
CS	443
Database	Management	Systems

Sayyed	Nezhadi
Pashootan	Vaezipoor

https://piazza.com/utoronto.ca/winter2018/csc443/home

What	Is	a	DBMS?

• A	Database is	a	very	large,	integrated	
collection	of	data.

• Models	real-world	enterprise.
– Entities	(e.g.,	students,	courses)
– Relationships	(e.g.,	Madonna	is	taking	CS564)

• A	Database	Management	System	(DBMS) is	
a	software	package	designed	to	store	and	
manage	databases.

Files	vs.	DBMS

• Application	must	stage	large	datasets	
between	main	memory &	secondary	
storage	(e.g.,	buffering,	page-oriented	
access,	etc.)

• Special	code	for	different	queries
• Must	protect	data	from	inconsistency	due	
to	multiple	concurrent	users

• Crash	recovery
• Security	and	access	control

Why	Use	a	DBMS?

• Data	independence	and	efficient	access
• Reduced	application	development	time
• Data	integrity	and	security
• Uniform	data	administration
• Concurrent	access,	recovery	from	crashes.

Why	Study	Databases??
• Big	Data:	massive	datasets

– Streaming	Data
– Parallelism	(load	balancing)
– Data	Analysis,	Data	Mining:	wide-scale	distribution
– Distributed	databases

• Complex:	complex	datatypes	and	their	associated	lookups
– complex	base	types:	geographic	data,	multimedia,	scientific	data,	CAD	data
– complex	objects
– extensible	query	processing	engines
– indexing	new	data	types

• Old	problems:	the	data	integration	problem
– schema	integration:	trying	to	figure	out	how	different	schemas	fit	together.	

Hard!!!	(data	cleaning)
– DBMS	integration:	trying	to	semi-transparently	glue	different	kinds	of	

database	systems	together
• Major	Conferences:	SIGMOD	,	VLDB	and	KDD

?

Data	Models
• A	data	model is	a	collection	of	abstract	concepts	for:

– describing	the	elements	of	data,	their	relation and	properties (schema)	
– how	data	can	be	organized,	stored and	manipulated (logical	data	model).

• Logical	data	models:
– Hierarchical	database	model
– Network	model
– Relational	model
– Object	model
– Document	model
– Star	schema
– …

• Physical	data	models:
– Inverted	Index
– Flat	Files

Data	Models

• A schema is	a	description	of	a	particular	
collection	of	data.

• The	relational	model	of	data is	the	most	
widely	used	model	today.
– Main	concept:		relation,	basically	a	table	with	
rows	and	columns.

– Every	relation	has	a	schema,	which	describes	the	
columns,	or	fields.

Levels	of	Abstraction
• Many	views,	single	
conceptual	(logical)	
schema and	physical	
schema.
– Views	describe	how	users	
see	the	data.																																								

– Conceptual	schema	defines	
logical	structure

– Physical	schema	describes	
the	files	and	indexes	used.

☛ Schemas are defined using DDL; data is modified/queried using DML.

Physical Schema

Conceptual Schema

View 1 View 2 View 3

Example:	University	Database

• Example	Conceptual	schema:																		
– Students(sid:	string,	name:	string,	login:	string,	

age:	integer,	gpa:real)
– Courses(cid:	string,	cname:string,	credits:integer)	
– Enrolled(sid:string,	cid:string,	grade:string)

• Example	Physical	schema:
– Relations	stored	as	unordered	files.	
– Index	on	first	column	of	Students.

• Example	External	Schema	(View):	
– Course_info(cid:string,enrollment:integer)

Data	Independence

• Applications	insulated	from	how	data	is	
structured	and	stored.

• Logical	data	independence:		Protection	from	
changes	in	logical	structure	of	data.

• Physical	data	independence:			Protection	from	
changes	in	physical structure	of	data.

☛ One of the most important benefits of using a DBMS!

Concurrency	Control
• Concurrent	execution	of	user	programs	is	essential	for	
good	DBMS	performance.
– Because	disk	accesses	are	frequent,	and	relatively	slow,	it	
is	important	to	keep	the	cpu humming	by	working	on	
several	user	programs	concurrently.

