
Math 361S Lecture notes:
Algorithms, floating point arithmetic and error

Jeffrey Wong

January 11, 2018

Topics covered

• Overview

◦ Algorithms and pseudocode

◦ Design of algorithms

◦ Course themes

• Floating point arithmetic

◦ Properties

◦ Absolute/relative error

◦ Implementation on a computer

1 Introduction

1.1 A motivating example: Riemann sums

In calculus, you have studied the definite integral∫ b

a

f(x) dx.

It is defined a s a limit of Riemann sums, obtained by taking finitely many points in [a, b]
and constructing rectangles under the curve (see Figure). More than likely, you then spent
quite a bit of time establishing rules for evaluating all sorts of integrals exactly, like∫ 1

0

sin4 x dx =

(
3

8
x− 1

4
sin 2x+

1

32
sin 4x

) ∣∣∣1
0

= · · ·

Often, all we care about is a numerical answer - a number that is close enough to the real
value. Riemann sums can provide a way to approximate. The obvious disadvantage is one

1

has to do a large number of tedious computations, but a computer is happy to do that for us!
We can split the domain into N rectangles (say, of equal size) under the curve and obtain

In = area of n-rectangle approximation ≈
∫ b

a

f(x) dx.

N=)

xl, {

N-3

D L J 1

nl- 7

/t

L+ J

Even with this simple scheme, there are choices to make. The height of the rectangle can
be the maximum in that interval, the minimum (shown above), average and so on. In any
case, we get a sequence of approximations In such that

In →
∫ b

a

f(x) dx as n→∞.

In the theoretical treatment, you may recall taking a convenient choice of Riemann sum,
proving existence of the integral and moving on.

Here, we are concerned with a very different set of questions. How fast does In converge to
the answer, and how does it depend on the function f? How should the approximations be
constructed? How can the method be designed to be efficient on a computer? Answering
these questions demands a new perspective.

1.2 Algorithms

An algorithm is a sequence of steps that takes an input and returns some output. Broadly
speaking, algorithms can be considered at three levels:

Mathematical description→ Algorithm (pseudocode)→ Implementation (code)

At its most abstract, an algorithm is a sequence of mathematical steps applied to input
variables (for example, the Riemann sums of the previous section). We will often work
with this ‘high-level’ description of the algorithm, expressed in mathematical terms. Some
computational details may be left vague.

2

Algorithm 1 Fibonacci numbers: Version 1

Input: n ≥ 2, array F of length n+ 1
Output: F stores F0, · · ·Fn

F [0]← 1
F [1]← 1
for i = 2, · · ·n do

F [i]← F [i− 1] + F [i− 2]
end for

More specific is an algorithm suited for implementation on a computer. This is the level
at which the computational aspects are determined and laid out, so that one could read the
algorithm and blindly implement it on a computer. There should be no ambiguity at this
level. Such algorithms are usually written in pseudocode, a precise set of steps written in
a skeletal programming ‘language’.

Beyond this is the implementation (the code itself). Often the code and the pseudocode
are not really any different, but there can be some work to be done in translation. Here
one has to worry about all the details like memory allocation/management, variable types,
low-level optimization and so on (much of which is language or hardware specific). Such
details are usually left out of the pseudocode unless essential.

As an example, consider the Fibonacci numbers, defined by the recurrence

F0 = F1 = 1, Fj = Fj−1 + Fj−2, j ≥ 2.

An algorithm that generates the Fibonacci numbers up to Fn is shown in Algorithm 1 (type-
set using the algorithmcx package). As long as it is readable and precise, the notation in
pseudocode is up to you (there are a variety of styles).

An efficient algorithm takes into account minimizing waste (unneeded storage or compu-
tations). If instead, we wanted only to return the n-th Fibonacci number, the version above
would do extra work because we only need Fn (the last computed value). See below:

Algorithm 2 Fibonacci numbers: Version 2
Input: n ≥ 2
Output: y is the n-th Fibonacci number Fn

y ← 1 . Fi−2

z ← 1 . Fi−1

t← 0 . temp. variable
for i = 2, · · ·n− 1 do

t← z
z ← z + y
y ← t

end for
return y

3

1.3 Good algorithms and course themes

A primary goal of numerical analysis is to produce algorithms that will give good approxi-
mations to problems. Some major considerations are as follows:

• Accuracy (Is the output close to the exact value?)

◦ How should we measure ‘error’ and ‘accuracy’ for a given problem?

◦ Given a tolerance ε, can the algorithm find a solution to within ε?

◦ Can the algorithm tell us the error (how do we know the solution is close)?

• Stability/Reliability (Is it sensitive to inputs/errors?)

◦ Do small changes in inputs lead to small changes in the solution?

◦ How can we control errors that propagate through the algorithm?

