
Andrea Iacono Follow

Oct 7, 2017 · 8 min read

Backtracking explained
Backtracking is one of my favourite algorithms because of its simplicity

and elegance; it doesn’t always have great performance, but the branch

cutting part is really exciting and gives you the idea of progress while

you code.

But let’s >rst start with a simple explanation. According to Wikipedia:

Backtracking is a general algorithm for 2nding all (or

some) solutions to some computational problems,

that incrementally builds candidates to the solutions,

and abandons each partial candidate (“backtracks”)

as soon as it determines that the candidate cannot

possibly be completed to a valid solution.

Once you already have used backtracking, it’s a pretty straightforward

de>nition, but I realise that when you read it for the >rst time is not that

clear (or — at least — it wasn’t to me).

A little example could help us. Imagine to have a maze and you want to

>nd if it has an exit (for sake of completeness, there are more eHcient

algorithms to get out of a maze). This is the maze:

Images haven’t loaded yet. Please exit printing, wait for images to load, and try to

print again.

https://medium.com/@andreaiacono?source=post_header_lockup
https://medium.com/@andreaiacono?source=post_header_lockup

where we have labeled the junctions as 1, 2 and 3.

If we want to check every possible path in the maze, we can have a look

at the tree of paths, split for every junctions stop:

A simple maze with only three junctions

All the possible paths of the maze

Let’s see a pseudo code for traversing this maze and checking if there’s

an exit:

function backtrack(junction):

 if is_exit:
 return true

 for each direction of junction:
 if backtrack(next_junction):
 return true

 return false

If we apply this pseudo code to the maze we saw above, we’ll see these

calls:

- at junction 1 chooses down (possible values: [down,
up])
 - at junction 3 chooses right (possible values:
[right, up])
 no junctions/exit (return false)
 - at junction 3 chooses up (possible values:
[right, up])
 no junctions/exit (return false)
- at junction 1 chooses up (possible values: [down,
up])
 - at junction 2 chooses down (possible values: [down,
left])
 the exit was found! (return true)

Please note that every time a line is indented, it means that there was a

recursive call. So, when a no junctions/exit is found, the function re-

turns a false value and goes back to the caller, that resumes to loop on

the possible paths starting from the junction. If the loop arrives to the

end, that means that from that junction on there’s no exit, and so it re-

turns false .

The idea is that we can build a solution step by step using recursion; if

during the process we realize that is not going to be a valid solution, we

then stop that computing solution and we return back to the step before

(backtrack). In the case of the maze, when we are in a dead-end we are

forced to backtrack, but there are other cases in which we could realize

that we’re heading to a non valid (or not good) solution before having

reached it. And that’s exactly what we’re going to see now.

. . .

Quite a while ago I’ve been gifted one of those puzzles based on shaped

pieces (à la tetris) that has to be framed in form of a square or a rec-

tangle, like this:

after tweaking with it for a while I couldn’t come up with a solution, so I

decided to write a program to solve the puzzle for me.

I’ve chosen the Go language and the Gotk3 project (a binding to GTK3

libraries) to write a simple GUI application that -given a puzzle in input-

uses backtracking to >nd all the possible solutions.

The main idea of the algorithm is this: we start with an empty frame and

then try to place the >rst piece; since the canvas is empty, it will for sure

>t into it; we recursively try to place the second piece (not overlapping

the >rst), and then the third and so on, until either it >nds a piece that

cannot be placed into the canvas, or there are no more pieces to place. In

https://golang.org/
https://github.com/gotk3/gotk3

the >rst case, we have to go back from that branch of execution (we have

to backtrack) because it makes no sense going on trying to place the re-

maining pieces if that one cannot be placed (there’s no valid solution

without that piece); in case of no more pieces to place, that means we

found a solution, so we can add it to the set of solutions and go on >nd-

ing other ones.

. . .

Let’s now consider the very nature of this puzzle: the pieces can be ro-

tated and Wipped, so for every piece we have to try all its possible rota-

tions. Given that, here’s the solver function (a lot of details like data

structures and other functions are omitted, but the sense should be

clear):

func solvePuzzle(puzzle *Puzzle, remainingPieces []Piece) {

 // this is the base case of recursion
 if len(remainingPieces) == 0 {
 addSolution()
 return
 }

// loops over the remaining pieces
 for piece := range remainingPieces {

 // considers all possible rotations of this piece
 for rot := range piece.Rotations {

 // tries every cell of the grid (limited to the
 // positions where the piece is not outside the
 // boundaries of the frame)
 for j := 0; j <= len(puzzle.Grid[0])-len(rot[0]); j++
{
 for i := 0; i <= len(puzzle.Grid)-len(rot); i++ {

 // if the cell is empty and the piece doesn't
 // overlap with other pieces
 if puzzle.Grid[i][j] == EMPTY &&
 pieceFits(rot, i, j, puzzle.Grid) {

