
Evaluation	of	Relational	Operations:	
Other	Techniques

Chapter	14
Sayyed	Nezhadi



Schema	for	Examples

• Reserves:
– Each	tuple	is	40	bytes	long,		100	tuples	per	page,	1000	
pages.

• Sailors:
– Each	tuple	is	50	bytes	long,		80	tuples	per	page,	500	
pages.	

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)



Last	Week

• Index	nested	loop

• Sort-merge	join



Simple	Nested	Loops	Join

• For	each	tuple in	the	outer relation	R,	we	scan	the	
entire	inner relation	S.	
– Cost:		M	+		pR *	M	*	N		=		1000	+	100*1000*500		I/Os.

• Page-oriented	Nested	Loops	join: For	each	page of	R,	
get	each	page of	S,	and	write	out	matching	pairs	of	
tuples <r,	s>,	where	r is	in	R-page	and	S	is	in	S-page.
– Cost:		M	+	M*N	=	1000	+	1000*500
– If	smaller	relation	(S)	is	outer,	cost	=	500	+	500*1000		

foreach tuple r in R do
foreach tuple s in S do

if ri == sj then add <r, s> to result



Block	Nested	Loops	Join

• Use	one	page	as	an	input	buffer	for	scanning	the	
inner	S,	one	page	as	the	output	buffer,	and	use	all	
remaining	pages	to	hold	``block’’	of	outer	R.
– For	each	matching	tuple	r	in	R-block,	s	in	S-page,	add						
<r,	s>	to	result.		Then	read	next	R-block,	scan	S,	etc.

. . .
. . .

R & S
Hash table for block of R

(k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result



Examples	of	Block	Nested	Loops
• Cost:		Scan	of	outer	+		#outer	blocks	*	scan	of	inner

– #outer	blocks	=
• With	Reserves	(R)	as	outer,	and	100	pages	of	R:

– Cost	of	scanning	R	is	1000	I/Os;		a	total	of	10	blocks.
– Per	block	of	R,	we	scan	Sailors	(S);		10*500	I/Os.
– If	space	for	just	90	pages	of	R,	we	would	scan	S	12	times.

• With	100-page	block	of	Sailors	as	outer:
– Cost	of	scanning	S	is	500	I/Os;	a	total	of	5	blocks.
– Per	block	of	S,	we	scan	Reserves;			5*1000	I/Os.

• With	sequential	reads considered,	analysis	changes:		
may	be	best	to	divide	buffers	evenly	between	R	and	S.

é ù# /of pages of outer blocksize



Hash-Join
• Partition	both	

relations	using	hash	
fn	h:		R	tuples	in	
partition	i	will	only	
match	S	tuples	in	
partition	i.

v Read in a partition 
of R, hash it using 
h2 (<> h!). Scan 
matching partition 
of S, search for 
matches.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output 
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original 
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .



Observations	on	Hash-Join

• #partitions	k	<=	B-1	(why?),	and	B-2	>	size	of	largest	
partition to	be	held	in	memory.		Assuming	uniformly	
sized	partitions,	and	maximizing	k,	we	get:
– k=	B-1,		and	M/(B-1)	<	B-2,		i.e.,		B	must	be	>	

• If	we	build	an	in-memory	hash	table	to	speed	up	the	
matching	of	tuples,	a	little	more	memory	is	needed.

• If	the	hash	function	does	not	partition	uniformly,	one	
or	more	R	partitions	may	not	fit	in	memory.		Can	apply	
hash-join	technique	recursively	to	do	the	join	of	this	R-
partition	with	corresponding	S-partition.

M



Cost	of	Hash-Join

• In	partitioning	phase,	read+write both	relns;	
2(M+N).	In	matching	phase,	read	both	relns;	M+N
I/Os.

• In	our	running	example,	this	is	a	total	of	4500	I/Os.
• Sort-Merge	Join	vs.	Hash	Join:

– Given	a	minimum	amount	of	memory	(what	is	this,	for	
each?)	both	have	a	cost	of	3(M+N) I/Os.		Hash	Join	
superior	on	this	count	if	relation	sizes	differ	greatly.		
Also,	Hash	Join	shown	to	be	highly	parallelizable.

– Sort-Merge	less	sensitive	to	data	skew;	result	is	sorted.