◦ Is the algorithm reliable (does it work as a ‘black box’)?

• Efficiency

◦ Time efficiency: Is the algorithm fast?

◦ Space efficiency: how much memory is needed?

◦ How do the above scale with the size of the problem?

• Miscellaneous concerns

◦ Simplicity: Is it easy to implement?

◦ Is the algorithm easy to adapt/extend to new problems?

◦ Specific optimziation: Can the algorithm be designed to exploit software/hardware
advantages (multii-threading, GPUs, vectorization, distributed computing...)

A perfect algorithm would be one that is accurate, efficient, and works on a broad set
of problems. Such algorithms are rare - most of the time, there are trade-offs involved.
Studying the theory of numerical analysis will help to build intuition that will allow you
to solve numerical prolems in the right way and develop algorithms. Here are a few broad
themes to keep in mind:

• Not all calculations are equal: In pure theory, results are either true or false. A
true expression is correct, however it is computed. For a numerical method, there are
always errors introduced at each step. The way computations are done can have a
dramatic effect on the quality of the result. In particular, there are some things that
are fine when numbers are exact, and a disaster when they are not. For example, you
know the roots of ax2 + bx+ c = 0 are

x = − b
2
± 1

2

√
b2 − 4ac,

but this formula is not always a good way to compute numerical roots!

4

• Errors propagate: As mentioned above, error is a fact of life with numerical methods.
Every variable (say, x) in an algorithm is really x + ε for some unknown error ε, and
that error gets sent through the algorithm. We will therefore need to understand how
to track error through an algorithm - does it grow, or shrink, and by how much? Doing
so will necessitate developing the appropriate analytical tools.

• Be precise about ‘error’ and ‘approximation’: In using an algorithm, it is tempt-
ing to call an answer close enough. Part of numerical analysis is understanding how
to quantify and bound error, which lets us make precise statements about the answer.
If it is poor, is it because of rounding error? How much work do we need to do to
get an answer to a certain accuracy? We can answer these questions without vague
hand-waving, and defend the result with confidence.

• When do you trust the result? A similar point to the above. Applying an al-
gorithm in practice requires an understanding of the method. Otherwise, you are
throwing inputs into a black box and hoping the result is correct. With a background
in numerical analysis, you will have ways to know when to trust an output - and how
to get the method to work correctly. A method is often happy to produce an output
that is completely wrong - and it is up to you to figure that out.

• Perfect algorithms don’t exist... mostly: We have a large number of demands
to make of algorithms (as noted above). For most problems, it is too much to ask
for everything. For this reason, we will need to develop many approaches to solve the
same problem - each of which has advantages and disadvantages. Understanding when
a method is good or not requires understanding the theory in depth - how properties
of functions and so on affect the algorithm.

2 Floating point numbers

2.1 Floating point arithmetic

2.1.1 Error (absolute/relative)

Suppose we have an approximation x̃ to an exact result x. The absolute error is

eabs = |x̃− x|

and the relative error is

erel =
|x̃− x|
|x|

.

Notation: Symbols used for relative and absolute error may vary. When the quantities are
needed, we will use whatever notation is convenient. Often ε, δ or ∆ are used, but these also
often have other meanings.

5

Note that the relative error is not defined when the exact solution is x = 0.

If wehave an estimate for eabs and want erel but do not know the exact solution x, then
it is tempting to divide by x̃ instead:

erel =
eabs
|x|
≈ eabs
|x̃|

.

It is not always true that this gives a good estimate for the relative error. However, if
used carefully it can still be useful.

2.1.2 Floating point numbers

To begin, it is important to understand how arithmetic is done on a computer. A non-zero
floating point number in base b is a number x of the form

x = ±(d0 + f)× be, f =
N∑
i=1

dib
−i = (0.d1d2 · · · dN)b (1)

with digits di ∈ {0, 1, · · · , b − 1} and d0 6= 0. Here f is called the mantissa and e is the
exponent. The subscript b is there to clarify the base (which is usually implied). You are,
of course, familiar with the base ten version, since it is the way we usually write numerical
values, e.g. c ≈ 2.998× 108 m/s. In a computer, floating point numbers are represented in
binary1, i.e. base 2. Since there are only two digits, d0 = 1 so

x = ±(1 + f)× be, f = (0.d1d2 · · · dN)2. (2)

Some examples:

3/4 = (1 + 1/2)× 2−1 = (1.1)2 (f = (0.1)2 and e = −1)

35/8 = (1 + 3/32)× 22 (f = (0.00011)2 and e = 2).

