that	r	satisfies	F.	
• Notation:		F ⊨ F

• Note	that	just	finding	some	instance(s)	r such	that	r	satisfies	F
and	r	also	satisfies	F is	not sufficient	to	prove	that	F ⊨ F.

• How	can	we	determine	whether	or	not	F implies	F?



Armstrong's	Axioms
• Use	Armstrong’s	Axioms	to	determine	whether	or	not	F ⊨ F.

• Let	X,	Y,	and	Z	denote	sets	of	attributes	over	a	relation	schema	R.

• Reflexivity:	If	Y	⊆ X,	then	X	→ Y.
ssn,	name	→ name

– FDs	in	this	category	are	called	trivial	FDs.
• Augmentation:	If	X	→ Y,	then	XZ	→ YZ	for	any	set	Z	of	attributes.

ssn,	name,	addr→ name	addr
• Transitivity:	If	X	→ Y	and	Y	→ Z,	then	X	→ Z.

If	ssn→ rank,	and	rank	→ sal_scale,
then	ssn→ sal_scale.



Union	and	Decomposition	Rules

• Union:	If	X	→ Y	and	X	→ Z,	then	X	→ YZ.
• Decomposition:	If	X	→ YZ,	then	X	→ Y	and	X	→ Z.

• Union	and	Decomposition	rules	are	not	essential.	In	other	
words,		they	can	be	derived	using	Armstrong’s	axioms.

• Derivation	of	the	Union	rule:
(to	fill	in)



Union	and	Decomposition	Rules

• Union:	If	X	→ Y	and	X	→ Z,	then	X	→ YZ.
• Decomposition:	If	X	→ YZ,	then	X	→ Y	and	X	→ Z.

• Union	and	Decomposition	rules	are	not	essential.	In	other	
words,		they	can	be	derived	using	Armstrong’s	axioms.

• Derivation	of	the	Union	rule:
Since	X	→ Z,	we	get	XY	→ YZ	(augmentation)
Since	X→ Y,	we	get	X	→ XY	(augmentation)
Therefore,	X	→ YZ	(transitivity)



Additional	Rules

• Derivation	of		the	Decomposition	rule:
(to	fill	in)



Additional	Rules

• Derivation	of		the	Decomposition	rule:
X	→ YZ	(given)
YZ	→ Y	(reflexivity)
YZ	→ Z	(reflexivity)
Therefore,	X	→ Y	and	X	→ Z	(transitivity).

• We	use	the	notation	F ⊢ F to	mean	that	F	can	be	derived	
from	F using	Armstrong’s	axioms.
– That’s	a	lot	of	words,	so	we’ll	sometimes	just	read	this	as:	

“F generates F”.
– What	was	the	meaning	of	F ⊨ F	(F implies F)?



Pseudo-Transitivity	Rule

• Pseudo-Transitivity:	 If	X		® Y	and	WY	® Z,	then	XW	® Z.

• Can	you	derive	this	rule	using	Armstrong’s	axioms?

• Derivation	of	the	Pseudo-Transitivity	rule:
(to	fill	in)



Pseudo-Transitivity	Rule

• Pseudo-Transitivity:		If	X		® Y	and	WY	® Z,	then	XW	® Z.

• Can	you	derive	this	rule	using	Armstrong’s	axioms?

• Derivation	of	the	Pseudo-Transitivity	rule:
X	->	Y	and	WY	->	Z
XW	->	WY	(augmentation)
WY	->	Z	(given)
Therefore	XW	->	Z	(transitivity)



Completeness	of	Armstrong’s	Axioms

• Completeness:	If	a	set	F of	FDs	implies	F,	then	F	can	be	
derived	from	F by	applying	Armstrong’s	axioms.
– If	F ⊨ F,	then	F ⊢ F.				

– If	F implies F,	then	one	can	prove	F	from	F using	
Armstrong’s	axioms	(i.e.,	F generates F).

For	those	familiar	with	Mathematical	Logic:
• F ⊨ F is	“model-theoretic”
• F ⊢ F	is	“proof-theoretic”

semantic syntactic



Soundness	of	Armstrong’s	Axioms
• Soundness:	If	F	can	be	derived	from	a	set	of	FDs	F through	

Armstrong’s	axioms,	then	F implies	F.
– If	F ⊢ F,	then	F ⊨ F.		

• That	is,	if	F generates F,	then	F implies F.
– Handwaving proof:		If	one	can	generate	F	from	F using	
Armstrong’s	axioms,	then	surely	F implies	F.		(Why?)

• With	Completeness	and	Soundness,	we	know	that
F ⊢ F	if	and	only	if	F ⊨ F

In	other	words,	Armstrong’s	axioms	generate	precisely	all	the	
FDs	that	must	hold	under	F (all	the	axioms	that	F implies).

• Great!		But	how	can	we	decide	whether	or	not	F implies	F?



Closure	of	a	Set	of	FDs	F
• Let	F+ denote	the	set	of	all	FDs	implied	by	a	given	set	F of	FDs.	

o Also	called	the	closure	of	F.
• To	decide	whether	F implies	F,	first	compute	F+,	then	see	whether	

F	is	a	member	of	F+.
• Example:	Compute	F+ for	the	set	{	A	® B,	B	® C}	of	FDs.
• Trivial	FDs

o A	® A,	B	® B,	C	® C,	AB	® A,	AB	® B,	BC	® B,	BC	® C,	AC	® A,	
AC	® C,	ABC	® A,	ABC	® B,	ABC	® C,	ABC® AB	,	ABC® AC	,	
ABC® BC,	ABC® ABC

• Augmentation	and	transitivity	(non-trivial	FDs)
o AC	® B,	AB	® C	

• Transitivity
o A	® C

Expensive	and	tedious!
Let’s	find	a	better	way.



