
Semi-Structured	Data:		
XML	and	JSON

Instructor:	Shel	Finkelstein

Reference:
A	First	Course	in	Database	Systems,	3rd edition,
Chapter	11.1-11.3,	some	of	11.4.	a	little	of	Chapter	12	(just	for	XML)
XML	Slides	from	Prof.	Jeffrey	Ullman,	Stanford	University

1

Important	Notices
• CMPS	180	Final	Exam	is	on	Wednesday,	December	13,	

noon-3pm,	in	our	usual	classroom.
– Includes	a	Multiple	Choice	Section	and	a	Longer	Answers	Section.

• Red	Scantron	sheets	for	Multiple	Choice	Section	will be	supplied	by	the	
Student	Union	Assembly.

– Covers	entire	term,	with	greater	emphasis	on	second	half	of	term.
– You	may	bring	in	an	8.5	by	11	sheet	of	paper,	with	anything	that	you	can	

read	unassisted	printed	or	written	on	both	sides	of	the	paper.
• No	sharing	of	sheets	is	permitted.
• No	devices	of	any	kind.
• Be	sure	to	write	your	name	on	top	right	of	your	“Cheat	Sheet”;	we	will	

collect	them	when	you	hand	in	your	Final.
• Please	sit	exactly	one	seat	apart,	except	in	first	5	rows	of	classroom.
• You	must	show	your	UCSC	id	when	you	turn	in	your	Final,	Scantron	and	

Cheat	Sheet.
– No	early/late	Finals,	no	make-up	Finals.
– Final	from	Winter	2017	(2	Sections)	has	been	posted	on	Piazza	

(ResourcesàExams).
• Answers	to	that	Final	were	also	posted	there	on	Sunday,	December	4.

More	Important	Notices

• Gradiance #5	(on	Functional	Dependencies	and	Normal	
Forms)	is	due	by	Friday,	Dec	8,	11:59pm.

• There	will	be	Lab	Sections	during	the	last	week	of	classes.
– These	Lab	Sections	are	an	opportunity	go	over	the	answers	to	Lab4	

and	other	Labs,	or	ask	questions	about	overall	course	material.
• I	hope	that	we	will	have	time	to	discuss	a	student	question	or	

two	on	Friday,	December	8,	the	last	day	of	classes.
– Please	submit	questions/topics	via	Piazza,	so	that	others	can	

support	them.
• Online	course	evaluations	began	on	Sunday,	Nov	26,	and	run	

through Sunday,	Dec	10	at 11:59pm.
– Instructors	are	not	able	to	identify	individual	responses.
– Constructive	responses	help	improve	future	courses.

Semi-Structured	Data	Models

• In	the	relational	database	management	system,	a	schema	
must	be	defined	before data	can	be	stored.
– Schema	is	known	to	the	query	processor.
– Exploited	to	derive	efficient	implementations	to	access	and	
update	data.

• In	a	semi-structured	data	model	(e.g.,	XML and	JSON),	a	
schema	need	not	be	defined	prior	to	“data	creation”.	
– Flexible	data	model	as	the	schema	need	not	be	defined	
ahead	of	time,	and	there	may	not	be	a	structured	schema	
associated	with	the	data.

– Semi-structured	data	tends	to	be	“self-describing”.
– Also	tends	to	be	hierarchical.
– Non-First	Normal	Form

4

5

HyperText Markup	Language	(HTML)
• Lingua	franca	for	publishing	hypertext	on	the	World	Wide	Web.
• Designed	to	describe	how	a	Web	browser	should	arrange	text,	images	and	

push-buttons	on	a	page.
• Easy	to	learn,	but	does	not	convey	structure.
• Fixed	tag	set.

<HTML>
<HEAD><TITLE>Welcome to the XML course</TITLE></HEAD>
<BODY>

<H1>Introduction</H1>

</BODY>
</HTML>

Opening tag Text (PCDATA)

Closing tag “Bachelor” tag
Attribute name Attribute value

6

The	Structure	of	XML

• XML	consists	of	tags and	text

• Tags	come	in	pairs <date>	...</date>

• They	must	be	properly	nested
<date> <day>	...	</day>	...	</date> --- good
<date> <day>	...	</date>...	</day>	--- bad

(You	can’t	do	<i>	</i> ... in	HTML)

7

Well-Formed	XML
• Start	the	document	with	a	declaration,	surrounded	by	

<?xml	…	?>	.
• Normal	declaration	is:

<?xml	version	=	”1.0” standalone	=	”yes” ?>
– “standalone” =	“no	Data	Type	Definition	(DTD)	provided”

• The	document	starts	with	a	root	tag	that	surrounds	nested	
tags.

