
	 	 	

		1	

CSC443	Winter	2018	
Assignment	1	

Due:	Sunday	Feb	11,	2018	at	11:59	PM	

Part	I:	Disk	access	characteristics	
In	this	assignment,	we	investigate	the	data	access	characteristics	of	secondary	storage	devices.	
In	the	end,	you	will	see	the	need	of	block	based	data	transfer	between	main	memory	and	the	
hard	drive.	Refer	to	the	hints	for	some	useful	information	on	C	language.	

1.	Sequential	write	to	file	(10%)	

1.1.	Random	file	generation	

Implement	a	function:	

	

random_array()	populates	the	array	with	random	characters	from	A	to	Z	inclusively.	

Now,	 use	 this	 function	 to	 implement	 the	 command	 create_random_file	 with	 the	 following	
syntax.	Your	program	should	allocate	a	 fixed	amount	of	memory	char	buffer[block_size],	and	
repeatedly	generate	 random	content	 into	buffer,	and	 then	write	buffer	 to	disk.	A	 reasonable	
block_size	is	1MB.	

	

Your	program	will	need	to	report	the	time	it	took	to	write	the	random	bytes	to	the	file	using	the	
specified	block	size.	

1.2.	Experiments	

Write	a	script	to	experiment	with	different	block	sizes,	and	record	the	respective	write	data	rate	
in	bytes/second.	You	can	use	any	scripting	language	(e.g.	python,	bash).	Your	scripts	MUST	run	



	 	 	

		2	

on	CDF.	Your	script	has	to	measure	the	rate	for	10	different	block	sizes	in	the	range	of	100B	to	
3MB	

You	have	to	prepare	a	very	short	report	for	the	following	three	sections:	

1. Plot	the	observation	of	write	data	rate	versus	block	size.	Provide	a	simple	explanation	of	
the	observation.	

2. Discuss	the	existence	of	the	optimal	block	size	for	write.	

3. Try	it	on	different	machines	and	different	storage	medium	(hard	drive,	solid	state	drive,	
USB	storage).	Compare	the	plots	(pick	at	least	2	different	medium).	

2.	Sequential	read	from	file	(20%)	
In	this	section,	you	are	to	experiment	with	the	performance	of	sequential	scan	with	different	
read	block	sizes.	

2.1.	Computing	histogram	using	block	read	

You	 are	 to	 implement	 a	 function	 which	 scans	 through	 the	 file	 in	 blocks,	 and	 compute	 the	
distribution	of	different	letters,	i.e.,	count	the	occurrences	of	each	letter:	`A`	to	`Z`.	Your	function	
returns	the	status	code.	

	

Here	is	a	sample	of	how	your	function	can	be	used:	



	 	 	

		3	

	

Create	an	executable	with	the	arguments:	

	

Your	program	is	to	display	the	histogram,	the	block	size	used,	the	total	number	of	bytes	read	
from	the	file,	and	the	time	took	in	milliseconds.	This	is	the	sample	printout	of	the	program:	

	

2.2.	Experiment	

Write	a	script	to	experiment	with	different	block	sizes,	and	record	the	read	data	rate	in	bytes	per	
second.	You	can	use	any	scripting	language	(e.g.	python,	bash).	Your	scripts	MUST	run	on	CDF	



	 	 	

		4	

machines.	Your	script	has	to	measure	the	rate	for	10	different	block	sizes	in	the	range	of	100B	to	
3MB.	

You	have	to	prepare	a	short	report	for	following	three	sections:	

1. Plot	the	observed	read	data	rate	versus	block	size.	Explain	the	curve.	

2. Discuss	the	existence	of	an	optimal	block	size	for	read.	Compare	this	with	the	case	for	
write.	

3. Run	it	on	different	machines	and	different	medium.	Compare	the	plots	(pick	at	 least	2	
mediums)	

3.	Organize	your	code	

	

5.	Hints	and	facts	about	C	

5.1.	Generating	random	characters:	

	

	

	



	 	 	

		5	

5.2.	Measuring	system	time	in	the	units	of	milliseconds	

	

5.3.	Perform	block	based	write	to	disk	

	

	

Note:		

• Line	11:	fwrite(buf,	itemsize,	itemcount,	fileptr)	writes	in	total	itemsize	*	itemcount	bytes	
to	fileptr	from	buf.	

• Line	12:	fflush(fileptr)	 forces	a	disk	write.	Modern	operating	system	may	have	 its	own	
buffer	manager,	so	your	write	may	be	deferred	in	the	cache.	

