
MATH 361S, SPRING 2018
HOMEWORK 1

PROBLEMS DUE WEDNESDAY, JAN. 24

Updated Jan. 16: edits in red.

Reading (for Wed. Jan. 17): Read the Guidelines for code (Piazza) and K&C 4.1 (or
other linear algebra review resources) but skip the proofs.

You may also want to read one of the MATLAB resources listed in Guidelines.

Problems

Problem 1. This is K&C 2.2.24, reproduced for convenience. In computing the infinite
sum

∑∞
n=1 xn, suppose that we want the answer with an absolute error at most some value ε

(arbitrary, not machine epsilon). Is it safe to stop the addition of terms when the magnitude
falls below ε? Illustrate by setting xn = 0.99n.

Problem 2. Consider1 the problem of finding the roots of

ax2 + bx+ c = 0

where a = c = 1 and b = 103. Suppose we are using floating point numbers in base ten with
rounding and 4 digits past the decimal (so 1.00005 rounds up to 1.0001).

i) Compute the two roots (using floating point arithmetic) with the quadratic formula

x =
−b±

√
b2 − 4ac

2a
.

Verify that one of the computed roots is zero. Why does this not make sense?

ii) Derive a new formula by multiplying the numerator/denominator by −b∓
√
b2 − 4ac.

Use it to compute the roots again. Does this work any better?

1Problem adapted from Alan J. Laub, Computational Matrix Analysis.
1

2 PROBLEMS DUE WEDNESDAY, JAN. 24

Problem 3. Let x be a real number given by

x = (1 + f)× 2e, f = (0.d1d2 · · ·)2.

Suppose we have a binary floating point system with N digits. Two schemes for fl(x) are

truncation: fl(x) = (1 + f̃)× 2e, f̃ = (0.d1d2 · · · dN)2,

rounding: fl(x) = (1 + f̃)× 2e, f̃ =

{
(0.d1d2 · · · dN)2 dN+1 = 0

(0.d1d2 · · · dN)2 + 2−N dN+1 = 1
.

(Here ties are broken by rounding up).

a) Show that if truncation is used then

|fl(x)− x|
|x|

≤ 2−N .

b) Show that if rounding is used then the bound can be improved to

|fl(x)− x|
|x|

≤ 2−(N+1).

Problem 4. Consider the problem of evaluating an n-th degree polynomial

(1) Pn(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

at a point x.

a) The algorithm below uses the formula (1) to compute Pn(x). How many operations (mul-
tiplications and additions) are required?

Algorithm 1 Näıve polynomial evaluation

Input: n ≥ 0, x ∈ R and A = [an an−1 · · · a0]
Output: y = Pn(x)
y ← a0
z ← x . stores xi

for i = 1, · · ·n− 1, n do
y ← y + zai
z ← xz

end for
return y

b) A better approach is Horner’s method, which proceeds by writing

Pn(x) = a0 + x(a1 + a2(x+ · · ·+ x(an−1 + xan)) · · ·).

Write an algorithm (in pseudocode) for calculating Pn(x) using Horner’s method. How
many operations are required?

MATH 361S, SPRING 2018 HOMEWORK 1 3

c) In MATLAB, the convention is to represent the polynomial (1) using a list A of length
n+ 1:

A = [an an−1 · · · a0]
Write a function horner(A,X) that takes a list of m points X = [x1 · · ·xm] and co-
efficient list A and outputs the polynomial evaluated at those points, i.e. the array
Y = [P (x1) · · ·P (xm)]. Turn in this code.2

d) Consider the polynomial P (x) = (x− 1)7. Written out, this is

P (x) = x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x− 1.

Compare the results of Horner’s method and the (nearly) ‘exact’ calculation (x − 1)7 in
the intervals [0.998, 1.002] and [−1.002,−0.998] (suggestion: make a plot). Comment on
the accuracy in each case (if there is a notable error, offer a plausible explanation).

Code considerations: Use element-wise operations on vectors, e.g. X.*Y to compute
[x1y1 · · ·xnyn]. If using numpy, the same can be done using the numpy array type (* acts
element-wise by default).

To initialize the output with the right shape, you may have to use zeros or ones to make
an array of all zeros/ones.

2MATLAB’s command is to do this is polyval(A,x), which uses Horner’s method.

