
Semi-Structured	Data:		
XML	and	JSON

Instructor:	Shel	Finkelstein

Reference:
A	First	Course	in	Database	Systems,	3rd edition,
Chapter	11.1-11.3,	some	of	11.4.	a	little	of	Chapter	12	(just	for	XML)
XML	Slides	from	Prof.	Jeffrey	Ullman,	Stanford	University
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Important	Notices
• CMPS	180	Final	Exam	is	on	Wednesday,	December	13,	

noon-3pm,	in	our	usual	classroom.
– Includes	a	Multiple	Choice	Section	and	a	Longer	Answers	Section.

• Red	Scantron	sheets	for	Multiple	Choice	Section	will be	supplied	by	the	
Student	Union	Assembly.

– Covers	entire	term,	with	greater	emphasis	on	second	half	of	term.
– You	may	bring	in	an	8.5	by	11	sheet	of	paper,	with	anything	that	you	can	

read	unassisted	printed	or	written	on	both	sides	of	the	paper.
• No	sharing	of	sheets	is	permitted.
• No	devices	of	any	kind.
• Be	sure	to	write	your	name	on	top	right	of	your	“Cheat	Sheet”;	we	will	

collect	them	when	you	hand	in	your	Final.
• Please	sit	exactly	one	seat	apart,	except	in	first	5	rows	of	classroom.
• You	must	show	your	UCSC	id	when	you	turn	in	your	Final,	Scantron	and	

Cheat	Sheet.
– No	early/late	Finals,	no	make-up	Finals.
– Final	from	Winter	2017	(2	Sections)	has	been	posted	on	Piazza	

(ResourcesàExams).
• Answers	to	that	Final	were	also	posted	there	on	Sunday,	December	4.



More	Important	Notices

• Gradiance #5	(on	Functional	Dependencies	and	Normal	
Forms)	is	due	by	Friday,	Dec	8,	11:59pm.

• There	will	be	Lab	Sections	during	the	last	week	of	classes.
– These	Lab	Sections	are	an	opportunity	go	over	the	answers	to	Lab4	

and	other	Labs,	or	ask	questions	about	overall	course	material.
• I	hope	that	we	will	have	time	to	discuss	a	student	question	or	

two	on	Friday,	December	8,	the	last	day	of	classes.
– Please	submit	questions/topics	via	Piazza,	so	that	others	can	

support	them.
• Online	course	evaluations	began	on	Sunday,	Nov	26,	and	run	

through Sunday,	Dec	10	at 11:59pm.
– Instructors	are	not	able	to	identify	individual	responses.
– Constructive	responses	help	improve	future	courses.



Semi-Structured	Data	Models

• In	the	relational	database	management	system,	a	schema	
must	be	defined	before data	can	be	stored.
– Schema	is	known	to	the	query	processor.
– Exploited	to	derive	efficient	implementations	to	access	and	
update	data.

• In	a	semi-structured	data	model	(e.g.,	XML and	JSON),	a	
schema	need	not	be	defined	prior	to	“data	creation”.	
– Flexible	data	model	as	the	schema	need	not	be	defined	
ahead	of	time,	and	there	may	not	be	a	structured	schema	
associated	with	the	data.

– Semi-structured	data	tends	to	be	“self-describing”.
– Also	tends	to	be	hierarchical.
– Non-First	Normal	Form
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HyperText Markup	Language	(HTML)
• Lingua	franca	for	publishing	hypertext	on	the	World	Wide	Web.
• Designed	to	describe	how	a	Web	browser	should	arrange	text,	images	and	

push-buttons	on	a	page.
• Easy	to	learn,	but	does	not	convey	structure.
• Fixed	tag	set.

