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1 Introduction

In numerical linear algebra, a fundamental problem is to solve the linear system

Ax = b where A is an n× n matrix , b ∈ Rn

for x ∈ Rn. When A is invertible, the exact solution is

x = A−1b.

Obtaining x numerically turns out to be more challenging - leading to a variety of methods
with different properties. Because linear systems are so ubiquitous in scientific computing, it
is essential to have efficient algorithms and methods that can be tailored to take advantage
of special advantage.

For now, we will focus on solving systems where A is n× n and invertible.

2 Triangular systems

An upper triangular matrix is a matrix A whose entries below the main diagonal (the ‘sub-
diagonal entries’) are zero:

aij = 0 for i > j.

Written out, the matrix looks like
a11 a12 . . . . . . a1n
0 a22 . . . . . . a2n
... 0

. . . . . .
...

...
...

. . . . . .
...

0 0 . . . 0 ann


Similarly, a matrix is lower triangular if the entries above the main diagonal are zero. A
matrix is unit upper/lower triangular if it is upper/lower triangular and the diagonal entries
are all ones, e.g. a unit lower triangular matrix has the form

1 0 . . . . . . 0
a21 1 . . . . . . 0

a31 a32
. . . . . .

...
...

...
. . . 1 0

an1 an2 . . . an,n−1 1



If U is upper triangular then the linear system

Ux = b

2



it is easy to solve for x using back-substitution. First use the last equation (last row) to solve
for xn:

unnxn = bn =⇒ xn = bn/unn.

Then use that in the second-to-last row to solve for xn−1:

un−1,n−1xn−1 + un−1,nxn = bn−1 =⇒ xn−1 =
1

un−1,n−1
(bn−1 − un−1,nxn) .

and in general, for the k-th row,

xk =
1

uk,k

(
bk −

n∑
i=k+1

uk,ixi

)

which involves only the values xk+1, · · ·xn we have already computed (see Algorithm 2 for
pseudocode). Note that in the inner sum, we start at the i + 1-th column since the matrix

Input: U ∈ Rn×n upper tri. and b ∈ Rn

Output: x = U−1b ∈ Rn

Require: uii 6= 0 for 1 ≤ i ≤ n
xn ← bn/unn
for i = n− 1, n− 2, · · · 1 do

xi ← bi
for j = i+ 1, · · ·n do

xi ← xi − uijxj
end for
xi ← xi/uii.

end for
return x

is upper triangular (all the entries in 1, · · · i− 1 in this row are zero).

If L is lower triangular, then the system

Lx = b

can be solved using forward substitution, the same as back substitution but starting with the
first row.

3 LU Factorization

To solve the system Ax = b, a good approach is the following:

• Find a ‘factorization’ of A into simpler parts

• Solve simpler systems involving these parts
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Here we consider one such approach: We look for an LU factorization

A = LU

where L is lower triangular and U is upper triangular. Then the system Ax = b can be
solved via the following:

1) Find the LU factorization A = LU

2) Solve Ly = b using forward substitution

3) Solve Ux = y using backward substitution

One benefit of this structure is that step (1) can be completed independent of the other two.
Thus , once (1) is done, we can solve Ax = b for a variety of b’s without having to re-compute
L and U , saving some work.

MATLAB: LU factorization (with pivoting, which we will discuss later) is done using
[L,U] = lu(A). Then the system can be solved using x = U \ (L \ b). The backslash
command will automatically know to use the correct method for the forward/backward
solves.

4 Gaussian elimination

4.1 Row operations

Gaussian elimination, in turns out, is a good approach. You are (hopefully) familiar with
the method, but we will develop the algorithm in excruiating detail in order to illustrate
some key concepts and lay a foundation for later analysis of the algorithm from a numerical
perspective.

Recall that a linear system
Ax = b

can be reduced by applying elementary row operations on the rows R1, · · ·Rn of the system.
Each operation is equivalent to left multiplying A by a certain matrix E. This gives us an
‘algorithmic’ description (do x to rows, etc.) and a ‘matrix’ description (A→ EA).