8

<Tags>

• Tags are	normally	matched	pairs,	as	<FOO>	…	</FOO>.

• XML	tags	are	case-sensitive.
– E.g.,	<FOO>	…	</foo>	does	not	match.	

• Tags	may	be	nested	arbitrarily.

• XML has only one basic type, which is text.

9

Example:	Well-Formed	XML
<?xml	version	=	“1.0” standalone	=	“yes” ?>
<BARS>

<BAR><NAME>Joe’s	Bar</NAME>
<BEER><NAME>Bud</NAME>

<PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER>
</BAR>
<BAR>	…	

</BARS>

A	NAME
subelement

A	BEER
subelement

Root	tag

Tags	surrounding
a	BAR	element

10

More	Terminology

• The	segment	of	an	XML	document	between	an	opening	and	
a	corresponding	closing	tag	is	called	an	element.		

<person>
<name> Benedict Cumberbatch </name>

<tel> (831) 898 4321 </tel>
<tel> (831) 898 1099 </tel>
<email> bcumberbatch@ucsc.edu </email>

</person>

element

not an elementelement,
a sub-element of

11

Using	XML	to	Specify	a	Tuple

<person>
<name> Benedict	Cumberbatch</name>
<tel> (831)	898	4321 </tel>
<email> bcumberbatch@ucsc.edu </email>
</person>

12

Using	XML	to	Specify	a	List

• We	can	represent	a	list	by	using	the	same	tag	repeatedly:

<addresses>
<person> ... </person>
<person> ... </person>
<person> ... </person>
...

</addresses>

13

Example:	
Two	Ways	of	Representing	a	DB

projects:
title						budget							managedBy

employees:
name					ssn				age

14

Project	and	Employee	Relations	in	XML

<db>
<project>

<title> Pattern recognition </title>
<budget> 10000 </budget>
<managedBy> Joe </managedBy>

</project>
<employee>

<name> Joe </name>
<ssn> 344556 </ssn>
<age> 34 < /age>

</employee>

<employee>
<name> Sandra </name>
<ssn> 2234 </ssn>
<age> 35 </age>

</employee>
<project>

<title> Auto guided vehicle </title>
<budget> 70000 </budget>
<managedBy> Sandra </managedBy>

</project>
:

</db>

Way	1:		Projects	and	employees	are	intermixed.

15

<db>
<projects>

<project>
<title> Pattern recognition </title>
<budget> 10000 </budget>
<managedBy> Joe </managedBy>

</project>
<project>

<title> Auto guided vehicles </title>
<budget> 70000 </budget>
<managedBy> Sandra </managedBy>

</project>
:

</projects>

Project	and	Employee	Relations	in	XML	(cont’d)

<employees>
<employee>

<name> Joe </name>
<ssn> 344556 </ssn>
<age> 34 </age>

</employee>
<employee>

<name> Sandra </name>
<ssn> 2234 </ssn>
<age>35 </age>

</employee>
:
</employees>

</db>

Way	2:		Employees	follow	projects.

17

Attributes
• An	(opening)	tag	may	contain	attributes.		These	are		typically	used	to	

describe	the	content	of		an	element.
• Attributes	cannot	be	repeated	within	a	tag.

<entry>
<word language = “en”>	cheese	</word>
<word language = “fr”>	fromage </word>
<word language = “ro”>	branza </word>
<meaning> A	food	made	…	</meaning>

</entry>

18

Attributes	(cont’d)
• Another	common	use	for	attributes	is	to	express	dimension	or	type.

<picture>
<height	dim=	“cm”>	2400	</height>
<width	dim=	“in”>	96 </width>
<data	encoding =	“gif” compression =	“zip”>

M05-.+C$@02!G96YEFEC	...
</data>

</picture>

• A	document	that	obeys	the	“nested	tags” rule	and	does	not	repeat	an	
attribute	within	a	tag	is	said	to	be	well-formed	.	