<HTML>
<HEAD><TITLE>Welcome to the XML course</TITLE></HEAD>
<BODY>

<H1>Introduction</H1>
<IMG SRC=”dragon.jpeg" WIDTH="200" HEIGHT="150” >

</BODY>
</HTML>

Opening tag Text (PCDATA)

Closing tag “Bachelor” tag
Attribute name Attribute value
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The	Structure	of	XML

• XML	consists	of	tags and	text

• Tags	come	in	pairs <date>	...</date>

• They	must	be	properly	nested
<date> <day>	...	</day>	...	</date> --- good
<date> <day>	...	</date>...	</day>	--- bad

(You	can’t	do	<i> ...	<b> ...	</i> ...</b> in	HTML)
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Well-Formed	XML
• Start	the	document	with	a	declaration,	surrounded	by	

<?xml	…	?>	.
• Normal	declaration	is:

<?xml	version	=	”1.0” standalone	=	”yes” ?>
– “standalone” =	“no	Data	Type	Definition	(DTD)	provided”

• The	document	starts	with	a	root	tag	that	surrounds	nested	
tags.
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<Tags>

• Tags are	normally	matched	pairs,	as	<FOO>	…	</FOO>.

• XML	tags	are	case-sensitive.
– E.g.,	<FOO>	…	</foo>	does	not	match.	

• Tags	may	be	nested	arbitrarily.

• XML has only one basic type, which is text.
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Example:	Well-Formed	XML
<?xml	version	=	“1.0” standalone	=	“yes” ?>
<BARS>

<BAR><NAME>Joe’s	Bar</NAME>
<BEER><NAME>Bud</NAME>

<PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER>
</BAR>
<BAR>	…	

</BARS>

A	NAME
subelement

A	BEER
subelement

Root	tag

Tags	surrounding
a	BAR	element
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More	Terminology

• The	segment	of	an	XML	document	between	an	opening	and	
a	corresponding	closing	tag	is	called	an	element.		

<person>
<name> Benedict Cumberbatch </name>

<tel> (831) 898 4321 </tel>
<tel> (831) 898 1099 </tel>
<email> bcumberbatch@ucsc.edu </email>

</person>

element

not an elementelement, 
a sub-element of
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Using	XML	to	Specify	a	Tuple

<person>
<name> Benedict	Cumberbatch</name>
<tel> (831)	898	4321 </tel>
<email> bcumberbatch@ucsc.edu </email>
</person>
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Using	XML	to	Specify	a	List

• We	can	represent	a	list	by	using	the	same	tag	repeatedly:

<addresses>
<person> ... </person>
<person> ... </person>
<person> ... </person>
...

</addresses>
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Example:	
Two	Ways	of	Representing	a	DB

projects:
title						budget							managedBy

employees:
name					ssn				age
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Project	and	Employee	Relations	in	XML

<db>
<project>    

<title> Pattern recognition </title>
<budget> 10000 </budget>
<managedBy> Joe </managedBy>

</project>
<employee>

<name> Joe </name>
<ssn> 344556 </ssn>
<age> 34 < /age>

</employee>

<employee>
<name> Sandra </name>
<ssn> 2234 </ssn>
<age> 35 </age>

</employee>
<project>

<title> Auto guided vehicle </title>
<budget> 70000 </budget>
<managedBy> Sandra </managedBy>

</project>
:

</db>

Way	1:		Projects	and	employees	are	intermixed.
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<db>
<projects>

<project>    
<title> Pattern recognition </title>
<budget> 10000 </budget>
<managedBy> Joe </managedBy>

</project>
<project>

<title> Auto guided vehicles </title>
<budget> 70000 </budget>
<managedBy> Sandra </managedBy>

</project>
:

</projects>

Project	and	Employee	Relations	in	XML	(cont’d)

<employees>
<employee>

<name> Joe </name>
<ssn> 344556 </ssn>
<age> 34 </age>

</employee> 
<employee>

<name> Sandra </name>
<ssn> 2234 </ssn>
<age>35 </age>

</employee>
:
</employees>

</db>

Way	2:		Employees	follow	projects.
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Attributes
• An	(opening)	tag	may	contain	attributes.		These	are		typically	used	to	

describe	the	content	of		an	element.
• Attributes	cannot	be	repeated	within	a	tag.

<entry>
<word language = “en”>	cheese	</word>
<word language = “fr”>	fromage </word>
<word language = “ro”>	branza </word>
<meaning> A	food	made	…	</meaning>

</entry>
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Attributes	(cont’d)
• Another	common	use	for	attributes	is	to	express	dimension	or	type.