There are three RO’s, listed below with an example for a 3 × 3 matrix. Notice that in
general, the matrix form E is obtained by applying the RO to the identity matrix I.

• Scaling: Ri → λRi, e.g.

R1 → λR1 =⇒ E =

λ 0 0
0 1 0
0 0 1

 .
We will use this matrix later when improving some algorithms.
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• Swapping (permutation of rows): Ri ↔ Rj, e. g.

R1 → λR2 =⇒ E =

0 1 1
0 0 0
0 0 1

 .
• Adding a mult. of a row to another: Ri → Ri − λRj, e.g.

R1 → λR1 =⇒ E =

 1 0 0
−λ 1 0
0 0 1

 .
4.2 Algorithm

The process for reducing A using Gaussian elimination is straightforward, if a little tedious
to write out. Let A(k) be the matrix after the first k − 1 columns are reduced. We reduce
the matrix column-by-column, ending up with an upper triangular matrix:

A(1) −−−→
reduce
col. 1

A(2) −−−→
reduce
col. 2

· · · −−−−−→
reduce

col. n−1

A(n) = U

Let Ri be short for ‘i-th row’ and let a
(k)
ij be the (i, j) entry of A(k). The algorithm (in

mathematical notation) is as follows:

• Set L to be the n× n identity matrix

• For columns k = 1, · · · , n− 1, do the following to reduce the k-th column of A(k):

◦ For i = i+ 1, · · ·n, replace the row Ri with Ri − τikRk where

τik = a
(k)
ik /a

(k)
kk .

is the multiplier that zeros the (i, j) entry.

◦ Record τij in the (i, j) entry of L.

The result is that A is reduced to an upper triangular matrix U . It turns out that A = LU
where L is the unit lower triangular matrix of multipliers, which we will prove shortly.

Theorem. If a
(k)
kk 6= 0 at each step k = 1, · · ·n − 1 then A = LU where U is the upper

triangular matrix obtained by Gaussian elimination and L is the unit lower triangular matrix
of multipliers: 

1 0 . . . . . . 0
τ21 1 . . . . . . 0

τ31 τ32
. . . . . .

...
...

...
. . . 1 0

τn1 τn2 . . . τn,n−1 1


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The first part is easy to see; the condition guarantees all the steps of the algorithm work,
and it is clear that the reduced matrix is upper triangular. The last part requires a little
more work, and will be proven shortly.

Algorithm 1 does Gaussian elimination as described above. It is important to be careful
and do only the operations that are needed. Note that:

• For the k-th column, we do not have to do anything to the first k − 1 columns or the
first k − 1 rows.

• Furthermore, the sub-diagonal entries in the k-th will end up zero, so we do not need
to compute aik − (aik/akk)akk = 0.

Thus the inner loops only iterate over entries (i, j) with k + 1 ≤ i, j ≤ n (the entries below
the k-th row and to the right of the k-th column). 1

Algorithm 1 Gaussian Elimination: basic algorithm

Input: A ∈ Rn×n and space for L
Output: U stored in A and L
L← n× n identity matrix
for k = 1, 2, · · ·n− 1 do . Reduce k-th column

for i = k + 1, · · ·n do . Update i-th row (below diagonal)
m← aik/akk
for j = k + 1, · · ·n do . move along columns of the row to update

aij ← aij −makj
end for
`ik ← m

end for
end for

4.3 Example

Consider the linear system
Ax = b

where

A =

2 −1 1
3 3 9
3 3 5

 , b =

1
0
1

 .
1There are a few other considerations at the implementation level, since the efficiency arithmetic over

vectors and rows/columns of matrices depends on the way the values are stored in memory. Certain ordering
of loops can have advantages. In MATLAB/python, such issues are hidden from the user. We may discuss
it in class if time permits. See Golub & Van Loan,x Matrix Computations for a good explanation.
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Entries that are changed in the given step are shown in red.

