
30/11/17

1

© 2015 Pearson Education Limited 2015

Chapter 5:�
Algorithms

© 2015 Pearson Education Limited 2015

•  5.1 The Concept of an Algorithm
•  5.2 Algorithm Representation
•  5.3 Algorithm Discovery
•  5.4 Iterative Structures
•  5.5 Recursive Structures
•  5.6 Efficiency and Correctness

Chapter 5: Algorithms

5-2

30/11/17

2

© 2015 Pearson Education Limited 2015

 An algorithm is an ordered set of
unambiguous, executable steps
that defines a terminating process.

Definition of Algorithm

5-3

© 2015 Pearson Education Limited 2015

•  Requires well-defined primitives
•  A collection of primitives constitutes a

programming language.

Algorithm Representation

5-4

30/11/17

3

© 2015 Pearson Education Limited 2015

Figure 5.2 Folding a bird from a
square piece of paper

5-5

© 2015 Pearson Education Limited 2015

Figure 5.3 Origami primitives

5-6

30/11/17

4

© 2015 Pearson Education Limited 2015

•  Assignment
–  name ß expression

•  Decision
–  if condition then activity
–  if condition then activity else activity

•  Loop
–  while condition do activity

•  Functions
–  def name(parameters)

Pseudocode Primitives

0-7

© 2015 Pearson Education Limited 2015

•  Assignment
 name	=	expression	

•  Example
 RemainingFunds	=	CheckingBalance	+													

																											SavingsBalance	

Pseudocode Primitives

5-8

30/11/17

5

© 2015 Pearson Education Limited 2015

•  Conditional selection
						if	(condition):	
										activity	

•  Example
						if	(sales	have	decreased):	
										lower	the	price	by	5%	
	

Pseudocode Primitives (continued)

5-9

© 2015 Pearson Education Limited 2015

•  Conditional selection
						if	(condition):	
										activity	
						else:	
										activity	

•  Example
						if	(year	is	leap	year):	
										daily	total	=	total	/	366	
						else:	
										daily	total	=	total	/	365	
	

Pseudocode Primitives (continued)

5-10

30/11/17

6

© 2015 Pearson Education Limited 2015

•  Repeated execution
 while	(condition):		
									body	

•  Example
					while	(tickets	remain	to	be	sold):	
									sell	a	ticket	

Pseudocode Primitives (continued)

5-11

© 2015 Pearson Education Limited 2015

•  Indentation shows nested conditions
				if	(not	raining):	
								if	(temperature	==	hot):	
												go	swimming	
								else:	
												play	golf	
				else:	
								watch	television	

Pseudocode Primitives (continued)

5-12

30/11/17

7

© 2015 Pearson Education Limited 2015

•  Define a function
						def	name():	

•  Example
						def	ProcessLoan():	

•  Executing a function
						if	(.	.	.):	
										ProcessLoan()	
						else:	
										RejectApplication()	

Pseudocode Primitives (continued)

5-13

© 2015 Pearson Education Limited 2015

Figure 5.4 The procedure Greetings
in pseudocode

5-14

def	Greetings():	
				Count	=	3	
				while	(Count	>	0):	
								print('Hello')	
								Count	=	Count	-	1		

30/11/17

8

© 2015 Pearson Education Limited 2015

•  Using parameters
				def	Sort(List):	
								.	
								.	

•  Executing Sort on different lists
				Sort(the	membership	list)	

				Sort(the	wedding	guest	list)	

Pseudocode Primitives (continued)

5-15

© 2015 Pearson Education Limited 2015

•  1. Understand the problem.
•  2. Devise a plan for solving the problem.
•  3. Carry out the plan.
•  4. Evaluate the solution for accuracy and

its potential as a tool for solving other
problems.

Polya’s Problem Solving Steps

5-16

30/11/17

9

© 2015 Pearson Education Limited 2015

•  1. Understand the problem.
•  2. Get an idea of how an algorithmic

function might solve the problem.
•  3. Formulate the algorithm and represent it

as a program.
•  4. Evaluate the solution for accuracy and

its potential as a tool for solving other
problems.

Polya’s Steps in the Context of
Program Development

5-17

© 2015 Pearson Education Limited 2015

•  Try working the problem backwards
•  Solve an easier related problem

– Relax some of the problem constraints
– Solve pieces of the problem first (bottom up

methodology)
•  Stepwise refinement: Divide the problem into

smaller problems (top-down methodology)

Getting a Foot in the Door

5-18

30/11/17

10

© 2015 Pearson Education Limited 2015

•  Person A is charged with the task of determining
the ages of B’s three children.
–  B tells A that the product of the children’s ages is 36.
–  A replies that another clue is required.
–  B tells A the sum of the children’s ages.
–  A replies that another clue is needed.
–  B tells A that the oldest child plays the piano.
–  A tells B the ages of the three children.

•  How old are the three children?