20

Using	IDs	and	IDRefs
<family>

<person		id="jane"	mother="mary"	father="john">	
<name>	Jane	Doe	</name>	

</person>
<person	id="john"	children="jane	jack">	

<name>	John	Doe	</name>
</person>	
<person	id="mary"	children="jane	jack">

<name>	Mary	Doe	</name>
</person>

<person		id="jack"	mother="mary"	father="john">	
<name>	Jack	Doe	</name>	

</person>
</family>

21

An	Example
<db>

<movie id=“m1”>
<title>Waking Ned Divine</title>
<director>Kirk Jones III</director>
<cast idrefs=“a1 a3”></cast>
<budget>100,000</budget>

</movie>
<movie id=“m2”>

<title>Dragonheart</title>
<director>Rob Cohen</director>
<cast idrefs=“a2 a9 a21”></cast>
<budget>110,000</budget>

</movie>
<movie id=“m3”>

<title>Moondance</title>
<director>Dagmar Hirtz</director>
<cast idrefs=“a1 a8”></cast>
<budget>90,000</budget>

</movie>
:

<actor id=“a1”>
<name>David Kelly</name>
<acted_In idrefs=“m1 m3 m78” >
</acted_In>

</actor>
<actor id=“a2”>

<name>Sean Connery</name>
<acted_In idrefs=“m2 m9 m11”>
</acted_In>
<age>68</age>

</actor>
<actor id=“a3”>

<name>Ian Bannen</name>
<acted_In idrefs=“m1 m35”>
</acted_In>

</actor>
:

</db>

22

DTD	Structure

<!DOCTYPE	<root	tag>	[
<!ELEMENT	<name>(<components>)>
.	.	.	more	elements	.	.	.

]>

23

Document	Type	Descriptors

• Document	Type	Descriptors	(DTDs) impose	
structure	on	an	XML	document,	much	like	relation	
schemas	impose	a	structure	on	relations.

• The	DTD	is	just	a	syntactic specification.

– Not a	semantic	specification

24

Example:	 Address	Book

<person>
<name> MacNiel, John </name>
<greet> Dr. John MacNiel </greet>
<addr>1234 Huron Street </addr>
<addr> Rome, OH 98765 </addr>
<tel> (321) 786 2543 </tel>

<fax> (321) 786 2543 </fax>
<tel> (321) 786 2543 </tel>
<email> jm@abc.com </email>

</person>

Exactly one name
At most one greeting

As many address lines
as needed (in order)

Mixed telephones
and faxes
As many emails
as needed

25

Specifying	the	Structure

The	structure	of	a	person	entry	can	be	specified	by:

name,	greet?,	addr*,	(tel |	fax)*,	email*

XML	uses	a	form	of	Regular	Expression	(described	later).

26

A	DTD	for	Address	Book
<!DOCTYPE addressbook [
<!ELEMENT addressbook (person*)>
<!ELEMENT person

(name,	greet?,	address*,	(fax	|	tel)*,	email*)>
<!ELEMENT name	 (#PCDATA)>
<!ELEMENT greet		 (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT tel (#PCDATA)>
<!ELEMENT fax	 (#PCDATA)>
<!ELEMENT email	 (#PCDATA)>

]>

“Parsed	Character
Data”		(i.e.,	text)

27

Our	Relational	DB	Revisited

projects:
title budget managedBy

employees:
name ssn age

28

Two	Potential	DTDs	for	that	
Relational	DB

<!DOCTYPE db [
<!ELEMENT db (projects,	employees)>
<!ELEMENT projects					(project*)>
<!ELEMENT employees	(employee*)>
<!ELEMENT project						(title,	budget,	managedBy)>
<!ELEMENT employee			(name,	ssn,	age)>
...

]>

<!DOCTYPE db	[
<!ELEMENT db											(project	|	employee)*>
<!ELEMENT project					(title,	budget,	managedBy)>
<!ELEMENT employee	(name,	ssn,	age)>
...