A :

2 −1 1
3 3 9
3 3 5

 R2→R2−3/2R1

R3→R3−3/2R2
=========⇒

2 −1 1
0 9/2 15/2
0 9/2 7/2

 R3→R3−R2=======⇒

2 −1 1
0 9/2 15/2
0 0 −4



L :

1 0 0
0 1 0
0 0 0

 =========⇒

 1 0 0
3/2 1 0
3/2 0 1

 =======⇒

 1 0 0
3/2 1 0
3/2 1 1


The result is that A = LU where

L =

 1 0 0
3/2 1 0
3/2 1 1

 , U =

2 −1 1
0 9/2 15/2
0 0 −4

 .
Now we solve Ax = b by first solving

Ly = b ⇐⇒

 1 0 0
3/2 1 0
3/2 1 1

y1y2
y3

 =

1
0
1


using forward substitution to obtain y1 = 1, then

3y1/2 + y2 = 0 =⇒ y2 = −3/2

and y3 = 1. Then, finally, solve Ux = y using back substitution.

If we do not need the LU factorization itself, the more familiar augmented matrix method
where we instead apply the row operations also to b and ignore constructing L:1

0
1

 R2→R2−3/2R1

R3→R3−3/2R2
=========⇒

 1
−3/2
−1/2

 R3→R3−R2=======⇒

 1
−3/2

1


This gives us y, and then we solve Ux = y using back substitution. Thus this method is
equivalent to doing the forward substitution Ly = b in parallel to the reduction of A.

4.4 Economizing storage

One more improvement can be made by observing that once an entry is zeroed out in A,
that space is free to use. The multipliers can be stored there instead of allocating a separate
matrix. The diagonal entries of L are all ones, so they do not need to be stored at all.

The output is then the matrix A where the entries on/above the diagonal form U , and
the ones below the diagonal form L. In compact form, the previous example goes like this:2 −1 1

3 3 9
3 3 5

 R2→R2−3/2R1

R3→R3−3/2R2
=========⇒

 2 −1 1
3/2 9/2 15/2
3/2 9/2 7/2

 R3→R3−R2=======⇒

 2 −1 1
3/2 9/2 15/2
3/2 1 −4


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and the output would be that A stores the data 2 −1 1
3/2 9/2 15/2
3/2 1 −4

 .
The key thing is to remember that the variable A now houses L and U and not the original
matrix. Doing so is okay as long as we only want to solve linear systems Ax = b and don’t
need the entries of A for anything else.

Algorithm 2 Gaussian Elimination: compact storage

Input: A ∈ Rn×n

Output: L and U both stored in A
for k = 1, 2, · · ·n− 1 do

for i = k + 1, · · ·n do
m← aik/akk
for j = k + 1, · · ·n do

aij ← aij −makj
end for
aik ← m

end for
end for
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4.5 Theory

The theoretical treatment here illustrates a common theme in numerical linear algebra: a
description of the algorithm in terms of matrices is often more useful in proofs than the
‘algorithmic’ one (like the pseudocode).

4.5.1 Some preliminaries:

The outer product of an 1×m column vector v and 1× n column vector w is

vwT

which is an m × n matrix whose (i, j)-th entry is viwj. The outer product contains all
possible pairwise products of elements in v and w. Note that if v, w ∈ Rn and the order is
reversed, we instead get the dot product

vTw = wTv

which is a scalar.

The standard basis vectors ~e1, · · ·~en for Rn are defined to be column vectors where ~ek has
1 in its k-th entry and zeros in all other entries. These vectors have nice properties, for
instance:

eie
T
j = matrix with (i, j) entry 1, all others 0.

Taking the dot product of ei with x ∈ Rn ‘selects’ the i-th element:

eTi x = xi.

Similarly, for a square matrix A,

eTi A = i-th row of A, Aei = i-th column of A.

Lastly, note that if M,A are matrices and A has columns ~x1, ~x2, · · · ~xn then

MA =
[
M~x1 M~x2 · · · M~xn

]
i.e. MA is obtained by applying M to each of the columns of A.