General	Join	Conditions
• Equalities	over	several	attributes	(e.g.,		R.sid=S.sid AND
R.rname=S.sname):
– For	Index	NL,	build	index	on <sid,	sname> (if	S	is	inner);	or	
use	existing	indexes	on	sid or	sname.

– For	Sort-Merge	and	Hash	Join,	sort/partition	on	combination	
of	the	two	join	columns.

• Inequality	conditions	(e.g.,		R.rname <	S.sname):
– For	Index	NL,	need	(clustered!)	B+	tree	index.

• Range	probes	on	inner;	#	matches	likely	to	be	much	higher	than	for	
equality	joins.

– Hash	Join,	Sort	Merge	Join	not	applicable.
– Block	NL	quite	likely	to	be	the	best	join	method	here.



Using	an	Index	for	Selections
• Cost	depends	on	#qualifying	tuples,	and	clustering.

– Cost	of	finding	qualifying	data	entries	(typically	small)	plus	
cost	of	retrieving	records	(could	be	large	w/o	clustering).

– In	example,	assuming	uniform	distribution	of	names,	about	
10%	of	tuples	qualify	(100	pages,	10000	tuples).		With	a	
clustered	index,	cost	is	little	more	than	100	I/Os;	if	
unclustered,	upto 10000	I/Os!

• Important	refinement	for	unclustered indexes:		
1.	Find	qualifying	data	entries.
2.	Sort	the	rid’s of	the	data	records	to	be	retrieved.
3.	Fetch	rids	in	order.		This	ensures	that	each	data	page	is	
looked	at	just	once	(though	#	of	such	pages	likely	to	be	
higher	than	with	clustering).	



Two	Approaches	to	General	Selections
• First	approach: Find	the	most	selective	access	path,	
retrieve	tuples	using	it,	and	apply	any	remaining	terms	
that	don’t	match the	index:
– Most	selective	access	path: An	index	or	file	scan	that	we	
estimate	will	require	the	fewest	page	I/Os.

– Terms	that	match	this	index	reduce	the	number	of	tuples	
retrieved;	other	terms	are	used	to	discard	some	retrieved	
tuples,	but	do	not	affect	number	of	tuples/pages	fetched.

– Consider	day<8/9/94	AND	bid=5	AND	sid=3. A	B+	tree	index	
on	 day	can	be	used;	then,	bid=5 and	sid=3	must	be	checked	
for	each	retrieved	tuple.		Similarly,	a	hash	index	on	<bid,	
sid>	could	be	used;	day<8/9/94must	then	be	checked.



Intersection	of	Rids
• Second	approach (if	we	have	2	or	more	matching	
indexes	that	use	Alternatives	(2)	or	(3)	for	data	
entries):
– Get	sets	of	rids	of	data	records	using	each	matching	index.
– Then	intersect these	sets	of	rids	(we’ll	discuss	intersection	
soon!)

– Retrieve	the	records	and	apply	any	remaining	terms.
– Consider	day<8/9/94	AND	bid=5	AND	sid=3. If	we	have	a	B+	
tree	index	on	day and	an	index	on	sid,	both	using	
Alternative	(2),	we	can	retrieve	rids	of	records	satisfying	
day<8/9/94	using	the	first,	rids	of	recs	satisfying	sid=3 using	
the	second,	intersect,	retrieve	records	and	check	bid=5.



The	Projection	Operation

• An	approach	based	on	sorting:
– Modify	Pass	0	of	external	sort	to	eliminate	unwanted	fields.		
Thus,	runs	of	about	2B	pages	are	produced,	but	tuples in	
runs	are	smaller	than	input	tuples.		(Size	ratio	depends	on	#	
and	size	of	fields	that	are	dropped.)

– Modify	Pass	0	&	merging	passes	to	eliminate	duplicates.
Thus,	number	of	result	tuples smaller	than	input.		
(Difference	depends	on	#	of	duplicates.)

– Cost:		In	Pass	0,	read	original	relation	(size	M),	write	out	
same	number	of	smaller	(distinct)	tuples.		In	merging	
passes,	fewer	tuples written	out	in	each	pass.		Reserves:	
1000	input	pages	reduced	to	250	in	Pass	0	if	size	ratio	is	
0.25			

SELECT DISTINCT
R.sid, R.bid

FROM Reserves R



Projection	Based	on	Hashing
• Partitioning	phase:		Read	R	using	one	input	buffer.		For	
each	tuple,	discard	unwanted	fields,	apply	hash	
function	h1 to	choose	one	of	B-1	output	buffers.
– Result	is	B-1	partitions	(of	tuples	with	no	unwanted	fields).		
2	tuples	from	different	partitions	guaranteed	to	be	distinct.