• Interleaving	actions	of	different	user	programs	can	
lead	to	inconsistency
– check	is	cleared	while	account	balance	is	being	computed

• DBMS	ensures	such	problems	don’t	arise:		users	can	
pretend	they	are	using	a	single-user	system.

Transaction:	An	Execution	of	a	DB	Program
• Key	concept	is	transaction,	which	is	an	atomic
sequence	of	database	actions	(reads/writes).

• Each	transaction,	executed	completely,	must	
leave	the	DB	in	a	consistent	state if	DB	is	
consistent	when	the	transaction	begins.
– Users	can	specify integrity	constraints on	the	data,	
and	the	DBMS	will	enforce	these	constraints.

– Beyond	this,	the	DBMS	does	not	really	understand	
the	semantics	of	the	data.		(e.g.,	it	does	not	
understand	how	the	interest	on	a	bank	account	is	
computed).

Scheduling	Concurrent	Transactions

• DBMS	ensures	that	execution	of	{T1,	...	,	Tn}	is	
equivalent	to	some	serial execution	T1’	...	Tn’.
– Before	reading/writing	an	object,	a	transaction	requests	
a	lock	on	the	object,	and	waits	till	the	DBMS	gives	it	the	
lock.		All	locks	are	released	at	the	end	of	the	transaction.		
(Strict	2PL locking	protocol.)

– Idea: If	an	action	of	Ti (say,	writing	X)	affects	Tj (which	
perhaps	reads	X),	one	of	them,	say	Ti,	will	obtain	the	lock	
on	X	first	and	Tj is	forced	to	wait	until	Ti completes;	this	
effectively	orders	the	transactions.

– What	if	Tj already	has	a	lock	on	Y	and	Ti later	requests	a	
lock	on	Y?	(Deadlock!)	Ti or	Tj is	aborted and	restarted!	

Ensuring	Atomicity
• DBMS	ensures	atomicity (all-or-nothing	property)	even	if	
system	crashes	in	the	middle	of	a	Xact.

• Idea:	Keep	a	log (history)	of	all	actions	carried	out	by	the	
DBMS	while	executing	a	set	of	Xacts:
– Before a	change	is	made	to	the	database,	the	corresponding	
log	entry	is	forced	to	a	safe	location.		(WAL	protocol;	OS	
support	for	this	is	often	inadequate.)

– Write	Ahead	Log	(WAL),	if	log	entry	wasn’t	saved	before	the	
crash,	corresponding	change	was	not	applied	to	database!

• After	a	crash,	the	effects	of	partially	executed	transactions	
are	undone using	the	log.	

• Write	Ahead	Log	(WAL),	if	log	entry	wasn’t	saved	before	the	crash,	
corresponding	change	was	not	applied	to	database!

The	Log
• The	following	actions	are	recorded	in	the	log:

– Ti writes	an	object:		The	old	value	and	the	new	value.
• Log	record	must	go	to	disk	before the	changed	page!

– Ti commits/aborts:		A	log	record	indicating	this	action.
• Log	records	chained	together	by	Xact id,	so	it’s	easy	to	
undo	a	specific	Xact (e.g.,	to	resolve	a	deadlock).

• Log	is	often	duplexed	and	archived on	“stable”	storage.
• All	log	related	activities	(and	in	fact,	all	activities	such	
as	lock/unlock,	dealing	with	deadlocks	etc.)	are	
handled	transparently	by	the	DBMS.

Databases	make	these	folks	happy	...

• End	users	and	DBMS	vendors
• DB	application	programmers
• Database	administrator	(DBA)

– Designs	logical	/physical	schemas
– Handles	security	and	authorization
– Data	availability,	crash	recovery	
– Database	tuning	as	needs	evolve

Must understand how a DBMS works!

Structure	of	a	DBMS

• A	typical	DBMS	has	a	
layered	architecture.

• The	figure	does	not	show	
the	concurrency	control	
and	recovery	
components.

• This	is	one	of	several	
possible	architectures;	
each	system	has	its	own	
variations.

