Design Theory: Functional Dependencies and Normal Forms, Part I

Instructor: Shel Finkelstein

Reference: A First Course in Database Systems, 3rd edition, Chapter 3

Important Notices

- CMPS 180 Final Exam is on Wednesday, December 13, noon-3pm, in our usual classroom.
 - Includes a Multiple Choice Section and a Longer Answers Section.
 - <u>Scantron</u> sheets for Multiple Choice; might be supplied by Student Union Assembly.
 - Covers <u>entire term</u>, with greater emphasis on second half of term.
 - You may bring in an 8.5 by 11 sheet of paper, with anything that you can read unassisted printed or written on both sides of the paper.
 - No sharing of sheets is permitted.
 - Final from Winter 2017 (2 Sections) has been posted (Resources \rightarrow Exams).
 - Answers to that Final will be posted by Monday, December 4.
- Lab4 assignment was posted on Sunday, Nov 19, due on Sunday, Dec 3, 11:59pm.
 - Subject of Lab4 is Lecture 10 (Application Programming).
- Gradiance #4 is due on Friday, Dec 1, 11:59pm.
 - It was assigned on Friday, Nov 24.

Database Schema Design

- So far, we have learned database query languages:
 - SQL, Relational Algebra
- How can you tell whether a given database schema is "good" or "bad"?
- Design theory:
 - A set of design principles that allows one to decide what constitutes a "good" or "bad" database schema design.
 - A set of algorithms for modifying a "bad" design to a "better" one.

Example

- If we know that rank determines the salary scale, which is a better design? Why?
- Employees(<u>eid</u>, name, addr, rank, salary_scale)

OR

Employees(<u>eid</u>, name, addr, rank)
 Salary_Table(<u>rank</u>, salary_scale)

Lots of Duplicate Information

eid	name	addr	rank	salary_scale
34-133	Jane	Elm St.	6	70-90
33-112	Hugh	Pine St.	3	30-40
26-002	Gary	Elm St.	4	35-50
51-994	Ann	South St.	4	35-50
45-990	Jim	Main St.	6	70-90
98-762	Paul	Walnut St.	4	35-50

- Lots of duplicate information
 - Employees who have the same rank have the same salary scale.

Update Anomaly

eid	name	addr	rank	salary_scale
34-133	Jane	Elm St.	6	70-90
33-112	Hugh	Pine St.	3	30-40
26-002	Gary	Elm St.	4	35-50
51-994	Ann	South St.	4	35-50
45-990	Jim	Main St.	6	70-90
98-762	Paul	Walnut St.	4	35-50

- Update anomaly
 - If one copy of salary scale is changed, then all copies of that salary scale (of the same rank) have to be changed.

Insertion Anomaly

eid	name	addr	rank	salary_scale
34-133	Jane	Elm St.	6	70-90
33-112	Hugh	Pine St.	3	30-40
26-002	Gary	Elm St.	4	35-50
51-994	Ann	South St.	4	35-50
45-990	Jim	Main St.	6	70-90
98-762	Paul	Walnut St.	4	35-50

- Insertion anomaly
 - How can we store a new rank and salary scale information if currently, no employee has that rank?
 - Use NULLS?

Deletion Anomaly

eid	name	addr	rank	salary_scale
34-133	Jane	Elm St.	6	70-90
33-112	Hugh	Pine St.	3	30-40
26-002	Gary	Elm St.	4	35-50
51-994	Ann	South St.	4	35-50
45-990	Jim	Main St.	6	70-90
98-762	Paul	Walnut St.	4	35-50

- Deletion anomaly
 - If Hugh is deleted, how can we retain the rank and salary scale information?
 - Is using NULL a good choice?
 - (Why not?)

So What Would Be a Good Schema Design for this Example?

- salary_scale is dependent only on rank
 - Hence associating employee information such as name, addr with salary_scale causes redundancy.
- Based on the constraints given, we would like to refine the schema so that such redundancies cannot occur.
- Note however, that sometimes database designers **may choose** to live with redundancy in order to improve query performance.
 - Ultimately, a good design is depends on the query workload.
 - But understanding anomalies and how to deal with them is still important.