• Duplicate	elimination	phase:		For	each	partition,	read	
it	and	build	an	in-memory	hash	table,	using	hash	fn h2
(<>	h1)	on	all	fields,	while	discarding	duplicates.
– If	partition	does	not	fit	in	memory,	can	apply	hash-based	
projection	algorithm	recursively	to	this	partition.

• Cost: For	partitioning,	read	R,	write	out	each	tuple,	
but	with	fewer	fields.		This	is	read	in	next	phase.



Discussion	of	Projection

• Sort-based	approach	is	the	standard;	better	handling	of	
skew	and	result	is	sorted.		

• If	an	index	on	the	relation	contains	all	wanted	
attributes	in	its	search	key,	can	do	index-only scan.
– Apply	projection	techniques	to	data	entries	(much	smaller!)

• If	an	ordered	(i.e.,	tree)	index	contains	all	wanted	
attributes	as	prefix	of	search	key,	can	do	even	better:
– Retrieve	data	entries	in	order	(index-only	scan),	discard	
unwanted	fields,	compare	adjacent	tuples	to	check	for	
duplicates.



Set	Operations
• Intersection	and	cross-product	special	cases	of	join.
• Union	(Distinct)	and	Except	similar;	we’ll	do	union.
• Sorting	based	approach	to	union:

– Sort	both	relations	(on	combination	of	all	attributes).
• Remove	duplicates?		(if	not	base	relations)

– Scan	sorted	relations	and	merge	them.
– Alternative:		Merge	runs	from	Pass	0	for	both relations.

• Hash	based	approach	to	union:
– Partition	R	and	S	using	hash	function	h.
– For	each	S-partition,	build	in-memory	hash	table	(using	h2),	scan	
corresponding	R-partition	and	add	tuples to	table	while	
discarding	duplicates.



Aggregate	Operations	(AVG,	MIN,	etc.)
• Without	grouping:

– In	general,	requires	scanning	the	relation.
– Given	index	whose	search	key	includes	all	attributes	in	the	SELECT
(if	there	is	no	WHERE),	can	do	index-only	scan.		

• With	grouping:
– Sort	on	group-by	attributes,	then	scan	relation	and	compute	
aggregate	for	each	group.		(Can	improve	upon	this	by	combining	
sorting	and	aggregate	computation.)

– Similar	approach	based	on	hashing	on	group-by	attributes.
– Given	tree	index	whose	search	key	includes	all	attributes	in	SELECT,	

WHERE	and	GROUP	BY	clauses,	can	do	index-only	scan;		if	group-by	
attributes	form	prefix	of	search	key,	can	retrieve	data	
entries/tuples in	group-by	order.



Impact	of	Buffering

• If	several	operations	are	executing	concurrently,	
estimating	the	number	of	available	buffer	pages	is	
guesswork.

• Repeated	access	patterns	interact	with	buffer	
replacement	policy.
– Nested	Join
– e.g.,	Inner	relation	is	scanned	repeatedly	in	Simple	
Nested	Loop	Join.		With	enough	buffer	pages	to	hold	
inner,	replacement	policy	does	not	matter.		Otherwise,	
MRU	is	best,	LRU	is	worst	(sequential	flooding).

– Does	replacement	policy	matter	for	Block	Nested	Loops?
– What	about	Index	Nested	Loops?	Sort-Merge	Join?



Highlights	of	System	R	Optimizer

• Impact:
– Most	widely	used	currently;	works	well	for	<	10	joins.

• Cost	estimation:		Approximate	art	at	best.
– Statistics,	maintained	in	system	catalogs,	used	to	estimate	
cost	of	operations	and	result	sizes.

– Considers	combination	of	CPU	and	I/O	costs.
• Plan	Space:		Too	large,	must	be	pruned.

– Only	the	space	of	left-deep	plans	is	considered.
• Left-deep	plans	allow	output	of	each	operator	to	be	pipelined into	
the	next	operator	without	storing	it	in	a	temporary	relation.

– Cartesian	products	avoided.



Cost	Estimation

• For	each	plan	considered,	must	estimate	cost:
– Must	estimate	cost of	each	operation	in	plan	tree.