The set of numbers (2) with N digits past the decimal point and exponents in a finite range

m ≤ e ≤M

forms a system of floating point numbers F . This set is what we have to work with when
doing computations (on a computer). Note that F has a finite size, and that the numbers are
not uniformly distributed. For instance, on a number line, with N = 2 and m = −1,M = 1
the numbers look like:

lltt /^'^.)1

g;--7 g---\ <;o 8=- I

*ar1..4

l1oL lc_J- L- 11

{ (-..,'')I

I Z?o (.=- t

^/\
3 ("ot)

Irl
e=- |

1ViL L
>-l,L

Û 13

A

t---1\l

t

^/r /\J IAr^X /l-
I

L

1Unless you travel back in time to Moscow State University in the 1970s, which had a ‘ternary’ computer
that used base 3.

6

The max/min values are (1.11)2 × 21 = 3 and (1.00)2 × 2−1 = 1/2.

Note that the absolute difference between consecutive numbers grows larger as the num-
ber grows larger, but the relative differences do not. The value ε in the diagram will be
defined shortly.

2.1.3 Arithmetic, rounding, truncation

Hereafter, suppose N,m,M are fixed and we are working with the corresponding floating
point system F . We will ignore most fo the unpleasant details of arithmetic on an actual
processor2 and study a theoretical model for arithmetic in F .

Most real numbers x are not in F . Let us define

fl(x) = ‘closest’ number x̃ ∈ F to x.

To make this precise, we need a notion of ‘closest’. The obvious choice is to round x to
the nearest x̃ ∈ F by some rounding scheme3

The other approach is truncation or ‘chopping’, which throws out digits past the N -th:

0.d1d2d3 · · · dNdN+1dN+2 · · · → 0.d1 · · · dN .

A simple model of arithmetic in F is to do the exact operation then round. Define

x⊕ y = fl(x+ y), x⊗ y = fl(xy).

Addition is done by first aligning the floating point numbers to have the same exponents,
then adding them together. A base ten example is easiest; take N = 2, x = 1.03× 102 and
y = 7.89× 10−1:

1.030 × 102

+ 0.00789× 102

= 1.03789× 102

so x ⊕ y = 1.04 × 102. Notice that if y is much smaller than x then nothing will change by
adding y, e.g. if y = 7.89× 10−2 then

1.03 × 102

+ 0.000789× 102

= 1.003789× 102

2some details will be included in footnotes like these if you are interested.
3The standard is ‘round to even’: round x to the closest number in F ; if x is exactly halfway between

two numbers in cF , choose the one that ends in a zero (dN = 0). Example: (1.0101)2 and (1.0011)2 with
N = 3 both round to 1.010.

7

which rounds back to 1.04, so x⊗ y = x even though y 6= 0.

Multiplication is done by adding the exponents and multiplying the mantissas If N = 2
and x = 3.01× 106 and y = 4.56× 1015 then

xy = (3.01 · 4.56)× 1021 = 13.7256× 1021 =⇒ x⊕ y = 1.37× 1022.

Note that the floating point form makes dealing with exponents easy; no re-alignment is
required. The only potential concern is that the result ends up outside the range of allowed
values. This is called overflow (too large) or underflow (too small). The result of an
overflow is a special ‘number’ Inf, and underflow returns zero4.

2.1.4 Machine epsilon, significant digits

Define ε (machine epsilon) to be the distance from 1 to the next-closest floating point
number greater than one. For the binary floating point system F with a given N , the next
number greater than one is

1. 00 · · · 0︸ ︷︷ ︸
N−1 zeros

1 = 1 + 2−N

so ε = 2−N .

Notation: There are several definitions for machine epsilon, which lead to a difference by
a factor of two. You might see ε defined in a slightly different way, but the idea is the same.
The command eps in MATLAB returns ε as defined here.

It is not too hard to show that ε/2 is an upper bound for the relative error in representing
x by a floating point number:

|fl(x)− x|
|x|

≤ ε = 2−N . (3)

If rounding to the nearest number, the bound can be replaced by ε/2 (see homework).

For a double (default type in MATLAB/python for non-integers), N = 52 so the value
of machine epsilon is

ε = 2−52 ≈ 2.2× 10−16.

Key point: ε tells us the typical size of an error in a floating-point arithmetic operation.

The error formula (3) says that for any real number x,

fl(x) = x(1 + δ), |δ| < ε

4On a computer, enough digits are used to make sure multiplication of the mantissas is exact. In underflow,
the result is partially salvaged if not too small (‘gradual underflow’), returning a useful value instead of zero

8

where δ depends on x. This expression is useful for error analysis.
Another important concept is that of significance, which you should know from other

sciences. The significant digits for a floating-point number are the digits we know for sure -
the ones above the threshold of the error. When x is turned into fl(x), we have N significant
digits plus the last one that might be rounded:

fl(x) = d0.d1d2 · · · dN−1dN

When an approximation has an error, digits far enough to the right are never significant,
because they do not tell us anything useful. For instance if

x = 1.23456± 0.001

then we really only know that x = 1.234± 0.001. To avoid implying higher accuracy than is
true, do not report more than the significant digits in numerical results.