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

These layers
must consider
concurrency
control and
recovery

Summary
• DBMS	used	to	maintain,	query	large	datasets.
• Benefits	include	recovery	from	system	crashes,	
concurrent	access,	quick	application	
development,	data	integrity	and	security.

• Levels	of	abstraction	give	data	independence.
• A	DBMS	typically	has	a	layered	architecture.
• DBAs	hold	responsible	jobs																																and	
are	well-paid!	J

• DBMS	R&D	is	one	of	the	broadest,																																														
most	exciting	areas	in	CS.

Overview	of	Storage	and	Indexing

Chapter	8

Data	on	External	Storage
• Disks: Can	retrieve	random	page	at	fixed	cost

– But	reading	several	consecutive	pages	is	much	cheaper	than	reading	
them	in	random	order

• Tapes: Can	only	read	pages	in	sequence
– Cheaper	than	disks;	used	for	archival	storage

• File	organization: Method	of	arranging	a	file	of	records	on	
external	storage.
– Record	id	(rid) is	sufficient	to	physically	locate	record
– Indexes are	data	structures	that	allow	us	to	find	the	record	ids	of	

records	with	given	values	in	index	search	key fields
• Architecture: Buffer	manager stages	pages	from	external	

storage	to	main	memory	buffer	pool.	File	and	index	layers	
make	calls	to	the	buffer	manager.

Alternative	File	Organizations
Many	alternatives	exist,	each	ideal	for	some	
situations,	and	not	so	good	in	others:
– Heap	(random	order)	files: Suitable	when	typical	
access	is	a	file	scan	retrieving	all	records.

– Sorted	Files: Best	if	records	must	be	retrieved	in	
some	order,	or	only	a	`range’	of	records	is	needed.

– Indexes: Data	structures	to	organize	records	via	
trees	or	hashing.		

• Like	sorted	files,	they	speed	up	searches	for	a	subset	of	
records,	based	on	values	in	certain	(“search	key”)	fields

• Updates	are	much	faster	than	in	sorted	files.

Indexes
• An	index	on	a	file	speeds	up	selections	on	the	
search	key	fields	for	the	index.
– Any	subset	of	the	fields	of	a	relation	can	be	the	
search	key	for	an	index	on	the	relation.

– Search	key	is	not the	same	as	key (minimal	set	of	
fields	that	uniquely	identify	a	record	in	a	relation).

• An	index	contains	a	collection	of	data	entries,	
and	supports	efficient	retrieval	of	all	data	
entries	k* with	a	given	key	value	k.
– Given	data	entry	k*,	we	can	find	record	with	key	k	
in	at	most	one	disk	I/O.		(Details	soon	…)

B+	Tree	Indexes

v Leaf pages contain data entries, and are chained (prev & next)
v Non-leaf pages have index entries; only used to direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages
(Sorted by search key)

Leaf

Example	B+	Tree

• Find	28*?	29*?	All	>	15*	and	<	30*
• Insert/delete:		Find	data	entry	in	leaf,	then	
change	it.	Need	to	adjust	parent	sometimes.
– And	change	sometimes	bubbles	up	the	tree

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

Note how data entries
in leaf level are sorted

Hash-Based	Indexes

• Good	for	equality	selections.	
• Index	is	a	collection	of	buckets.	

– Bucket	=	primary page plus	zero	or	more
overflow pages.	

– Buckets	contain	data	entries.	
• Hashing	function h:		h(r)	=	bucket	in	which	
(data	entry	for)	record	r belongs.	h looks	at	
the	search	key fields	of	r.
– No	need	for	“index	entries”	in	this	scheme.

B+Tree VS	Hashing

Alternatives	for	Data	Entry	k* in	Index
• In	a	data	entry	k* we	can	store:

– Data	record	with	key	value k,	or
– <k,	rid	of	data	record	with	search	key	value k>,	or
– <k,	list	of	rids	of	data	records	with	search	key	k>

• Choice	of	alternative	for	data	entries	is	
orthogonal	to	the	indexing	technique	used	to	
locate	data	entries	with	a	given	key	value	k.
– Examples	of	indexing	techniques:	B+	trees,	hash-
based	structures

– Typically,	index	contains	auxiliary	information	that	
directs	searches	to	the	desired	data	entries

Alternatives	for	Data	Entries	(Contd.)