MATLAB note: Vectors are actually matrices in Matlab, either row vectors (1 × n)
or column vectors (n× 1). If you have two row vectors v and w then v*w’ will give the
inner product, v’*w will give the n × n outer product and v*w will give an error (in
Matlab, ’ is transpose). This is a common source of error.

Further remark (valid only for r2017 and up): If v,w are both row or column
vectors then he elementwise v.*w will return the vector whose i-th entry is viwi, with
the same shape as v and w.

However, if v is a row vector and w is a column vector, then v.*w will (unexpectedly)
return the outer product.
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4.5.2 Row reduction as a matrix

First we construct the matrix that reduces a column in general. Given a vector x ∈ Rn, we
seek a matrix that zeros out elements k + 1, · · · , n of x and leaves the rest untouched:

M



x1
...
xk
xk+1

...
xn


=



x1
...
xk
0
...
0


.

This matrix is the composition of row operations to zero out the k + 1 to n elements of ~x.
By applying these row operations to the identity matrix, we find that

M =



1 0 . . . . . . . . . 0

0
. . . . . . . . . . . .

...
...

. . . 1
. . . . . .

...
...

. . . −xk+1/xk 1
. . .

...
...

. . .
...

. . . . . . 0
0 . . . −xn/xk . . . 0 1


︸︷︷︸

k-th col.

The matrix can be compactly written in terms of an outer product:

M = I − ~veTk , ~v =



0
...
0

xk+1/xk
...

xn/xk


.

i.e. ~vi = 0 for i ≤ k and ~vi = xi/xk for i > k. This fact is easily verified by computing

(Mx)i = xi − (eTk x)~vi = xi − xk~vi =

{
xi i ≤ k

0 i > k.

It is also easy to check that
M−1 = I + ~veTk . (1)

This is because M is inverted by doing the same row operations with a minus sign in reverse
order (i.e. Ri → Ri − λRk is inverted by doing Ri → Ri + λRk). One could also check by
verifying MM−1 = I using (1).
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4.5.3 Matrix form of the algorithm

Recall that A(1) = A and that A(k) is the the matrix after zeroing out sub-diagonal entries
in the first k − 1 columns. Denote the row operations need to reduce the k-th column by
Mk. Then the path to U is

A(1) −−→
M1

A(2) −−→
M2

· · · −−−→
Mn−1

A(n) = U

where U (the result) is an upper triangular matrix. Because row operations are matrices,
we can define Mk to be the matrix such that

A(k+1) = MkA
(k).

The matrix Mk reduces the k-th column of A(k), so by the previous discussion,

Mk = I − v(k)eTk , v
(k)
i =

{
0 i ≤ k

τik i > k

where τik = akik/a
(k)
kk are the multipliers as before. Explicitly,

Mk =



1 0 . . . . . . . . . 0

0
. . . . . . . . . . . .

...
...

. . . 1
. . . . . .

...
...

. . . −τik 1
. . .

...
...

. . .
...

. . . . . . 0
0 . . . −τnk . . . 0 1


︸︷︷︸

k-th col.

The result of the reduction is

U = Mn−1Mn−2 · · ·M1A

which is equivalent to the pseudocode algorithm from before. That is,

A = LU, L = M−1
1 M−1

2 · · ·M−1
n−1.

To prove the theorem (and verify the algorithm works), we need to check that

i) U is upper triangular

ii) L is lower triangular and the (i, j)-th entry is τij.

The details are left to you (and homework); a sketch is provided below. The important point
is that different representations (via matrices or via row operations) give different ways to
argue the same thing. Sometimes one approach gives a much cleaner proof (here, both are
about the same).
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4.5.4 Sketch of proof

For (i), it is enough to show that applying M (k) to a matrix leaves the first k − 1 columns
untouched. This is true because the k-th row of A(k) has zero entries up to column k− 1, so
row reduction using this row does not affect the first k − 1 columns. Alternately,

MkA
(k) = A(k) − v(k)eTkA(k) = A(k) − v(k)Rk

where Rk is the k-th row of A(k). Since the first k − 1 columns are reduced, the row Rk has
zeros in its first k−1 entries, so the outer product v(k)Rk has all zeros in its first k−1 columns.