	

	



	 	 	

		6	

5.4.	Perform	block	based	read	from	disk	

	

5.	Deliverables	
1. A	tar	ball	named	a1-part1.tar.gz	 that	 includes	all	project	files	 i.e.	c/c++	files,	makefile,	

scripts,	plots,	report.	Make	sure	that	you	can	tar/untar	your	file	on	CDF	successfully.	if	we	
cannot	untar	the	file,	your	assignment	will	not	be	marked.	

2. A	maximum	4	pages	report	in	pdf	format.	

	

Part	II:	Relational	data	layout	on	disk	
In	 this	assignment,	we	are	 to	 implement	a	 library	 containing	 functions	 to	 store	and	maintain	
relational	data	on	disk	using	the	heap	file	data	structure.	We	are	asking	you	to	implement	and	
experiment	two	different	file	formats	corresponding	to	a	row	store	and	a	column	store.	

1.	Record	serialization	(10%)	
For	 simplicity,	 we	 assume	 that	 records	 are	 maps	 mapping	 attribute	 names	 to	 values.	 The	
attribute	names	are	stored	as	part	of	the	schema,	which	will	not	be	stored	as	part	of	the	record	
serialization.	

	



	 	 	

		7	

Therefore,	we	can	abstract	records	as	a	tuple	of	values.	

	

You	need	to	implement	serialization	of	fixed	length	records.	

	

You	will	also	need	to	implement	the	deserialization	functions.	

	

1.1.	Experiments	

We	assume	that	there	is	only	one	table	schema.	There	are	100	attributes,	and	each	attribute	is	
10	bytes	each.	So,	records	in	the	table	are	fixed	length.	

1. Calculate	the	size	of	fixed	length	serialization	of	records	in	the	table.	

2. Use	fixed_len_sizeof()	to	check	if	it	agrees	with	your	calculation.	

2.	Page	layout	(20%)	
Recall	that	it's	critical	for	all	disk	I/O	to	be	done	in	units	of	blocks,	known	as	pages.	In	this	section,	
we	experiment	with	storing	serialized	records	in	pages.	

	



	 	 	

		8	

2.1.	Storing	fixed	length	records	in	pages	

Use	slotted	directory	based	page	layout	to	store	fixed	length	records.	

	

	



	 	 	

		9	

	

Use	these	functions	to	implement	the	following	executables.	

Load	as	many	records	from	a	comma	separated	file	to	fill	up	a	page,	and	append	the	page	to	a	
file.	Repeat	until	all	the	records	in	the	CSV	files	are	written	to	the	page	file.	Your	program	should	
follow	the	following	syntax,	and	produce	the	output	containing	record	count,	page	count,	and	
time	took,	similar	to	as	follows:	

	

Write	another	program	to	load	the	page_file,	and	print	out	all	records	in	the	page	in	CSV	format.	

	

2.2.	Experiment	

1. Plot	the	performance	(records	/	second)	versus	page	size	for	write	and	read.	

2. Discuss	why	page	based	format	is	superior	to	storing	records	using	a	CSV	file.	

3. Discuss	the	short	comings	of	the	way	we	organize	pages.	 	

Note:	You	can	use	the	provided	simple	csv	generator	(mkcsv.py)	to	generate	test	inputs.	

	



	 	 	

		10	

3.	Heap	file	(20%)	
Finally,	we	are	able	to	build	the	code	to	generate	and	maintain	heap	files.	

Again,	we	assume	a	fixed	table	schema.	All	records	have	100	attributes,	and	the	values	of	each	
attribute	are	10	bytes.	

A	heap	file	is	just	a	paginated	file.	Each	page	is	to	store	a	series	of	records.	

	

We	assume	the	following	way	to	assign	unique	identifiers	to	records	in	the	heap	file:	

	

You	can	use	the	following	structures	to	abstract	page	ID	and	record	ID.	

	

3.1.	Heap	file	functions	

We	are	to	implement	a	directory	based	heap	file	in	which	we	have	directory	pages	(organized	as	
a	linked	list),	and	data	pages	that	store	records.	



	 	 	

		11	

	

	

	

	

The	central	functionality	of	a	heap	file	is	enumeration	of	records.	Implement	the	record	iterator	
class.	

	

3.2.	Heap	file	operations	

Write	the	following	executables	to	allow	basic	operations	on	the	heap	file.	Your	program	must	
rely	on	page	based	disk	I/O.	



	 	 	

		12	

	

3.3.	Experiment	

Measure	 the	 performance	 of	 csv2heapfile,	 comment	 on	 how	 the	 page	 size	 affects	 the	
performance	of	load.	