2.1.5 Consequences

Order matters: Unlike exact addition, floating point addition is not associative. In
general,

a⊕ (b⊕ c) 6= (a⊕ b)⊕ c

The order in which arithmetic is done can matter. For a simple example, consider arithmetic
in F with a given N and b = 2 and let ε = 2−N be machine epsilon. Note that ε/2 is the
smallest number x ∈ F such that 1 + x > 1. Now let

δ = ε/4 = 2−(N+2).

Then
1⊕ 2−(N+2) = 1.

The effects can be quite dramatic when doing many arithmetic operations. Suppose

a1 = a2 = · · · = a106 = δ, a0 = 1

and we wish to compute
∑106

n=0 an. Computing the sum in asecnding order,

1⊕ a1 ⊕ a2 ⊕ · · · a106 = 1

but, computing the sum in descending order,

a106 ⊕ a106−1 ⊕ · · · ⊕ a1 + 1 = 106δ + 1 ≈ 1 + 5× 10−11.

The issue is that the small contributions get rounded away when added to the large number;
one has to add all the small ones together first so they can accumulate.

Practical note: As a rule of thumb, it is typically a good idea to compute sums from
smallest to largest to minimize such errors.

9

Loss of significance: We can lose significance in manipulating floating point numbers,
leading to large relative errors. For example, consider (in base ten with N = 5) subtracting
real numbers a, b with floating point representations

fl(a) = 1.12345, fl(b) = 1.12334.

We get
a− b = 0.00011 =⇒ a	 b = 1.1× 10−5.

The 5 significant digits in a and b have become two. Any further digits are irrelevant, because
the are within the error in representing fl(a) and fl(b). The true answer could be anything
from 1.05× 10−5 to 1.1499 · · · × 10−5 (depending on the rounding scheme):

a− b = (1.1± 0.05)× 10−5.

The relative error is 5% even though the relative errors in a and b were quite small (0.05%).

When this sort of calculation arises in an algorithm, it may be necessary to find an alternate
method to avoid the error. For example, to find the roots of

ax2 + bx+ c = 0

the näıve approach would be to compute

x = − b

2a
± 1

2a

√
b2 − 4ac.

But if b2 ≈ 4ac then
−b+

√
b2 − 4ac

2a

might introduce errors. However, by computing the roots in another way, we can avoid the
issue entirely (see homework)!

Key point: Subtracting two equal numbers can lead to a dramatic loss of significance
and very large relative errors.

10

2.2 Floating point numbers on a computer (optional)

Computers use the IEEE standard for floating point numbers. The representation is

x = (−1)s(1 + f)× 2e−q, f = (0.d1d2 · · · dN)2

where q = 2M−1 − 1 is the bias and e is an integer with

0 ≤ e < 2M .

The exponent of the floating point number is therefore in the range

−2M−1 + 1 ≤ e− q ≤ 2M−1.

The bias is used to make the stored value e a non-negative integer.

The number is stored as an array of bits (a string of 0s and 1s). A ’single-precision’ number
(a float) has 32 bits, M = 8 and N = 23 and a ‘double-precision number’ (a double) has
M = 11 and N = 52. The convention is to list s (one bit), e (M bits) and f (N bits) in
order (left to right).

For instance, 1 stored as a double (M = 11 and N = 52) has the form

0︸︷︷︸
s=0

011111111111︸ ︷︷ ︸
e=1023

0000 · · · 0︸ ︷︷ ︸
f (52 zeros)

.

since the bias is q = 2M−1 = 1023 and e− q is zero.

There are some special cases:

• e = 0 and f = 0 (all zeros except s): The number zero. To be precise, ‘positive zero’
(+0) if s = 0 and ‘negative zero’ (−0) if s = 1, both of which are equal to zero.

• The largest value, e = 2047 is reserved to represent Inf and NaN.

• e = 0 and f 6= 0: the ‘subnormal numbers’, which are used in underflow. When a
calculation gives a number smaller than the smallest allowed value, these numbers can
be used; they have less significant digits.

The largest floating-point number is therefore

(2− 2−N)× 22M−1−1 ≈ 22M−1

and the smallest (positive) ‘normal’ number is

1× 2−2M−1+2.

For a double, the values are ≈ 1.8× 10308 and 2.2× 10−308.

11

	Introduction
	A motivating example: Riemann sums
	Algorithms
	Good algorithms and course themes

	Floating point numbers
	Floating point arithmetic (revision)
	Error (absolute/relative)
	Floating point numbers
	Arithmetic, rounding, truncation
	Machine epsilon, significant digits
	Consequences

	Floating point numbers on a computer (optional)