• Depends	on	input	cardinalities.
• We’ve	already	discussed	how	to	estimate	the	cost	of	
operations	(sequential	scan,	index	scan,	joins,	etc.)

– Must	also	estimate	size	of	result	for	each	
operation	in	tree!
• Use	information	about	the	input	relations.
• For	selections	and	joins,	assume	independence	of	
predicates.



Size	Estimation	and	Reduction	Factors

• Consider	a	query	block:
• Maximum	#	tuples	in	result	is	the	product	of	the	
cardinalities	of	relations	in	the	FROM clause.

• Reduction	factor	(RF)	associated	with	each term
reflects	the	impact	of	the	term in	reducing	result	size.		
Result cardinality =	Max	#	tuples		*		product	of	all	RF’s.
– Implicit	assumption that	terms are	independent!
– Term	col=value	has	RF	1/NKeys(I),	given	index	I	on	col
– Term	col1=col2	has	RF	1/MAX(NKeys(I1),	NKeys(I2))
– Term col>value	has	RF	(High(I)-value)/(High(I)-Low(I))

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk



Motivating	Example

• Cost:		500+500*1000	I/Os
• By	no	means	the	worst	plan!	
• Misses	several	opportunities:	

selections	could	have	been	`pushed’	
earlier,	no	use	is	made	of	any	
available	indexes,	etc.

• Goal	of	optimization:		To	find	more	
efficient	plans	that	compute	the	
same	answer.	

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5
Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

RA Tree:

Plan:



Alternative	Plans	1	
(No	Indexes)

• Main	difference:		push	selects.
• With	5	buffers,	cost	of	plan:

– Scan	Reserves	(1000)	+	write	temp	T1	(10	pages,	if	we	
have	100	boats,	uniform	distribution).

– Scan	Sailors	(500)	+	write	temp	T2	(250	pages,	if	we	
have	10	ratings).

– Sort	T1	(2*2*10),	sort	T2	(2*4*250),	merge	(10+250)
– Total:		4060	page	I/Os.

Reserves Sailors

sid=sid

bid=100 

sname(On-the-fly)

rating > 5
(Scan;
write to 

temp T1)
(Scan;
write to
temp T2)

(Sort-Merge Join)



Buffered	Nested	Loop(BNL)

• Buffered	Nested	Loop
– Bring	pages	to	memory	in	Groups
– Hash	the	pages
– Scan	the	second	table	to	find	matches
– For	each	3	page	block	from	T1,	scan	the	entire	T2	

• BNL,	join	cost	=	10+4*250,	total	cost	=	2770,	why?
• If	we	`push’	projections,	T1	has	only	sid,	T2	only	sid and	

sname:
– T1	fits	in	3	pages,	cost	of	BNL	drops	to	under	250	pages,	total	<	

2000.



Alternative	Plans	2
With	Indexes

• With	clustered	index	on	bid	of	Reserves,	
we	get	100,000/100	=		1000	tuples	on	
1000/100	=	10	pages.

• INL	with	pipelining (outer	is	not	
materialized).

❖ Decision not to push rating>5 before the join is based on 
availability of sid index on Sailors.

❖ Cost: Selection of Reserves tuples (10 I/Os); for each, 
must get matching Sailors tuple (1000*1.2); total 1210 I/Os.

❖ Join column sid is a key for Sailors.
–At most one matching tuple, unclustered index on sid OK.

–Projecting out unnecessary fields from outer doesn’t help.
Reserves

Sailors

sid=sid

bid=100 

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to 
temp)

(Index Nested Loops,
with pipelining )

(On-the-fly)



Summary
• There	are	several	alternative	evaluation	algorithms	for	each	

relational	operator.
• A	query	is	evaluated	by	converting	it	to	a	tree	of	operators	and	

evaluating	the	operators	in	the	tree.
• Must	understand	query	optimization	in	order	to	fully	understand	the	

performance	impact	of	a	given	database	design	(relations,	indexes)	
on	a	workload	(set	of	queries).

• Two	parts	to	optimizing	a	query:
– Consider	a	set	of	alternative	plans.

• Must	prune	search	space;	typically,	left-deep	plans	only.
– Must	estimate	cost	of	each	plan	that	is	considered.

• Must	estimate	size	of	result	and	cost	for	each	plan	node.
• Key	issues:	Statistics,	indexes,	operator	implementations.