For (ii), note that
L = M−1

1 · · ·M−1
n−1

is the result of applying the row operations corresponding to these matrices to the identity:
‘un-reduce’ (apply the inverse of the row reduction) the n − 1-th column, then the n − 2th
and so on. This process deposits the multipliers τij into the desired entries and, as in (i),
M−1

k does not touch the columns to the right of column k (so our progress is never undone).

Alternately, one could use the formula (1) and show that

L = I +
n−1∑
k=1

v(k)eTk .

The k-th term puts the correct multipliers in the k-th column. The outer product notation
lets us write a matrix (L) a ‘sum’ of its columns (v(k)eTk is the matrix that is zero except for
the k-th column).
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5 Pivoting

5.1 The problem

For the initial discussion and motivating example, see K&C Section 4.3.

5.2 Permutation matrices

Recall that swapping rows i and j is an elementary row operation; its associated matrix E is
obtained by swapping rows i and j in the identity matrix I. A (row) permutation matrix
P is a product of row-swap matrices:

P = PnPn−1 · · ·P1.

Applying P to a matrix A permutes (re-orders) the rows of A, equivalent to applying the
sequence of row-swap operations to A. For example, the matrices for the RO’s

R1 ↔ R2, R2 ↔ R3 (2)

are, respectively,

P1 =

0 1 0
1 0 0
0 0 1

 , P2 =

1 0 0
0 0 1
0 1 0

 .
The permutation matrix that does the two swaps (2) in sequence is

P = P2P1 =

0 1 0
0 0 1
1 0 0

 . (3)

If A is a 3× 3 matrix with rows R1, R2, R3 then

PA =

−−R2 −−
−−R3 −−
−−R1 −−

 .
The permutation vector p is a more compact representation of P . This vector is con-
structed by applying the defining rows swaps to {1, 2, · · · , n}. In the previous example,

{1, 2, 3} → {2, 1, 3} → {2, 3, 1}

so p = {2, 3, 1}. This vector tells us how the rows of the permuted and original matrix are
related. for our purposes, the key property is that

(PA)ij = Ap(i),j (4)

or in words,
the i-th row of PA is the p(i)-th row of A.
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Put yet another way,

p(i) = j =⇒ row j of A gets moved to row i of PA.

For the permutation matrix in (3), the 1-st row of PA is the 2-nd row of A since p(1) = 2.

A few other properties are worth noting:

• P−1 = P T (see HW)

• det(P ) is +1 for an even number of swaps and −1 for an odd number of swaps.

• A (column) permutation matrix Q can be constructed in a similar way, as a product
of column swaps E (recall that these are applied on the right: A→ AE).

Multiplying by Q on the right permutes the columns of A. Since (PA)T = ATP T , the
row/column versions are related by Q = P T .

5.3 Partial pivoting

In matrix form, Gaussian elimination with pivoting yields

Mn−1Pn−1Mn−2Pn−2 · · ·M1P1A = U

where Mk is the row-reduction for column k and Pk is the row-swap applied to column k.

It turns out that the Pk’s can be factored out (proof omitted), as if we had done all of
the row swaps on A at the start. The result is the following theorem:

Theorem. If A ∈ Rn×n is invertible then there is a permutation matrix P and unit lower
triangular L, upper triangular U such that

PA = LU.

Gaussian elimination with pivoting gives L and U (in the same way as before) and

P = Pn−1Pn−2 · · ·P1

where Pk is the row-swap applied to column k.

Note that the P produced by Gaussian elimination depends on the pivoting scheme. For
a given P , the factors L and U are unique.

Notation: We refer to the factorization PA = LU as the ‘LU factorization’ of A even when
there is a P in it. To be precise, the factorization of A is P TLU .
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5.4 Example: Gaussian elimination with partial pivoting

We obtain the factorization PA = LU for

A =

 1 2 4
1 0 1
−2 2 4


using partial pivoting. The multipliers are shown in red, stored in the zero-ed out entry as
in the algorithm (only for convenience; for the purposes of the row reduction from A to U
the entries there are zeros).