]>

30

Summary	of	XML	Regular	Expressions

• A The tag A occurs
• e1,e2 The expression e1 followed by e2
• e* 0 or more occurrences of e
• e? Optional -- 0 or 1 occurrences
• e+ 1 or more occurrences
• e1 | e2 either e1 or e2
• (e) grouping, e.g.,

<!ELEMENT Address Street, (City | Zip)

31

Specifying	Attributes	in	the	DTD

• Bars	can	have	an	attribute	kind,	a	character	string	
describing	the	bar.

<!ELEMENT BAR (NAME BEER*)>

<!ATTLIST BAR kind CDATA #IMPLIED>

Character	string
type;	no	tags

Attribute	is	optional,
as	opposed	to:	#REQUIRED

32

Example	of	Attribute	Use

• In	a	document	that	allows	BAR	tags,	we	might	see:

<BAR kind = ”sushi”>

<NAME>Homma’s</NAME>
<BEER><NAME>Sapporo</NAME>

<PRICE>5.00</PRICE></BEER>

...

</BAR>

33

Specifying	ID	and	IDREF	Attributes	in	a	DTD

<!DOCTYPE family	[
<!ELEMENT family			(person)*>
<!ELEMENT person		(name)>
<!ELEMENT name				(#PCDATA)>
<!ATTLIST person	

id							 ID								#REQUIRED
mother			IDREF			#IMPLIED
father					IDREF			#IMPLIED
children		IDREFS		#IMPLIED>

]>

id	is	an	ID	attribute

34

An	XML	Document	That	Conforms	to	
the	DTD

<family>
<person		id="jane"		mother="mary"	father="john">

<name> Jane	Doe	</name>
</person>
<person	id="john"	children="jane jack">

<name> John	Doe	</name>
</person>	
<person	id="mary"	children="jane jack">

<name> Mary	Doe	</name>
</person>

<person		id="jack"		mother=”mary"	father="john">	
<name> Jack	Doe	</name>	

</person>
</family>

35

Consistency	of	ID	and	IDREF	Attribute	
Values

• ID stands	for	identifier.		The	values	across	all	IDs	must	be	distinct.

• IDREF stands	for	identifier	reference.		If	an	attribute	is	declared	as	
IDREF,	then	…

– the	associated	value	must	exist	as	the	value	of	some	ID	attribute	
(i.e.,	no	dangling	“pointers”).

• IDREFS specifies	“several”	(0	or	more)	identifiers.

• IDREFs	are	a	lot	like	Foreign	Keys	… except	that	IDREFs	don’t	have	
data	types!

39

movieschema.dtd

<!DOCTYPE db [
<!ELEMENT db (movie+, actor+)>
<!ELEMENT movie (title, director, cast, budget)>

<!ATTLIST movie id ID #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT director (#PCDATA)>
<!ELEMENT cast EMPTY>

<!ATTLIST cast idrefs IDREFS #REQUIRED>
<!ELEMENT budget (#PCDATA)>

40

movieschema.dtd (cont’d)

<!ELEMENT actor (name, acted_In, age?, directed*)>
<!ATTLIST actor id ID #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT acted_In EMPTY>

<!ATTLIST acted_In idrefs IDREFS #REQUIRED>
<!ELEMENT age (#PCDATA)>
<!ELEMENT directed (#PCDATA)>

]>

44

Well-Formed	and	Valid	Documents

• We say that an XML document is well-formed if the
document (with or without an associated DTD) has
proper nesting of tags and the attributes of every
element are all unique.

• We say that an XML document x is valid with respect to
a DTD D if x conforms to D. That is, if the document x
conforms to the regular expression grammar and
constraints given by D.

45

DTDs	versus	Schemas	(or	Types)
• By database (or programming language) standards

DTDs are rather weak specifications.
– Only one base type -- PCDATA
– No useful “abstractions” e.g., no sets
– IDREFs are untyped. They allow you to reference something,

but you don’t know what!
– Few constraints. E.g., “Local keys” as opposed to global IDs.
– Tag definitions are global.

• XML Schema:
– An extension of DTDs that allows one to impose a schema or

type on an XML document.

46

XML	Schema

• A	more	powerful	way	to	describe	the	structure	of	
XML	documents.

• XML-Schema	declarations	are	themselves	XML	
documents.
– They	describe	“elements” and	the	things	doing	the	
describing	are	also	“elements”.