• Alternative	1:
– If	this	is	used,	index	structure	is	a	file	organization	
for	data	records	(instead	of	a	Heap	file	or	sorted	
file).

– At	most	one	index	on	a	given	collection	of	data	
records	can	use	Alternative	1.		(Otherwise,	data	
records	are	duplicated,	leading	to	redundant	
storage	and	potential	inconsistency.)

– If	data	records	are	very	large,		#	of	pages	containing	
data	entries	is	high.		Implies	size	of	auxiliary	
information	in	the	index	is	also	large,	typically.	

Alternatives	for	Data	Entries	(Contd.)

• Alternatives	2	and	3:
– Data	entries	typically	much	smaller	than	data	
records.		So,	better	than	Alternative	1	with	large	
data	records,	especially	if	search	keys	are	small.	
(Portion	of	index	structure	used	to	direct	search,	
which	depends	on	size	of	data	entries,	is	much	
smaller	than	with	Alternative	1.)

– Alternative	3	more	compact	than	Alternative	2,	
but	leads	to	variable	sized	data	entries	even	if	
search	keys	are	of	fixed	length.

Index	Classification
• Primary vs.	secondary:		If	search	key	contains	primary	
key,	then	called	primary	index.
– Unique index:		Search	key	contains	a	candidate	key.

• Clustered vs.	unclustered:		If	order	of	data	records	is	
the	same	as,	or	`close	to’,	order	of	data	entries,	then	
called	clustered	index.
– Alternative	1	implies	clustered;	in	practice,	clustered	also	
implies	Alternative	1	(since	sorted	files	are	rare).

– A	file	can	be	clustered	on	at	most	one	search	key.
– Cost	of	retrieving	data	records	through	index	varies	
greatly	based	on	whether	index	is	clustered	or	not!

Cost	Model	for	Our	Analysis

We	ignore	CPU	costs,	for	simplicity:
– B:		The	number	of	data	pages
– R:		Number	of	records	per	page
– D:		(Average)	time	to	read	or	write	disk	page
– Measuring	number	of	page	I/O’s	ignores	gains	of	
pre-fetching	a	sequence	of	pages;	thus,	even	I/O	
cost	is	only	approximated.			

– Average-case	analysis;	based	on	several	
simplistic	assumptions.

☛ Good enough to show the overall trends!

Comparing	File	Organizations

• Heap	files	(random	order;	insert	at	eof)
• Sorted	files,	sorted	on	<age,	sal>
• Clustered	B+	tree	file,	Alternative	(1),	search	

key	<age,	sal>
• Heap	file	with	unclustered	B	+	tree	index	on	

search	key	<age,	sal>
• Heap	file	with	unclustered	hash	index	on	

search	key	<age,	sal>

Operations	to	Compare

• Scan:	Fetch	all	records	from	disk
• Equality	search
• Range	selection
• Insert	a	record
• Delete	a	record

Assumptions	in	Our	Analysis
• Heap	Files:

– Equality	selection	on	key;	exactly	one	match.
• Indexes:	

– Alt	(2),	(3):	data	entry	size	=	10%	size	of	record	
– Hash:	No	overflow	buckets.

• 80%	page	occupancy	=>	File	size	=	1.25	data	size
– Tree:	67%	occupancy	(this	is	typical).

• Implies	file	size	=		1.5	data	size

Assumptions	(contd.)

• Scans:	
– Leaf	levels	of	a	tree-index	are	chained.
– Index	data-entries	plus	actual	file	scanned	for	
unclustered	indexes.

• Range	searches:
– We	use	tree	indexes	to	restrict	the	set	of	data	
records	fetched,	but	ignore	hash	indexes.