Write	an	executable:	

	

that	performs	the	following	parametrized	SQL	query:	

	

1. Measure	the	performance	of	the	query	versus	page	size.	

2. Comment	on	the	choice	of	page	size	and	the	effects	of	the	range	from	start	and	end	on	
the	performance	of	the	query.	



	 	 	

		13	

4.	Column	Store	(20%)	
A	 column-oriented	 DBMS	 (or	 Column	 Store),	 stores	 all	 values	 of	 a	 single	 attribute	 (column)	
together,	rather	than	storing	all	values	of	a	single	record	together.	Hence,	the	main	abstract	they	
use	is	of	columns-of-data	rather	than	rows-of-data.	Most	DBMS	are	row-oriented,	but	depending	
on	 the	 workload,	 column-oriented	 DBMS	 may	 provide	 better	 performance.	 Below	 is	 an	
illustration	of	column	store	(left)	and	row-store	(right).	

	

Consider	a	query	that	returns	all	values	of	the	attribute	Name.	In	a	column	store	you	only	need	
to	retrieve	Name	values	from	the	file.	In	constract,	in	when	using	row-oriented	storage,	to	find	
the	Name	 value	 of	 a	 record,	 you	 are	 necessarily	 retrieving	 all	 attribute	 values	 in	 the	 record.	
Hence,	to	return	all	values	of	the	Name	attribute,	you	need	to	read	the	entire	table.	The	drawback	
of	column	store	is	you	that	you	need	to	do	extra	work	to	reconstruct	the	tuple.	Suppose	you	wish	
to	return	the	Name	and	Salary	values	from	a	table.	To	be	able	to	reassemble	records,	a	column-
oriented	DBMS	will	store	the	tuple	id	(record-id)	with	each	value	in	a	column.	

Column-oriented	storage	has	advantages	for	queries	that	only	access	some	of	the	attributes	of	a	
table.	However,	insertion	and	deletion	now	may	require	multiple	page	accesses	as	each	tuple	is	
no	longer	stored	on	a	single	page	

For	this	assignment,	we	will	implement	a	simplified	version	of	column	store	using	your	existing	
heap	file	implementation.	Our	implementation	will	have	a	separate	heap	file	for	each	column	of	
a	table.	



	 	 	

		14	

	

We	will	use	the	same	fixed	table	schema	(100	attributes,	10	bytes	each).	For	each	attribute,	you	
need	 to	 create	a	 separate	heap	 file.	 You	can	name	 the	heap	 file	with	 the	 same	name	as	 the	
attribute	id.	You	should	put	all	attribute	heap	files	in	a	single	file	directory.	This	is	a	simplification	
for	this	assignment	to	make	the	bookkeeping	on	what	files	are	in	a	relation	simpler.	Think	about	
the	limitations	of	the	simplification.	

Tuple	reconstruction:	Different	attributes	of	a	tuple	will	be	in	different	heap	file.	So,	we	need	to	
reconstruct	the	tuple	(part	of	the	tuple)	to	get	the	result	of	a	query.	We	can	store	the	tuple-id	
with	each	field.	Two	attributes	will	have	the	same	tuple-id	if	they	belong	to	the	same	tuple.	

	

4.1.	Column-Oriented	file	operations	

Implement	an	executable	to	create	a	column	store	from	a	CSV	file:	

	



	 	 	

		15	

Implement	an	executable:	

	

that	performs	the	following	parametrized	SQL	query.	Note	that	the	selection	predicate	is	on	the	
same	attribute	that	is	returned	by	the	query.	

	

Implement	an	executable:	

	

that	performs	the	following	parametrized	SQL	query:	

	

4.2.	Experiment	

Measure	the	performance	of	csv2colstore	against	different	page	sizes.	

1. Compare	the	result	with	that	of	csv2heapfile	 in	the	previous	section.	Comment	on	the	
difference.	

2. Compare	the	performance	of	select2	with	that	of	select	in	the	previous	section.	Comment	
on	the	difference.	

3. Compare	the	performance	of	select3	with	that	of	select	and	select2.	Comment	on	the	
difference	especially	with	respect	to	different	selection	ranges	(different	values	of	start	
and	end).	



	 	 	

		16	

5.	Organize	your	submission	

	

	
	

6.	Deliverables	
1. A	tar	ball	named	a1-part2.tar.gz	 that	 includes	all	project	files	 i.e.	c/c++	files,	makefile,	

scripts,	plots,	report.	Make	sure	that	you	can	tar/untar	your	file	on	CDF	successfully.	if	we	
cannot	untar	the	file,	your	assignment	will	not	be	marked.	

2. A	maximum	4	pages	report	in	pdf	format.	