 // adds the piece to the grid
 updatedGrid := addShapeToGrid(rot, i, j,
puzzle)
 puzzle.Grid = updatedGrid

 // removes this piece from the remaining ones
 removePieceFromRemaining(remainingPieces,
piece)

 // recursively calls this function
 solvePuzzle(puzzle, remainingPieces)

 // after having tried all this branch, remove
this
 // piece and goes on with the next in the loop
 updatedGrid = removeShapeFromGrid(updatedGrid)
 puzzle.Grid = updatedGrid
 addToRemainingPieces(piece)
 }
 }
 }
 }
 }
}

If you want to see the real implementation, head to the Github reposito-

ry: https://github.com/andreaiacono/GoShapesPuzzle.

Considering a 5x6 model, like this one:

https://github.com/andreaiacono/GoShapesPuzzle

the execution time is not exciting: on my notebook it took 1h18m31s. Re-

ally too much. It takes so long because the algorithm is placing the pieces

in every possible position, even where it make no sense to do it. For ex-

ample, the algorithm places the pieces in this way:

Of course those 1-cell and 2-cells empty spaces will never be >lled be-

cause we don’t have any piece small enough to >t into them in this mod-

el, and thus the whole branch of computation will eventually fail. So, it

would be nice to cut it as soon as we realize that there’s an empty space

smaller than the smaller of the remaining pieces to place.

This can be achieved adding this check:

Those little empty spots will never be Hlled

func hasLeftUnfillableAreas(grid Grid,
 shape Shape,
 i, j int,
 minPieceSize int) bool {

 gridCopy := addShapeToGrid(shape, i, j, grid)
 var min = math.MaxInt32
 for i := 0; i < len(gridCopy); i++ {
 for j := 0; j < len(gridCopy[0]); j++ {
 if gridCopy[i][j] == EMPTY {
 var area = getAreaSize(&gridCopy, i, j)
 if min > area {
 min = area
 }
 }
 }
 }
 return min < minPieceSize
}

func getAreaSize(grid *Grid, x, y int) int {
 (*grid)[x][y] = FLOOD_FILL_VALUE
 size := 1

 if y > 0 && (*grid)[x][y-1] == EMPTY {
 size += getAreaSize(grid, x, y-1)
 }
 if x > 0 && (*grid)[x-1][y] == EMPTY {
 size += getAreaSize(grid, x-1, y)
 }
 if x < len((*grid))-1 && (*grid)[x+1][y] == EMPTY {
 size += getAreaSize(grid, x+1, y)
 }
 if y < len((*grid)[0])-1 && (*grid)[x][y+1] == EMPTY {
 size += getAreaSize(grid, x, y+1)
 }

 return size
}

First we place into the grid the piece we are examining now, and then we

compute the size of every empty area (using a Wood>ll like algorithm). At

the end of the function, we just return if the minimum empty area is

smaller than the smaller remaining piece. So if this function returns true

that means that this branch of computation will never arrive to a solu-

tion, and hence we can cut it.

What we’ve done is to add some extra computation (to >nd the mini-

mum empty space size) in order to avoid following a branch that will

never arrive to a solution; more in general, it depends on the problem

we’re trying to solve if it makes sense to add the extra computation or not

https://en.wikipedia.org/wiki/Flood_fill

because it could be something that worsen the general performance of

the algorithm.

In our case this extra computation resulted in a total computation time

cut from 1h18m31s to 6m19s: a 12.5x increment in performance!

But we can improve the performance further. If we look at the main loop

of the solver, we realize that the same con>guration is computed multi-

ple times. Let’s suppose that the solver starts placing the piece no. 1 in

(0,0) and then the piece no.2 in (3,0); when the branch of piece no.1 as

the >rst piece will be over, the solver will start placing piece no.2, and

after a while it will place it in (3,0), and the following step will be to

place piece no.1 in (0,0) since it’s empty. So we are computing again the

same state, and recursively, all the states following this.

To avoid this, I created a map that maps a string representation of the

grid to a boolean (I would have created a Set with another language, but

Go doesn’t have it) and this code to check it:

func checkAndUpdateVisitedState(grid Grid) bool {

 gridString := fmt.Sprintf("%s", grid)
 _, isPresent := visited[gridString]

 if !isPresent {
 visited[gridString] = true
 }
 return isPresent
}

So, every time the solver wants to place a piece, it >rst checks if it already

did it before, and if it did, it just skips this state, otherwise it saves the

new state into the map and goes on with that branch. Thanks to this opti-

mization, the total computation time dropped from 6m19s to 1m44: an-

other 3.5x performance increment!

So, from the >rst implementation we had a 43x performance increase!

If you’re interested in seeing the complete source code and run it, you

can >nd it on github: https://github.com/andreaiacono/GoShapesPuz-

zle.

https://github.com/andreaiacono/GoShapesPuzzle

