
CENG	105	Intro	to	CS			
Erdogan	Dogdu	

Assignment	3	

Due:	Dec	16,	2017	

Subject:	Algorithms	

1) (Binary	Search)	Run	the	following	guess.py	program	on	your	computer	a	few	times:	
	

This is a guess the number game.
import random
guessesTaken = 0
print('Hello! What is your name?')
myName = input()
number = random.randint(1, 10000)
print('Well, ' + myName + ', I am thinking of a number
between 1 and 10000.')
while guessesTaken < 20:
 print('Take a guess.')
 guess = input()
 guess = int(guess)

 guessesTaken = guessesTaken + 1
 if guess < number:
 print('Your guess is too low.')
 if guess > number:
 print('Your guess is too high.')
 if guess == number:
 break

if guess == number:
 guessesTaken = str(guessesTaken)
 print('Good job, ' + myName + '! You guessed my number in
' + guessesTaken + ' guesses!')
if guess != number:
 number = str(number)
 print('Nope. The number I was thinking of was ' + number)

What	is	your	best	guess?	How	many	times	it	took	for	you	to	guess	the	number?	Send	
the	output	of	the	program	with	your	answers.	
	
(Your	trial)	
	
What	is	the	optimal	number	of	guesses	for	this	case?	How	did	you	calculate?		
(Hint:	Calculate	for	the	binary	search	in	the	range	from	1-10000)		

For	binary	search	in	the	range	1-10000,	everytime	you	guess,	you	halve	the	range.	
First	guess	is	let’s	say	5000.	If	the	program	says	“too	low”,	then	your	next	guess	is	in	
the	range	5001-10000;	else	if	it	says	“too	high”,	your	next	guess	is	in	the	range	1-

4999.	Therefore,	in	every	new	guess,	you	halve	your	range.	Therefore,	the	optimal	
number	of	guesses	is	log2n	=	log210000	≈	log2213.288	≈		14	

What	is	the	best	case	(the	number	of	times	it	takes	to	guess	the	number	right)?	
	
If	you	are	lucky,	it	is	1	guess	(the	first	guess	is	right)	
	

2) (ch5.29) What problems do you expect to arise if �the following program is
implemented in python? (Hint: The problem of round-off errors associated with
floating-point arithmetic.). Correct the program and make sure that it halts.

 cnt = 0.1
 repeat:
 print(cnt)
 cnt = cnt + 0.1
 until (cnt == 1)

Python does not have “repeat” loop, so we use “while” loop:

cnt = 0.1
while(True):
 print(cnt)
 cnt = cnt + 0.1
 if (cnt == 1): break

But this program does not stop, goes to an infinite loop, since cnt is never exactly
equal to 1. We can change the program to the following so that it works, int function
gives the integer part of cnt variable:

cnt = 0.1
while(True):
 print(cnt)
 cnt = cnt + 0.1
 if (int(cnt) == 1): break

This program gives the following output:

0.1
0.2
0.30000000000000004
0.4
0.5
0.6
0.7
0.7999999999999999
0.8999999999999999
0.9999999999999999

So, it is not working as intended. We want to increase cnt by 0.1 in every step. So, we

correct the program one more time:

cnt = 0.1
while(True):
 print(cnt)
 cnt = round(cnt + 0.1,1)
 if (int(cnt) == 1): break

round(x,1) function call rounds cnt to the first digit after the decimal point. Then, the
output is as follows:

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

3) (ch5.2,	question	3)	The	Euclidean	algorithm	finds	the	greatest	common	divisor	of	two	

positive	integers	X	and	Y	by	the	following	process:	As	long	as	the	value	of	neither	X	
nor	Y	is	zero,	assign	the	larger	the	remainder	of	dividing	the	larger	by	the	smaller.	The	
greatest	common	divisor,	if	it	exists,	will	be	the	remaining	non-zero	value.	
Express	this	algorithm	in	our	pseudocode.	And	write	a	pyhon	code	to	implement.	
	

def gcd(a, b):
 """Calculate the Greatest Common Divisor of a and b.

 Unless b==0, the result will have the same sign as b
 (so that when b is divided by it, the result comes out
 positive).
 """
 while b:
 a, b = b, a%b
 return a

x = int(input("Please enter the first number :"))
y = int(input("Please enter the second number :"))

print("Common divisor : ", gcd(x,y))

	
Check	out	the	assignment	a,	b	=	b,	a%b.	Cool.	Two	assignments	in	one	line,	no	need	
for	temp.	
	

4) (ch5.22)	The	following	algorithm	is	designed	to	print	the	beginning	of	what	is	known	
as	the	Fibonacci	sequence.	Write	the	algorithm	in	python	(version	1).		
BONUS:	Reimplement	the	python	program	recursively	(version	2)	[Hint:	fibo(n)	=	
fibo(n-1)	+	fibo(n-2)].	Discuss	if	the	algorithm	is	efficient	(runtime).	