Ages of Children Problem

5-19

© 2015 Pearson Education Limited 2015

Figure 5.5

5-20

30/11/17

11

© 2015 Pearson Education Limited 2015

Figure 5.6 The sequential search
algorithm in pseudocode

5-21

def	Search	(List,	TargetValue):	
				if	(List	is	empty):	
								Declare	search	a	failure	
				else:	
								Select	the	first	entry	in	List	to	be	TestEntry	
								while	(TargetValue	>	TestEntry	and	entries	remain):		
												Select	the	next	entry	in	List	as	TestEntry	
								if	(TargetValue	==	TestEntry):	
												Declare	search	a	success	
								else:	
												Declare	search	a	failure	

© 2015 Pearson Education Limited 2015

Figure 5.7 Components of repetitive
control

5-22

30/11/17

12

© 2015 Pearson Education Limited 2015

•  Pretest loop:
 while	(condition):	

							body	
•  Posttest loop:
 repeat:		
							body	 										
							until(condition)	

Iterative Structures

5-23

© 2015 Pearson Education Limited 2015

Figure 5.8 The while loop structure

5-24

30/11/17

13

© 2015 Pearson Education Limited 2015

Figure 5.9 The repeat loop structure

5-25

© 2015 Pearson Education Limited 2015

Figure 5.10 Sorting the list Fred, Alex,
Diana, Byron, and Carol alphabetically

5-26

30/11/17

14

© 2015 Pearson Education Limited 2015

Figure 5.11 The insertion sort
algorithm expressed in pseudocode

5-27

def	Sort(List):	
				N	=	2	
				while	(N	<=	length	of	List):	
								Pivot	=	Nth	entry	in	List	
								Remove	Nth	entry	leaving	a	hole	in	List	
								while	(there	is	an	Entry	above	the		
																		hole	and	Entry	>	Pivot):	
												Move	Entry	down	into	the	hole	leaving		
												a	hole	in	the	list	above	the	Entry	
								Move	Pivot	into	the	hole		
								N	=	N	+	1	

© 2015 Pearson Education Limited 2015

•  The execution of a procedure leads to
another execution of the procedure.

•  Multiple activations of the procedure are
formed, all but one of which are waiting for
other activations to complete.

Recursion

5-28

30/11/17

15

© 2015 Pearson Education Limited 2015

Figure 5.12 Applying our strategy to
search a list for the entry John

5-29

© 2015 Pearson Education Limited 2015

Figure 5.13 A first draft of the binary
search technique

5-30

if	(List	is	empty):	
				Report	that	the	search	failed	
else:	
				TestEntry	=	middle	entry	in	the	List	
				if	(TargetValue	==	TestEntry):	
								Report	that	the	search	succeeded	
				if	(TargetValue	<	TestEntry):	
								Search	the	portion	of	List	preceding	TestEntry	for			
								TargetValue,	and	report	the	result	of	that	search	
				if	(TargetValue	>	TestEntry):	
								Search	the	portion	of	List	following	TestEntry	for	
								TargetValue,	and	report	the	result	of	that	search	

30/11/17

16

© 2015 Pearson Education Limited 2015

Figure 5.14 The binary search
algorithm in pseudocode

5-31

def	Search(List,	TargetValue):	
				if	(List	is	empty):	
								Report	that	the	search	failed	
				else:	
								TestEntry	=	middle	entry	in	the	List	
								if	(TargetValue	==	TestEntry):	
												Report	that	the	search	succeeded	
								if	(TargetValue	<	TestEntry):	
												Sublist	=	portion	of	List	preceding	TestEntry		
												Search(Sublist,	TargetValue)	
								if	(TargetValue	<	TestEntry):	
												Sublist	=	portion	of	List	following	TestEntry		
												Search(Sublist,	TargetValue)	

© 2015 Pearson Education Limited 2015

Figure 5.15

5-32

30/11/17

17

© 2015 Pearson Education Limited 2015

Figure 5.16

5-33

© 2015 Pearson Education Limited 2015

Figure 5.17

5-34

30/11/17

18

© 2015 Pearson Education Limited 2015

•  Measured as number of instructions
executed

•  Big theta notation: Used to represent
efficiency classes
– Example: Insertion sort is in Θ(n2)

•  Best, worst, and average case analysis

Algorithm Efficiency

5-35

© 2015 Pearson Education Limited 2015

Figure 5.18 Applying the insertion sort in
a worst-case situation

5-36

30/11/17

19

© 2015 Pearson Education Limited 2015

Figure 5.19 Graph of the worst-case
analysis of the insertion sort algorithm

5-37

© 2015 Pearson Education Limited 2015

Figure 5.20 Graph of the worst-case
analysis of the binary search algorithm

5-38

30/11/17

20

© 2015 Pearson Education Limited 2015

•  Proof of correctness
– Assertions

• Preconditions
• Loop invariants

•  Testing

Software Verification

5-39

© 2015 Pearson Education Limited 2015

•  A traveler has a gold chain of seven links.
•  He must stay at an isolated hotel for seven

nights.
•  The rent each night consists of one link from the

chain.
•  What is the fewest number of links that must be

cut so that the traveler can pay the hotel one link
of the chain each morning without paying for
lodging in advance?

Chain Separating Problem

5-40

30/11/17

21

© 2015 Pearson Education Limited 2015

Figure 5.21 Separating the chain
using only three cuts

5-41

© 2015 Pearson Education Limited 2015

Figure 5.22 Solving the problem with
only one cut

5-42

30/11/17

22

© 2015 Pearson Education Limited 2015

Figure 5.23 The assertions associated
with a typical while structure

5-43

© 2015 Pearson Education Limited 2015

End
of

Chapter