Functional Dependencies

- The information that rank determines salary_scale is a type of integrity constraint known as a *functional dependency (FD)*.
- Functional dependencies can help us detect anomalies that may exist in a given schema.
- The FD "rank → salary_scale" suggests that Employees(<u>eid</u>, name, addr, rank, salary_scale) should be *decomposed* into two relations: Employees(<u>eid</u>, name, addr, rank) Salary_Table(<u>rank</u>, salary_scale).

Meaning of an FD

- We have seen a kind of functional dependency before.
- Keys:
 - Emp(<u>ssn</u>, name, addr)
 - If two tuples agree on the ssn value, then they must also agree on the name and address values. (ssn → name, addr).
- Let **R** be a relation schema. A *functional dependency (FD)* is an integrity constraint of the form:

 $X \rightarrow Y$ (read as "X determines Y or X functionally determines Y")

where X and Y are non-empty subsets of attributes of **R**.

• A relation instance r of **R** satisfies the FD $X \rightarrow Y$ if

for every pair of tuples t and t' in r, if t[X] = t'[X], then t[Y] = t'[Y]

Denotes the X value(s) of tuple t, i.e., project t on the attributes in X.

Illustration of the Semantics of an FD

• Relation schema R with the FD $A_1, ..., A_m \rightarrow B_1, ..., B_n$ where $\{A_1, ..., A_m, B_1, ..., B_n\} \subseteq attributes(R)$.

More on Meaning of an FD

- Relation R satisfies $X \rightarrow Y$
 - Pick any two (not necessarily distinct) tuples t and t' of an instance r of R. If t and t' agree on the X attributes, then they must also agree on the Y attributes.
 - The above must hold for *every possible instance* r of R.
- An FD is a statement about *all possible legal instances* of a schema. We <u>cannot</u> just look at an instance (or even at a set of instances) to determine which FDs hold.
 - Looking at an instance may enable us to determine that some FDs are not satisfied.

Reasoning about FDs

R(A,B,C,D,E)

Suppose $A \rightarrow C$ and $C \rightarrow E$. Is it also true that $A \rightarrow E$?

In other words, suppose an instance r satisfies A \rightarrow C and C \rightarrow E, is it true that r must also satisfy A \rightarrow E ?

YES

Proof: ?

Implication of FDs

- We say that a set *T* of FDs *implies* an FD F if for every instance r that satisfies *T*, it must also be true that r satisfies F.
- Notation: $\mathcal{F} \vDash \mathbf{F}$
- Note that just finding some instance(s) r such that r satisfies F and r also satisfies F is <u>not</u> sufficient to prove that F ⊨ F.
- How can we determine whether or not \mathcal{F} implies F?

Armstrong's Axioms

- Use Armstrong's Axioms to determine whether or not $\mathcal{F} \vDash F$.
- Let X, Y, and Z denote sets of attributes over a relation schema R.
- **Reflexivity:** If $Y \subseteq X$, then $X \rightarrow Y$.

ssn, name \rightarrow name

- FDs in this category are called *trivial FDs*.
- Augmentation: If X → Y, then XZ → YZ for any set Z of attributes.
 ssn, name, addr → name addr
- **Transitivity**: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$.

If ssn \rightarrow rank, and rank \rightarrow sal_scale, then ssn \rightarrow sal_scale.

Union and Decomposition Rules

- Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$.
- **Decomposition**: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$.
- Union and Decomposition rules are not essential. In other words, they can be derived using Armstrong's axioms.
- Derivation of the Union rule: (to fill in)

Union and Decomposition Rules

- Union: If $X \to Y$ and $X \to Z$, then $X \to YZ$.
- **Decomposition**: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$.
- Union and Decomposition rules are not essential. In other words, they can be derived using Armstrong's axioms.
- Derivation of the Union rule: Since $X \rightarrow Z$, we get $XY \rightarrow YZ$ (augmentation) Since $X \rightarrow Y$, we get $X \rightarrow XY$ (augmentation)

Therefore, $X \rightarrow YZ$ (transitivity)

Additional Rules

 Derivation of the Decomposition rule: (to fill in)

Additional Rules

• Derivation of the Decomposition rule:

 $X \rightarrow YZ$ (given) $YZ \rightarrow Y$ (reflexivity) $YZ \rightarrow Z$ (reflexivity) Therefore, $X \rightarrow Y$ and $X \rightarrow Z$ (transitivity).