Initialization: set the permutation vector to p = {1, 2, 3}.

First column: The largest (absolute) entry is in the third row, so swap rows 3 and 1: 1 2 4
1 0 1
−2 2 4


︸ ︷︷ ︸

A

R1↔R3====⇒

−2 2 4
1 0 1
1 2 4


︸ ︷︷ ︸

P1A

, p = {3, 2, 1}︸ ︷︷ ︸
equiv. to P1

The matrix for this swap is P1 =
[
0 0 1
0 1 0
1 0 0

]
. Now reduce the new second and third rows:−2 2 4

1 0 1
1 2 4

 R2→R2−(−1/2)R1

R3→R3−(−1/2)R1
===========⇒

 −2 2 4
−1/2 1 3
−1/2 3 6


︸ ︷︷ ︸

M1P1A

, p = {3, 2, 1}

Note that the row 2 and row 3 that we actually reduce are row 2 and row 1 of the original
matrix A. The permutation vector tells us this fact: p(2) = 2 and p(3) = 1.

Second column: The largest absolute entry in

[
1
3

]
is 3, so we swap rows 2 and 3:

 −2 2 4
−1/2 1 3
−1/2 3 6

 R2↔R3====⇒

 −2 2 4
−1/2 3 6
−1/2 1 3


︸ ︷︷ ︸

P2M1P1A

, p = {3, 1, 2}︸ ︷︷ ︸
equiv. to P2P1

The matrix for this swap is P2 =
[
1 0 0
0 0 1
0 1 0

]
. Now reduce ths column in PA: −2 2 4

−1/2 3 6
−1/2 1 3

 R3→R3−(1/3)R2
==========⇒

 −2 2 4
−1/2 3 6
−1/2 1/3 1


︸ ︷︷ ︸

M2P2M1P1A

, p = {3, 1, 2}.
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The result is that PA = LU where

L =

 1 0 0
−1/2 1 0
−1/2 1/3 1

 , U =

−2 2 4
0 3 6
0 0 1

 , P =

0 1 0
0 0 1
1 0 0


noting that P corresponds to the permutation vector p = {3, 1, 2}.

5.5 Implementation

When implemented, it is standard to not actually swap rows of A in memory. Instead,
we simply keep track of the rows swaps necessary using p. When reducing column k, we are
applying the steps to PA but have A stored in memory instead.

For reducing the k-th column, we do the following:

• Find the row index r to swap with row k in PA.

• Swap p(r) and p(k) (update the permutation vector); this updates P

• Reduce the k-th column in PA via row swaps.

Because A is stored in memory instead of PA, to access row i of PA we must instead access
the p(i)-th row of A (recall the rule (4) from earlier):

(PA)ij︸ ︷︷ ︸
theoretical

= A(p(i),j)︸ ︷︷ ︸
in code

.

For the pseudocode algorithm see K&C, section 4.3 (p171-172).

Remark: The cost of computing p(i) is typically less than the cost of swapping the
values in the rows of A. Whether this is true depends on details like the way data in A
is arranged in memory.

5.6 Example: Partial pivoting, implicit swapping

We apply the algorithm to the previous example, showing A as it is stored in memory.

Initialization: Set p = {1, 2, 3}. Denote by Ri the i-th row of A.

First column: The largest (absolute) entry is in the third row, so swap 3 and 1 in p:

{1, 2, 3} (R1↔R3)
=====⇒ {3, 2, 1}.

However, the rows Ri of A are left unswapped!

16



Now we need to reduce the new second and third rows of PA, which are rows p(2) = 2
and p(3) = 1 in the stored matrix A. The row operations done in the code on A are:

Rp(2) ← Rp(2) − (−1/2)Rp(1), Rp(3) ← Rp(3) − (−1/2)Rp(2)

or, explicitly,
R2 ← R2 − (−1/2)R3, R1 ← R1 − (−1/2)R3.