Attribute Closure	Algorithm
• Let	X	be	a	set	of	attributes	and	F be	a	set	of	FDs.		The attribute	closure	X+ with	

respect	to	F is	the	set	of	all	attributes	A	such	that	X® A	is	derivable	from	F.
– That	is,	all	the	attributes	A	such	that	F ⊢ X	® A	

Input:	A	set	X	of	attributes	and	a	set	F of	FDs.
Output:	X+

Closure	=	X;	 //	initialize	Closure	to	equal	the	set	X
repeat	until	no	change	in	Closure	{
if	there	is	an	FD		U	® V	in	F such	that	U	⊆ Closure,	
then	Closure	=	Closure	∪ V;
}
return	Closure;

If	A	∈Closure	(that	is,	if	A∈ X+)	,	then	X	® A.

More	strongly,	F  ⊢ X	® A	 if	and	only	A∈ X+



FD	Example	1	using	Attribute	Closure

• F =	{	A	® B,	B	® C	}.
• Question:	Does	A	® C?
• Compute	A+

• Closure	=	{	A	}
• Closure	=	{	A,	B	}		(due	to	A	® B)
• Closure	=	{	A,	B,	C	}		(due	to	B	® C)
• Closure	=	{	A,	B,	C	}	

– no	change,	stop
• Therefore	A+ =	{A,	B,	C	}	
• Since	C	∈ A+,	answer	YES.



FD	Example	2	using	Attribute	Closure

• F =	{	AB	® E,	B	® AC,	 BE	® C }
• Question:	Does	BC	® E?
• Compute	BC+

• Closure	=	{	B,	C	}
• Closure	=	{	A,	B,	C	}		(due	to	B	® AC)
• Closure	=	{	A,	B,	C,	E	}		(due	to	AB	® E)
• Closure	=	{	A,	B,	C,	E	}		(due	to	BE	® C)

– No	change,	so	stop.
• Therefore	BC+ =	{A,B,C,E}
• Since	E	∈BC+,	answer	YES.



• To	determine	if	an	FD		X	® Y	is	implied	by	F,	compute	X+ and	
check	if	Y	⊆ X+.	

• Notice	that	Attribute	Closure	is	less	expensive	to	compute	
than	F+.

• Algorithm	can	be	modified	to	compute	candidate	keys.	How?
– Compute	the	closure	of	a	single	attribute	in	X+.	Then	
compute	the	closure	of	2	attributes,	3	attributes	and	so	on.

– If	the	closure	of	a	set	of	attributes	contains	all	attributes	of	
the	relation,	then	it	is	a	superkey.	

– If	no	proper	subset	of	those	attributes	has	a	closure	that	
contains	all	attributes	of	the	relation,	then	it	is	a	key.		

Algorithm	for	FDs	
… and	also	for	Keys/Superkeys



Correctness	of	Algorithm

• Is	it	correct?	
Prove	that	the	algorithm	indeed	computes	X+.
– Show	that	for	any	attribute	A	∈ X+,	it	is	the	case	that	
X	® A	is	derivable	from	F.

– Show	if	X	® A	is	derivable	from	F,	then	it	must	be	that	
A∈X+.



Proof	of	Correctness

Claim:	If	A∈X+,	then	F ⊢ X®A.
Proof:	By	induction	on	the	number	of	iterations	in	the	attribute	
closure	algorithm.

(to	fill	in)



Soundness	and	Completeness	of	the	
Attribute	Closure	Algorithm

• Soundness:	From	previous	slide,	if	A	∈ X+,	then	F ⊢ X®A.		
By	the	Soundness	of	Armstrong’s	axioms,	it	follows	that	F ⊨ F.

• Is	it	also	true	that	 if	F ⊨ F,	where	F	is	the	FD	X®A,	then	
A	∈ X+?

• Completeness.
– Claim:	If	that	 if	F ⊨ F,	where	F	is	the	FD	X®A,	then	it	must	be	the	case	

that	A∈X+.	
– Proof	by	contradiction.		Won’t	go	through	proof	details.



Practice	Homework	6
1. Let	R(A,B,C,D,E)	be	a	relation	schema	and	let	F =	{	AB	® E,	B	® AC,	

BE	® C }	be	a	set	of	FDs	that	hold	over	R.	

a. Prove	that	F ⊨ B	® E	using	Armstrong’s	axioms.
b. Compute	the	closure	of	B.	That	is,	compute	B+.
c. Give	a	key	for	R.	Justify	why	your	answer	is	a	key	for	R.
d. Show	an	example	relation	that	satisfies	F.
e. Show	an	example	relation	that	does	not	satisfy	F.

2. Let	R(A,B,C,D,E)	be	a	relation	schema	and	let	F =	{	A	® C,	B	® AE,	
B	® D,	BD	® C	}	be	a	set	of	FDs	that	hold	over	R.

a. Show	that	B	® CD	using	Armstrong’s	axioms.
b. Show	a	relation	of	R	such	that	R	satisfies	F but	R	does	not	satisfy	

A	® D.
c. Is	AB	a	key	for	R?