<picture>
<height	dim=	“cm”>	2400	</height>
<width	dim=	“in”>	96 </width>
<data	encoding =	“gif” compression =	“zip”>

M05-.+C$@02!G96YEFEC	...
</data>

</picture>

• A	document	that	obeys	the	“nested	tags” rule	and	does	not	repeat	an	
attribute	within	a	tag	is	said	to	be	well-formed	.	
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Using	IDs	and	IDRefs
<family>

<person		id="jane"	mother="mary"	father="john">	
<name>	Jane	Doe	</name>	

</person>
<person	id="john"	children="jane	jack">	

<name>	John	Doe	</name>
</person>	
<person	id="mary"	children="jane	jack">

<name>	Mary	Doe	</name>
</person>

<person		id="jack"	mother="mary"	father="john">	
<name>	Jack	Doe	</name>	

</person>
</family>
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An	Example
<db>

<movie id=“m1”>
<title>Waking Ned Divine</title>
<director>Kirk Jones III</director>
<cast idrefs=“a1 a3”></cast>
<budget>100,000</budget>      

</movie>
<movie id=“m2”>

<title>Dragonheart</title>
<director>Rob Cohen</director>
<cast idrefs=“a2 a9 a21”></cast>
<budget>110,000</budget>      

</movie>
<movie id=“m3”>

<title>Moondance</title>
<director>Dagmar Hirtz</director>
<cast idrefs=“a1 a8”></cast>
<budget>90,000</budget>      

</movie>
:

<actor id=“a1”>
<name>David Kelly</name>
<acted_In idrefs=“m1 m3 m78” >
</acted_In>

</actor>
<actor id=“a2”>

<name>Sean Connery</name>
<acted_In idrefs=“m2 m9 m11”>
</acted_In>
<age>68</age>

</actor>
<actor id=“a3”>

<name>Ian Bannen</name>
<acted_In idrefs=“m1 m35”>
</acted_In>

</actor>
:

</db>
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DTD	Structure

<!DOCTYPE	<root	tag>	[
<!ELEMENT	<name>(<components>)>
.	.	.	more	elements	.	.	.

]>
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Document	Type	Descriptors

• Document	Type	Descriptors	(DTDs) impose	
structure	on	an	XML	document,	much	like	relation	
schemas	impose	a	structure	on	relations.

• The	DTD	is	just	a	syntactic specification.

– Not a	semantic	specification
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Example:	 Address	Book

<person>
<name> MacNiel, John </name>
<greet> Dr. John MacNiel </greet>
<addr>1234 Huron Street </addr>
<addr> Rome, OH 98765 </addr>
<tel> (321) 786 2543 </tel>

<fax> (321) 786 2543 </fax>
<tel> (321) 786 2543 </tel>
<email> jm@abc.com </email>

</person>

Exactly one name
At most one greeting

As many address lines 
as needed (in order)

Mixed telephones 
and faxes
As many emails
as needed
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Specifying	the	Structure

The	structure	of	a	person	entry	can	be	specified	by:

name,	greet?,	addr*,	(tel |	fax)*,	email*

XML	uses	a	form	of	Regular	Expression	(described	later).
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A	DTD	for	Address	Book
<!DOCTYPE addressbook [
<!ELEMENT addressbook (person*)>
<!ELEMENT person

(name,	greet?,	address*,	(fax	|	tel)*,	email*)>
<!ELEMENT name	 (#PCDATA)>
<!ELEMENT greet		 (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT tel (#PCDATA)>
<!ELEMENT fax	 (#PCDATA)>
<!ELEMENT email	 (#PCDATA)>

]>

“Parsed	Character
Data”		(i.e.,	text)
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Our	Relational	DB	Revisited

projects:
title      budget       managedBy

employees:
name     ssn    age
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Two	Potential	DTDs	for	that	
Relational	DB

<!DOCTYPE db [
<!ELEMENT db (projects,	employees)>
<!ELEMENT projects					(project*)>
<!ELEMENT employees	(employee*)>
<!ELEMENT project						(title,	budget,	managedBy)>
<!ELEMENT employee			(name,	ssn,	age)>
...

]>

<!DOCTYPE db	[
<!ELEMENT db											(project	|	employee)*>
<!ELEMENT project					(title,	budget,	managedBy)>
<!ELEMENT employee	(name,	ssn,	age)>
...