- We use the notation *F* ⊢ F to mean that *F can be derived* from *F* using Armstrong's axioms.
 - That's a lot of words, so we'll sometimes just read this as: " \mathcal{F} generates F".
 - What was the meaning of $\mathcal{T} \vDash F$ (\mathcal{T} implies F)?

Pseudo-Transitivity Rule

- **Pseudo-Transitivity**: If $X \rightarrow Y$ and $WY \rightarrow Z$, then $XW \rightarrow Z$.
- Can you derive this rule using Armstrong's axioms?
- Derivation of the Pseudo-Transitivity rule: (to fill in)

Pseudo-Transitivity Rule

- **Pseudo-Transitivity**: If $X \rightarrow Y$ and $WY \rightarrow Z$, then $XW \rightarrow Z$.
- Can you derive this rule using Armstrong's axioms?
- Derivation of the Pseudo-Transitivity rule: X -> Y and WY -> Z
 XW -> WY (augmentation)
 WY -> Z (given)
 Therefore XW -> Z (transitivity)

Completeness of Armstrong's Axioms

• Completeness: If a set \mathcal{F} of FDs implies F, then F can be derived from \mathcal{F} by applying Armstrong's axioms.

- If \mathcal{F} <u>implies</u> F, then one can prove F from \mathcal{F} using Armstrong's axioms (i.e., \mathcal{F} <u>generates</u> F).

For those familiar with Mathematical Logic:

- *T* ⊨ F is "model-theoretic"
- $\mathcal{T} \vdash \mathsf{F}$ is "proof-theoretic"

Soundness of Armstrong's Axioms

- Soundness: If F can be derived from a set of FDs \mathcal{F} through Armstrong's axioms, then \mathcal{F} implies F.
 - If $\mathcal{T} \vdash F$, then $\mathcal{T} \models F$.
 - That is, if \mathcal{F} generates F, then \mathcal{F} implies F.
 - Handwaving proof: If one can generate F from \mathcal{F} using Armstrong's axioms, then surely \mathcal{F} implies F. (Why?)
- With Completeness and Soundness, we know that *𝔅* ⊢ 𝑘 if and only if 𝔅 ⊨ 𝑘

 In other words, Armstrong's axioms generate precisely *all* the FDs that must hold under 𝔅 (all the axioms that 𝔅 implies).
- Great! But how can we decide whether or not \mathcal{F} implies F?

Closure of a Set of FDs ${\mathcal F}$

- Let \$\mathcal{F}^+\$ denote the set of all FDs implied by a given set \$\mathcal{F}\$ of FDs.
 Also called the closure of \$\mathcal{F}\$.
- To decide whether \mathcal{F} implies F, first compute \mathcal{F}^+ , then see whether F is a member of \mathcal{F}^+ .
- Example: Compute \mathcal{F}^+ for the set { A \rightarrow B, B \rightarrow C} of FDs.
- Trivial FDs
 - $\circ \ A \to A, B \to B, C \to C, AB \to A, AB \to B, BC \to B, BC \to C, AC \to A, \\ AC \to C, ABC \to A, ABC \to B, ABC \to C, ABC \to AB, ABC \to AC, \\ ABC \to BC, ABC \to ABC$
- Augmentation and transitivity (non-trivial FDs)

 \circ AC \rightarrow B, AB \rightarrow C

• Transitivity

 $\circ A \rightarrow C$

Expensive and tedious! Let's find a better way.

<u>Attribute</u> Closure Algorithm

- Let X be a set of attributes and \mathcal{F} be a set of FDs. The attribute closure X⁺ with respect to \mathcal{F} is the set of all attributes A such that X \rightarrow A is derivable from \mathcal{F} .
 - That is, all the attributes A such that $\mathcal{F} \vdash X \rightarrow A$

<u>Input</u>: A set X of attributes and a set \mathcal{F} of FDs. <u>Output</u>: X⁺

```
Closure = X; // initialize Closure to equal the set X
repeat until no change in Closure {
if there is an FD U \rightarrow V in \mathcal{F} such that U \subseteq Closure,
then Closure = Closure \cup V;
}
return Closure;
```

```
If A \in Closure (that is, if A \in X^+), then X \to A.
```

```
More strongly, \mathcal{F} \vdash X \rightarrow A if and only A \subseteq X^+
```