– See textbook, Section 11.4.

Query	Languages	for	XML

• XPath:		Language	for	navigating	through	an	XML	
document.
– See	textbook,	Section	12.1.

• XQuery:		Query	language	for	XML,	similar	in	power	to	
SQL.
– See	textbook,	Section	12.2.

• XSLT:		Language	for	extracting	information	from	an	
XML	document	and	transforming	it.
– See	textbook,	Section	12.3.

47

Jeff	Fox
@jfox015

Built	in	Fairfield	County:	
Front	End	Developers	Meetup

Tues.	May	14,	2013

JSON:	The	Basics

What	is	JSON?

JSON	is…

• A	lightweight	text	based	data-interchange	
format

• Completely	language	independent

• Based	on	a	subset	of	the	JavaScript	
Programming	Language

• Easy	to	understand,	manipulate	and	generate

JSON	is	NOT…

• Overly	Complex

• A	“document”	format

• A	markup	language

• A	programming	language

Why	use	JSON?

• Straightforward	syntax

• Easy	to	create	and	manipulate

• Can	be	natively	parsed	in	JavaScript	using	eval()

• Supported	by	all	major	JavaScript	frameworks

• Supported	by	most	backend	technologies

JSON	vs.	XML

Much	Like	XML

• Plain	text	formats

• “Self-describing“	(human	readable)

• Hierarchical	(Values	can	contain	lists	of	objects	
or	values)

Not	Like	XML

• Lighter	and	faster	than	XML	

• JSON	uses	typed	objects.	All	XML	values	are	type-
less	strings	and	must	be	parsed	at	runtime.

• Less	syntax,	no	semantics

• Properties	are	immediately	accessible	to	
JavaScript	code

Knocks	against	JSON

• Lack	of	namespaces

• No	inherent	validation	(XML	has	DTD	and	
templates,	but	there	is	JSONlint)

• Not	extensible

• It’s	basically	just	not XML

Syntax

JSON	Object	Syntax

• Unordered	sets	of	name/value	pairs

• Begins	with	{ (left	brace)	

• Ends	with	} (right	brace)	

• Each	name	is	followed	by	: (colon)	

• Name/value	pairs	are	separated	by	, (comma)	

JSON	Example

var employeeData = {

"employee_id": 1234567,

"name": "Jeff Fox",

"hire_date": "1/1/2013",

"location": "Norwalk, CT",

"consultant": false

};

Arrays	in	JSON

• An	ordered	collection	of	values

• Begins	with	[(left	bracket)	

• Ends	with] (right	bracket)	

• Name/value	pairs	are	separated	by	, (comma)	

JSON	Array	Example

var employeeData = {

"employee_id": 1236937,

"name": "Jeff Fox",

"hire_date": "1/1/2013",

"location": "Norwalk, CT",

"consultant": false,

"random_nums": [24,65,12,94]

};

Data	Types

Data	Types:	Strings

• Sequence	of	zero	or	more	Unicode	characters

• Wrapped	in	"double	quotes"

• Backslash	escapement

Data	Types:	Numbers

• Integer

• Real

• Scientific

• No	octal	or	hex

• No	NaN (Not	a	Number)	or	Infinity	– Use	null
instead.

Data	Types:	Booleans	&	Null

• Booleans:	true	or	false

• Null:	A	value	that	specifies	nothing	or	no	
value.

Data	Types:	Objects	&	Arrays

• Objects:	Unordered	key/value	pairs	wrapped	
in	{	}

• Arrays:	Ordered	key/value	pairs	wrapped	in	[]

Where	is	JSON	used	today?
• Anywhere	and	everywhere	(even	in	2013,	much	
more	now)!

And	many,	
many	more!

Some	Resources

• Simple	Demo	on	Github:	
https://github.com/jfox015/BIFC-Simple-JSON-Demo

• Another	JSON	Tutorial:	
http://iviewsource.com/codingtutorials/getting-
started-with-javascript-object-notation-json-for-
absolute-beginners/

• JSON.org:		
http://www.json.org/

Google	Protocol	Buffers
from:

F1:	A	Distributed	SQL	Database	That	Scales
http://dl.acm.org/citation.cfm?id=2536232	