]>
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Summary	of	XML	Regular	Expressions

• A The tag A occurs
• e1,e2 The expression e1 followed by e2
• e* 0 or more occurrences of e
• e? Optional -- 0 or 1 occurrences
• e+ 1 or more occurrences
• e1 | e2 either e1 or e2
• (e) grouping, e.g.,

<!ELEMENT Address Street, (City | Zip)
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Specifying	Attributes	in	the	DTD

• Bars	can	have	an	attribute	kind,	a	character	string	
describing	the	bar.

<!ELEMENT BAR (NAME BEER*)>

<!ATTLIST BAR kind CDATA #IMPLIED>

Character	string
type;	no	tags

Attribute	is	optional,
as	opposed	to:	#REQUIRED
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Example	of	Attribute	Use

• In	a	document	that	allows	BAR	tags,	we	might	see:

<BAR kind = ”sushi”>

<NAME>Homma’s</NAME>
<BEER><NAME>Sapporo</NAME>

<PRICE>5.00</PRICE></BEER>

...

</BAR>
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Specifying	ID	and	IDREF	Attributes	in	a	DTD

<!DOCTYPE family	[
<!ELEMENT family			(person)*>
<!ELEMENT person		(name)>
<!ELEMENT name				(#PCDATA)>
<!ATTLIST person	

id							 ID								#REQUIRED
mother			IDREF			#IMPLIED
father					IDREF			#IMPLIED
children		IDREFS		#IMPLIED>

]>

id	is	an	ID	attribute
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An	XML	Document	That	Conforms	to	
the	DTD

<family>
<person		id="jane"		mother="mary"	father="john">

<name> Jane	Doe	</name>
</person>
<person	id="john"	children="jane jack">

<name> John	Doe	</name>
</person>	
<person	id="mary"	children="jane jack">

<name> Mary	Doe	</name>
</person>

<person		id="jack"		mother=”mary"	father="john">	
<name> Jack	Doe	</name>	

</person>
</family>
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Consistency	of	ID	and	IDREF	Attribute	
Values

• ID stands	for	identifier.		The	values	across	all	IDs	must	be	distinct.

• IDREF stands	for	identifier	reference.		If	an	attribute	is	declared	as	
IDREF,	then	…

– the	associated	value	must	exist	as	the	value	of	some	ID	attribute	
(i.e.,	no	dangling	“pointers”).

• IDREFS specifies	“several”	(0	or	more)	identifiers.

• IDREFs	are	a	lot	like	Foreign	Keys	… except	that	IDREFs	don’t	have	
data	types!
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movieschema.dtd

<!DOCTYPE db [
<!ELEMENT db (movie+, actor+)>
<!ELEMENT movie  (title, director, cast, budget)>

<!ATTLIST  movie   id   ID   #REQUIRED>
<!ELEMENT title      (#PCDATA)>
<!ELEMENT director (#PCDATA)>
<!ELEMENT cast EMPTY>

<!ATTLIST cast idrefs IDREFS  #REQUIRED>
<!ELEMENT budget (#PCDATA)>
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movieschema.dtd (cont’d)

<!ELEMENT actor (name, acted_In, age?, directed*)>
<!ATTLIST actor  id   ID   #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT acted_In EMPTY>

<!ATTLIST  acted_In idrefs IDREFS  #REQUIRED>
<!ELEMENT age (#PCDATA)>
<!ELEMENT directed (#PCDATA)>

]>
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Well-Formed	and	Valid	Documents

• We say that an XML document is well-formed if the 
document (with or without an associated DTD) has 
proper nesting of tags and the attributes of every 
element are all unique.

• We say that an XML document x is valid with respect to
a DTD D if x conforms to D. That is, if the document x 
conforms to the regular expression grammar and 
constraints given by D.
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DTDs	versus	Schemas	(or	Types)
• By database (or programming language) standards 

DTDs are rather weak specifications.  
– Only one base type -- PCDATA
– No useful “abstractions” e.g., no sets
– IDREFs are untyped.  They allow you to reference something, 

but you don’t know what!
– Few constraints. E.g., “Local keys” as opposed to global IDs.
– Tag definitions are global.

• XML Schema: 
– An extension of DTDs that allows one to impose a schema or 

type on an XML document. 
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XML	Schema

• A	more	powerful	way	to	describe	the	structure	of	
XML	documents.

