
OVERVIEW	OF	TRANSACTION
MANAGEMENT

CSC443,	Winter	2018
Sayyed	Nezhadi

Chapter	16

Important	Properties	of	Transactions
ACID

• Atomic: either	all	actions	are	carried	out	or	none	are	(e.g.	
when	a	system	crash	occurs)

• Consistency: each	transaction	preserves	the	consistency	of	
the	database	(database	constraints	are	preserved)

• Isolation: it	appears	to	the	user	as	if	only	one	transaction	
executes	at	a	time	(even	if	the	DBMS	interleaves	the	
actions	of	several	transactions	for	performance	reasons)

• Durability: the	effects	of	transaction	persist	even	if	the	
system	crashes	before	all	its	changes	are	reflected	on	
disk

Transactions	and	Schedules
• A	transaction	is	seen	by	the	DBMS	as a	series,	or	list,	of	

actions.
• The	actions	that	can	be	executed	by	a	transaction	

include	reads (RT(O))and	writes (WT(O)) of	database	
objects (O).

• Each	transaction	must	specify	as	its	final	action	either	
commit (CommitT)	(i.e.,	complete	successfully)	or	abort
(AbortT)	(i.e.,	terminate	and	undo	all	the	actions	carried	
out	thus	far).

• A	schedule is	a	list	of	actions	(reading,	writing,	aborting,	
or	committing)	over	a	set	of	transactions in	a	sequence
that	they	need	to	be	executed.	

Assumptions
• Transactions	interact	with	each	other	only	via	
database	read	and	write	operations;	for	
example,	they	are	not	allowed	to	exchange	
messages.

• A	database	is	a	collection	of	independent	
objects.	When	objects	are	added	to	or	
deleted	from	a	database	or	there	are	
relationships	between	database	objects	that	
we	want	to	exploit	for	performance,	some	
additional	issues	arise.

Example:	A	Schedule	Involving	Two	
Transactions

T1 T2
R(A)
W(A)

R(B)
W(B)

R(C)
W(C)

☛ For simplicity, we omit subscripts T1 & T2. We also
assume there is a Commit at the end of each transaction

Concurrent	Execution
• The	DBMS	interleaves	the	actions of	different	
transactions	to	improve	performance,	but	not	all	
interleaving	should	be	allowed.

• Ensuring	transaction	isolation	while	permitting	
such	concurrent	execution	is	difficult	but	
necessary	for	performance	reasons:
– While	one	transaction	is	waiting	for	a	page	to	be	read	
in	from	disk,	the	CPU	can	process	another	
transaction.	Overlapping	I/O	and	CPU	activity	
increases	system	throughput.

– Interleaved	execution	of	a	short	transaction	with	a	
long	transaction	usually	allows	the	short	transaction	
to	complete	quickly.	

Serializability
• A	serializable	schedule over	a	set	S of	committed	
transactions is	a	schedule	whose	effect	on	any	
consistent	database	instance	is	guaranteed	to	be	
identical	to	that	of	some	complete	serial	
schedule	over	S.

T1 T2
R(A)
W(A)

R(A)
W(A)

R(B)
W(B)

R(B)
W(B)

T1 T2
R(A)
W(A)

R(A)
R(B)
W(B)

W(A)
R(B)
W(B)

Two
examples of
serializable
schedules

Anomalies	Due	to	Interleaved	Execution

Three	main	ways:

• Reading	Uncommitted	Data	(WR	Conflicts)

• Unrepeatable	Reads	(RW	Conflicts)

• Overwriting	Uncommitted	Data	(WW	
Conflicts)

Reading	Uncommitted	Data	
(WR	Conflicts)

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)

Reading	object	A	
that	is	modified	by	
T1 but	object	B is	
not	modified	yet.

Example:	
• T1	transfers	$100	from	A	to	B
• T2	increments	both	A	&	B	by	

6%

Unrepeatable	Reads	
(RW	Conflicts)

T1 T2
R(A)

R(A)
W(A)

W(B)

T2 changes	the	
value	of	object A	
that	has	been	read	
by	the	transaction
T1,	while	T1 is	still	in	
progress

Example:	

• Both	T1	&	T2	try	to	order	a	book	with	one	copy	in	stock

Overwriting	Uncommitted	Data	
(WW	Conflicts)

T1 T2
R(A)
W(A)

R(B)
W(B)

R(B)
W(B)

R(A)
W(A)

Replacing	object	B
with	an	old	value	
(T2 should	run	

after	T1)

Example:	
• T1	changes	salaries	of	A	&	B	to	

$1000
• T2	changes	them	to	$2000

Unrecoverable	Schedules

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Abort

T2 is	committed	
and	T1 cannot	
recover	value	of	

object	A

Example:	
• T1	changes	salaries	of	A	&	B	to	

$1000
• T2	changes	them	to	$2000

Note: all	actions	of	aborted	
transactions	are	to	be	undone

Lock-based	Concurrency	Control
• A	DBMS	typically	uses	a	locking	protocol	to	
ensure	that	only	serializable,	recoverable	
schedules	are	allowed	and	that	no	actions	of	
committed	transactions	are	lost	while	undoing	
aborted	transactions.

• A	lock is	a	small	bookkeeping	object	associated	
with	a	database	object.

• A	locking	protocol	is	a	set	of	rules	to	be	followed	
by	each	transaction	to	ensure	the	net	effect	is	
identical	to	executing	all	transactions	in	same	
serial	order.

• Different	locking	protocols	use	different	types	of	
locks,	such	as	shared	locks	or	exclusive	locks.

Strict	Two-Phase	Locking	(Strict	2PL)
• The	most	widely	used	locking	protocol.
• Has	two	rules:
– If	a	transaction	T	wants	to	read (respectively,	
modify)	an	object,	it	first	requests	a	shared
(respectively,	exclusive)	lock	on	the	object.

– All	locks	held	by	a	transaction	are	released	when	
the	transaction	is	completed.

• Shared	lock	(ST(O)):	other	transactions	can	read	but	
not	write.

• Exclusive	lock	(XT(O)):	no	other	transactions	can	read	
or	write

Notes	about	Strict	2PL
• A	transaction	that	has	an	exclusive	lock	can	also	read	
the	object;	an	additional	shared	lock	is	not	required.

• A	transaction	that	has	an	exclusive	lock	can	also	read	
the	object;	an	additional	shared	lock	is	not	required.

• The	DBMS	keeps	track	of	the	locks	it	has	granted	
and	ensures	that	if	a	transaction	holds	an	exclusive	
lock	on	an	object,	no	other	transaction	holds	a	
shared	or	exclusive	lock	on	the	same	object.

Example:	Uncommitted	Data	

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
R(B)
W(B)

Commit

T1 T2
X(A)
R(A)
W(A)
X(B)
R(B)
W(B)

Commit
X(A)
R(A)
W(A)
X(B)
R(B)
W(B)

Commit

Strict	2PL

Deadlocks
• T1	is	waiting	for T2	to	release	its	lock	and T2	is	
waiting	for T1	to	release	its	lock.	Such	a	cycle	of	
transactions	waiting	for	locks	to	be	released	is	called	
a	deadlock.

T1 T2
X(A)

X(B)
Request	
X(B)

Request	
X(A)

• The	DBMS	must	either	
prevent	or	detect	(and	
resolve)	such	deadlock	
situations;	the	common	
approach	is	to	detect	and	
resolve	deadlocks.	A	simple	
way	to	identify	deadlocks	is	
to	use	a	timeout	mechanism.