Cost	of	Operations	
 (a) Scan (b)

Equality
(c) Range (d) Insert (e) Delete

(1) Heap
(2) Sorted
(3) Clustered
(4) Unclustered
Tree index

(5) Unclustered
Hash index

☛ Several assumptions underlie these (rough) estimates!

Cost	of	Operations	
 (a) Scan (b) Equality (c) Range (d) Insert (e) Delete

(1) Heap BD 0.5BD BD 2D Search
+D

(2) Sorted BD Dlog 2B D(log 2 B +
pgs with
match recs)

Search
+ BD

Search
+BD

(3)
Clustered

1.5BD Dlog F 1.5B D(log F 1.5B
+ # pgs w.
match recs)

Search
+ D

Search
+D

(4) Unclust.
Tree index

BD(R+0.15) D(1 +
log F 0.15B)

D(log F 0.15B
+ # pgs w.
match recs)

Search
+ 2D

Search
+ 2D

(5) Unclust.
Hash index

BD(R+0.125) 2D BD Search
+ 2D

Search
+ 2D

☛ Several assumptions underlie these (rough) estimates!

Understanding	the	Workload

• For	each	query	in	the	workload:
– Which	relations	does	it	access?
– Which	attributes	are	retrieved?
– Which	attributes	are	involved	in	selection/join	conditions?		
How	selective	are	these	conditions	likely	to	be?	

• For	each	update	in	the	workload:
– Which	attributes	are	involved	in	selection/join	conditions?		
How	selective	are	these	conditions	likely	to	be?

– The	type	of	update	(INSERT/DELETE/UPDATE),	and	the	attributes	
that	are	affected.

Choice	of	Indexes

• What	indexes	should	we	create?
– Which	relations	should	have	indexes?		What	
field(s)	should	be	the	search	key?		Should	we	
build	several	indexes?

• For	each	index,	what	kind	of	an	index	should	
it	be?
– Clustered?		Hash/tree?		

Choice	of	Indexes	(Contd.)

• One	approach: Consider	the	most	important	queries	in	
turn.		Consider	the	best	plan	using	the	current	indexes,	
and	see	if	a	better	plan	is	possible	with	an	additional	
index.		If	so,	create	it.
– Obviously,	this	implies	that	we	must	understand	how	a	
DBMS	evaluates	queries	and	creates	query	evaluation	plans!

– For	now,	we	discuss	simple	1-table	queries.
• Before	creating	an	index,	must	also	consider	the	
impact	on	updates	in	the	workload!
– Trade-off: Indexes	can	make	queries	go	faster,	updates	
slower.		Require	disk	space,	too.

Index	Selection	Guidelines
• Attributes	in	WHERE	clause	are	candidates	for	index	keys.

– Exact	match	condition	suggests	hash	index.
– Range	query	suggests	tree	index.

• Clustering	is	especially	useful	for	range	queries;	can	also	help	on	equality	
queries	if	there	are	many	duplicates.

• Multi-attribute	search	keys	should	be	considered	when	a	WHERE	
clause	contains	several	conditions.

– Order	of	attributes	is	important	for	range	queries.
– Such	indexes	can	sometimes	enable	index-only strategies	for	important	

queries.
• For	index-only	strategies,	clustering	is	not	important!

• Try	to	choose	indexes	that	benefit	as	many	queries	as	possible.		
Since	only	one	index	can	be	clustered	per	relation,	choose	it	
based	on	important	queries	that	would	benefit	the	most	from	
clustering.

Examples	of	Clustered	Indexes

• B+	tree	index	on	E.age can	be	used	
to	get	qualifying	tuples.
– How	selective	is	the	condition?
– Is	the	index	clustered?

• Consider	the	GROUP	BY	query.
– If	many	tuples	have	E.age >	10,	using	
E.age index	and	sorting	the	retrieved	
tuples	may	be	costly.

– Clustered	E.dno index	may	be	better!
• Equality	queries	and	duplicates:

– Clustering	on	E.hobby helps!