• XML-Schema	declarations	are	themselves	XML	
documents.
– They	describe	“elements” and	the	things	doing	the	
describing	are	also	“elements”.

– See textbook, Section 11.4.



Query	Languages	for	XML

• XPath:		Language	for	navigating	through	an	XML	
document.
– See	textbook,	Section	12.1.

• XQuery:		Query	language	for	XML,	similar	in	power	to	
SQL.
– See	textbook,	Section	12.2.

• XSLT:		Language	for	extracting	information	from	an	
XML	document	and	transforming	it.
– See	textbook,	Section	12.3.
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JSON:	The	Basics



What	is	JSON?



JSON	is…

• A	lightweight	text	based	data-interchange	
format

• Completely	language	independent

• Based	on	a	subset	of	the	JavaScript	
Programming	Language

• Easy	to	understand,	manipulate	and	generate



JSON	is	NOT…

• Overly	Complex

• A	“document”	format

• A	markup	language

• A	programming	language



Why	use	JSON?

• Straightforward	syntax

• Easy	to	create	and	manipulate

• Can	be	natively	parsed	in	JavaScript	using	eval()

• Supported	by	all	major	JavaScript	frameworks

• Supported	by	most	backend	technologies



JSON	vs.	XML



Much	Like	XML

• Plain	text	formats

• “Self-describing“	(human	readable)

• Hierarchical	(Values	can	contain	lists	of	objects	
or	values)



Not	Like	XML

• Lighter	and	faster	than	XML	

• JSON	uses	typed	objects.	All	XML	values	are	type-
less	strings	and	must	be	parsed	at	runtime.

• Less	syntax,	no	semantics

• Properties	are	immediately	accessible	to	
JavaScript	code



Knocks	against	JSON

• Lack	of	namespaces

• No	inherent	validation	(XML	has	DTD	and	
templates,	but	there	is	JSONlint)

• Not	extensible

• It’s	basically	just	not XML



Syntax



JSON	Object	Syntax

• Unordered	sets	of	name/value	pairs

• Begins	with	{ (left	brace)	

• Ends	with	} (right	brace)	

• Each	name	is	followed	by	: (colon)	

• Name/value	pairs	are	separated	by	, (comma)	



JSON	Example

var employeeData = {    

"employee_id": 1234567,    

"name": "Jeff Fox",    

"hire_date": "1/1/2013",    

"location": "Norwalk, CT",

"consultant": false

};



Arrays	in	JSON

• An	ordered	collection	of	values

• Begins	with	[ (left	bracket)	

• Ends	with	] (right	bracket)	

• Name/value	pairs	are	separated	by	, (comma)	



JSON	Array	Example

var employeeData = {    

"employee_id": 1236937,    

"name": "Jeff Fox",    

"hire_date": "1/1/2013",    

"location": "Norwalk, CT",

"consultant": false,

"random_nums": [ 24,65,12,94 ]

};



Data	Types



Data	Types:	Strings

• Sequence	of	zero	or	more	Unicode	characters

• Wrapped	in	"double	quotes"

• Backslash	escapement



Data	Types:	Numbers

• Integer

• Real

• Scientific

• No	octal	or	hex

• No	NaN (Not	a	Number)	or	Infinity	– Use	null
instead.



Data	Types:	Booleans	&	Null

• Booleans:	true	or	false

• Null:	A	value	that	specifies	nothing	or	no	
value.



Data	Types:	Objects	&	Arrays

• Objects:	Unordered	key/value	pairs	wrapped	
in	{	}

• Arrays:	Ordered	key/value	pairs	wrapped	in	[	]



Where	is	JSON	used	today?
• Anywhere	and	everywhere	(even	in	2013,	much	
more	now)!

And	many,	
many	more!



Some	Resources

• Simple	Demo	on	Github:	
https://github.com/jfox015/BIFC-Simple-JSON-Demo

• Another	JSON	Tutorial:	
http://iviewsource.com/codingtutorials/getting-
started-with-javascript-object-notation-json-for-
absolute-beginners/

• JSON.org:		
http://www.json.org/



Google	Protocol	Buffers
from:

F1:	A	Distributed	SQL	Database	That	Scales
http://dl.acm.org/citation.cfm?id=2536232	