Last = 0

Current = 1
while (Current < 100):

 print(Current)
 Temp = Last

Last = Current
Current = Last + Temp	

Program	should	work	with	the	following	command:	
>>	fibo(20)
10946	
	

def fibo(n):
 cnt=0
 x, y = 1, 1
 # print(x) : remove comment to write all
 while (cnt<n):
 cnt += 1
 print(y)
 x, y = y, x+y
 return x

print(fibo(20))	

	
This	double	assignment	is	cool,	no	need	for	temp.	
	

5) (ch5.social	issues.1)	Because	it	is	currently	impossible	to	verify	completely	the	
accuracy	of	complex	programs,	under	what	circumstances,	if	any,	should	the	creator	
of	a	program	be	liable	for	errors?			
	
Everyone	in	the	creation	of	software	is	responsible,	just	like	in	anything	we	construct,	
do,	or	say.	Software	developer,	tester,	software	designer,	project	manager,	and	the	
whole	company	are	responsible	for	the	consequences,	and	the	results	of	software.	
This	can	result	in	minor	reworking	of	the	software	to	legal	court	decisions	and	
compensations.	Errors	can	happen	but	everyone	responsible	should	pay	for	the	
damage.	
	

6) (ch5.social	issues.5)	Some	people	feel	that	new	algorithms	are	discovered,	whereas	
others	feel	that	new	algorithms	are	created.	To	which	philosophy	do	you	subscribe?	
Would	the	different	points	of	view	lead	to	different	conclusions	regarding	ownership	
of	algorithms	and	ownership	rights?	Can	algorithms	be	patented	(in	the	USA,	in	
Turkey)?	

Software	(and	algorithm)	can	be	patented	in	some	countries	(like	the	USA)	and	
cannot	be	patented	in	some	others	(as	far	as	I	know,	you	cannot	in	Turkey).	Read	
Wikipedia	article	for	more:	

http://en.wikipedia.org/wiki/Software_patent#History_and_current_trends	

BONUS	Questions	(10	points	each)	

7) (ch5.4,	question	6)	A	variation	of	the	insertion	sort	algorithm	is	the	“selection	sort”.	It	
begins	by	selecting	the	smallest	entry	in	the	list	and	moving	it	to	the	front.	It	then	
selects	the	smallest	entry	from	the	remaining	entries	in	the	list	and	moves	it	to	the	
second	position	in	the	list.	By	repeatedly	selecting	the	smallest	entry	from	the	
remaining	portion	of	the	list	and	moving	that	entry	forward,	the	sorted	version	of	the	
list	grows	from	the	front	of	the	list,	while	the	back	portion	of	the	list	consisting	of	the	
remaining	unsorted	entries	shrinks.	Use	our	pseudocode	to	express	a	function	similar	
to	that	in	Figure	5.11	for	sorting	a	list	using	the	selection	sort	algorithm	and	write	a	
python	program	to	implement.	

See	the	code	and	the	working	example	here:	
http://interactivepython.org/runestone/static/pythonds/SortSearch/TheSelectionSort.html	

8) 	(ch5.4,	question	7)	Another	well-known	sorting	algorithm	is	the	“bubble	sort”.	It	is	
based	on	the	process	of	repeatedly	comparing	two	adjacent	names	and	interchang-	
ing	them	if	they	are	not	in	the	correct	order	relative	to	each	other.	Let	us	suppose	
that	the	list	in	question	has	n	entries.	The	bubble	sort	would	begin	by	comparing	(and	
possibly	interchanging)	the	entries	in	positions	n	and	n	–	1.	Then,	it	would	consider	
the	entries	in	positions	n	–	1	and	n	–	2,	and	continue	moving	forward	in	the	list	until	
the	first	and	second	entries	in	the	list	had	been	compared	(and	possibly	
interchanged).	Observe	that	this	pass	through	the	list	will	pull	the	smallest	entry	to	
the	front	of	the	list.	Likewise,	another	such	pass	will	ensure	that	the	next	to	the	
smallest	entry	will	be	pulled	to	the	second	position	in	the	list.	Thus,	by	making	a	total	
of	n	–	1	passes	through	the	list,	the	entire	list	will	be	sorted.	(If	one	watches	the	
algorithm	at	work,	one	sees	the	small	entries	bubble	to	the	top	of	the	list—an	
observation	from	which	the	algorithm	gets	its	name.)	Use	our	pseudocode	to	express	
a	function	similar	to	that	in	Figure	5.11	for	sorting	a	list	using	the	bubble	sort	
algorithm	and	write	a	python	program	to	implement.	

See	the	code	and	the	working	example	here:	
http://interactivepython.org/runestone/static/pythonds/SortSearch/TheBubbleSort.html?hi
ghlight=bubble	

Submit	your	work	as	a	zip/rar	file	(asg3-your-name.zip)	to	webonline.	Include	a	pdf	report	
with	your	answers	to	all	questions	(1-5,	and		if	possible	6	to	7),	and	the	python	programs	
(count.py,	euclidian.py,	and	more).	

Note:	No	late	assignments.		