SELECT E.dno
FROM Emp E
WHERE E.age>40

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age>10
GROUP BY E.dno

SELECT E.dno
FROM Emp E
WHERE E.hobby=Stamps

Indexes	with	Composite	Search	Keys	
• Composite	Search	Keys:	Search	on	

a	combination	of	fields.
– Equality	query:	Every	field	value	is	

equal	to	a	constant	value.	E.g.	wrt
<sal,age>	index:

• age=20	and	sal =75
– Range	query: Some	field	value	is	not	

a	constant.	E.g.:
• age	=20;	or	age=20	and	sal >	10

• Data	entries	in	index	sorted	by	
search	key	to	support	range	
queries.

– Lexicographic	order,	or
– Spatial	order.

sue 13 75

bob
cal
joe 12

10

20
8011

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20
12,10
11,80

13,75

20,12
10,12

75,13
80,11

11
12
12
13

10
20
75
80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

Composite	Search	Keys
• To	retrieve	Emp records	with	age=30	AND sal=4000,	
an	index	on	<age,sal>	would	be	better	than	an	index	
on	age or	an	index	on	sal.
– Choice	of	index	key	orthogonal	to	clustering	etc.

• If	condition	is:		20<age<30		AND 3000<sal<5000:	
– Clustered	tree	index	on	<age,sal>	or	<sal,age>	is	best.

• If	condition	is:		age=30		AND 3000<sal<5000:	
– Clustered	<age,sal>	index	much	better	than	<sal,age>	
index!

• Composite	indexes	are	larger,	updated	more	often.

Index-Only	Plans

• A	number	of	
queries	can	be	
answered	
without	
retrieving	any	
tuples	from	one	
or	more	of	the	
relations	
involved	if	a	
suitable	index	is	
available.

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND
E.sal BETWEEN 3000 AND 5000

<E.dno>

<E.dno,E.sal>
Tree index!

<E. age,E.sal>
or

<E.sal, E.age>
Tree index!

Index-Only	Plans	(Contd.)
• Index-only	plans	
are	possible	if	the	
key	is	<dno,age>	
or	we	have	a	tree	
index	with	key	
<age,dno>
– Which	is	better?
– What	if	we	
consider	the	
second	query?

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age=30
GROUP BY E.dno

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age>30
GROUP BY E.dno

Index-Only	Plans	(Contd.)

• Index-only	plans	can	also	be	found	for	
queries	involving	more	than	one	table;	
more	on	this	later.

Summary

• Many	alternative	file	organizations	exist,	each	
appropriate	in	some	situation.

• If	selection	queries	are	frequent,	sorting	the	file	
or	building	an	index is	important.
– Hash-based	indexes	only	good	for	equality	search.
– Sorted	files	and	tree-based	indexes	best	for	range	
search;	also	good	for	equality	search.		(Files	rarely	
kept	sorted	in	practice;	B+	tree	index	is	better.)

• Index	is	a	collection	of	data	entries	plus	a	way	to	
quickly	find	entries	with	given	key	values.

Summary	(Contd.)

• Data	entries	can	be	actual	data	records,	<key,	
rid>	pairs,	or	<key,	rid-list>	pairs.
– Choice	orthogonal	to	indexing	technique	used	to	
locate	data	entries	with	a	given	key	value.

• Can	have	several	indexes	on	a	given	file	of	data	
records,	each	with	a	different	search	key.

• Indexes	can	be	classified	as	clustered	vs.	
unclustered,	primary	vs.	secondary,	and	dense	
vs.	sparse.		Differences	have	important	
consequences	for	utility/performance.

Summary	(Contd.)
• Understanding	the	nature	of	the	workload for	the	
application,	and	the	performance	goals,	is	essential	
to	developing	a	good	design.
– What	are	the	important	queries	and	updates?		What	
attributes/relations	are	involved?	

• Indexes	must	be	chosen	to	speed	up	important	
queries	(and	perhaps	some	updates!).
– Index	maintenance	overhead	on	updates	to	key	fields.
– Choose	indexes	that	can	help	many	queries,	if	possible.
– Build	indexes	to	support	index-only	strategies.
– Clustering	is	an	important	decision;	only	one	index	on	a	
given	relation	can	be	clustered!

– Order	of	fields	in	composite	index	key	can	be	important.