FD Example 1 using Attribute Closure

- $\mathcal{F} = \{ \mathsf{A} \to \mathsf{B}, \mathsf{B} \to \mathsf{C} \}.$
- Question: Does $A \rightarrow C$?
- Compute A⁺
- Closure = { A }
- Closure = $\{A, B\}$ (due to $A \rightarrow B$)
- Closure = { A, B, C } (due to $B \rightarrow C$)
- Closure = { A, B, C }
 - no change, stop
- Therefore A⁺ = {A, B, C }
- Since $C \subseteq A^+$, answer YES.

FD Example 2 using Attribute Closure

- $\mathcal{F} = \{ AB \rightarrow E, B \rightarrow AC, BE \rightarrow C \}$
- Question: Does $BC \rightarrow E$?
- Compute BC⁺
- Closure = { B, C }
- Closure = { A, B, C } (due to $B \rightarrow AC$)
- Closure = { A, B, C, E } (due to $AB \rightarrow E$)
- Closure = { A, B, C, E } (due to BE → C)
 No change, so stop.
- Therefore BC⁺ = {A,B,C,E}
- Since $E \in BC^+$, answer YES.

Algorithm for FDs ... and also for Keys/Superkeys

- To determine if an FD $X \rightarrow Y$ is implied by \mathcal{F} , compute X^+ and check if $Y \subseteq X^+$.
- Notice that Attribute Closure is less expensive to compute than \mathcal{T}^+ .
- Algorithm can be modified to compute candidate keys. How?
 - Compute the closure of a single attribute in X⁺. Then compute the closure of 2 attributes, 3 attributes and so on.
 - If the closure of a set of attributes contains all attributes of the relation, then it is a *superkey*.
 - If <u>no proper subset</u> of those attributes has a closure that contains all attributes of the relation, then it is a *key*.

Correctness of Algorithm

• Is it correct?

Prove that the algorithm indeed computes X⁺.

- Show that for any attribute $A \subseteq X^+$, it is the case that $X \rightarrow A$ is derivable from \mathcal{F} .
- Show if $X \rightarrow A$ is derivable from \mathcal{F} , then it must be that $A \in X^+$.

Proof of Correctness

<u>Claim</u>: If $A \subseteq X^+$, then $\mathcal{F} \vdash X \rightarrow A$.

Proof: By induction on the number of iterations in the attribute closure algorithm.

(to fill in)

Soundness and Completeness of the Attribute Closure Algorithm

- Soundness: From previous slide, if A ∈ X⁺, then 𝒫 ⊢ X→A.
 By the Soundness of Armstrong's axioms, it follows that 𝒫 ⊨ F.
- Is it also true that if $\mathcal{F} \vDash F$, where F is the FD X \rightarrow A, then A \subseteq X⁺?
- Completeness.
 - − Claim: If that if $\mathcal{F} \models F$, where F is the FD X→A, then it must be the case that A \subseteq X⁺.
 - Proof by contradiction. Won't go through proof details.

Practice Homework 6

- 1. Let R(A,B,C,D,E) be a relation schema and let $\mathcal{F} = \{AB \rightarrow E, B \rightarrow AC, BE \rightarrow C\}$ be a set of FDs that hold over R.
 - a. Prove that $\mathcal{F} \vDash B \rightarrow E$ using Armstrong's axioms.
 - b. Compute the closure of B. That is, compute B⁺.
 - c. Give a key for R. Justify why your answer is a key for R.
 - d. Show an example relation that satisfies \mathcal{F} .
 - e. Show an example relation that does not satisfy \mathcal{F} .
- 2. Let R(A,B,C,D,E) be a relation schema and let $\mathcal{F} = \{ A \rightarrow C, B \rightarrow AE, B \rightarrow D, BD \rightarrow C \}$ be a set of FDs that hold over R.
 - a. Show that $B \rightarrow CD$ using Armstrong's axioms.
 - b. Show a relation of R such that R satisfies \mathcal{F} but R does not satisfy $A \rightarrow D$.
 - c. Is AB a key for R?