The result is  1 2 4
1 0 1
−2 2 4

 =⇒

−1/2 3 6
−1/2 1 3
−2 2 4

 , p = {3, 2, 1}

We have reduced the first column of PA, which is now

PA =

 −2 2 4
−1/2 3 6
−1/2 1 3

 (not stored!).

Second column: To find the pivot, we look at the second column of PA (rows i = 2, 3),
which are the first two rows of A.

The largest is in row p(3) = 1, so we swap entries 2 and 3 to update p:

{3, 2, 1} (R2↔R3)
=====⇒ {3, 1, 2}.

Again, A is left unchanged; at this point in the algorithm, we have

PA =

 −2 2 4
−1/2 1 3
−1/2 3 6

 .
Now reduce the second column of PA using Rp(3) → Rp(3) − (1/3)Rp(2), which is

R2 → R2 − (1/3)R1.

The result is

A =

−1/2 3 6
−1/2 1/3 1
−2 2 4

 , p = {3, 1, 2}

To reconstruct L and U , compute

PA =

 −2 2 4
−1/2 3 6
−1/2 1/3 1

 ,
and then separate this result into L and U in the usual way.

Put another way, the algorithm actually produces

P−1Ã = P T Ã

where Ã stores L and U in the lower/upper triangular parts; Ã is recovered by applying P .
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5.7 Using the result to solve linear systems

There are several ways to write the code to solve the linear system

Ax = b

using LU factorization, depending on the output scheme.

Version 1 (with explicit swapping): Write a function

[L,U,p] = lu(A)

that returns the matrices L,U and permutation vector p such that PA = LU, and a function

x = lusolve(L,U,p,b)

that solves Ly = Pb using forward substitution, then Ux = y using forward substitution.
Note that for a column vector v (e.g. b or a column of A), Pv can be obtained from p via

for i=1:n

swap(v(i),v(p(i)))

end

where swap denotes swapping the values of the two variables.

With this method, either lu needs to explicitly swap rows when reducing A or L and U
must be reconstructed at the end, which takes a bit of work in either case.

Version 2 (no explicit swapping): The function [A,p] = lu(A) returns p and the LU
factorization stored compactly in A as in section 5.5, i.e. PA contains the elements of L
below the diagonal and U on/above the diagonal. The solve function

x = lusolve(A,p,b)

takes as its input A and p from lu (not the original matrix!). The entries of L and U are
accessed via the formulas

`ij = A(p(i),j), i < j, uij = A(p(i),j), i ≥ j.

The algorithm is shown below. Note that `ii = 1 so there is no division in the loop for y.
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Input: A and p from lu, b
y1 ← bp1/ap1,p1
for i = 2, · · ·n do . Forward subs. to solve Ly = Pb

yi ← bpi −
∑i−1

j=1 api,jyj
end for

x1 ← y1
for i = n− 1, n− 2, · · · , 1 do . Back subs. to solve Ux = y

xi ←
(
yi −

∑n
j=i+1 api,jxj

)
/api,pi

end for
return x

Remark: A little space can be saved by overwriting b with y in solving Ly = Pb. In
the algorithm above, yi can be replaced by bpi , e.g. the inside of the first loop becomes

bpi ← bpi −
i−1∑
j=1

api,jbpj .

5.8 Scaled partial pivoting

Again, see K&C for the motivating example.

Scaled partial pivoting is similar to partial pivoting but selects the entry that is largest
in magnitude relative to the ‘size’ of the row. In practice, we first compute the row scales

si = max
1≤j≤n

|aij|,

i.e. si is the max. size of entries in the i-th row. Then, before reducing the k-th column,
find the row r such that

|ark|
sr

= max
i≤k≤n

|aik|
si

(5)

and swap rows r and k and the scales sr and sk (think of the scales as being attached to the
rows here). The rest of the reduction proceeds as before.

Practical note: Note that the scales are only computed once at the start. The scaled
could also be re-computed after each column is reduced. However, doing so typically
does not provide much benefit, so the scales are left fixed to save some work.

As with partial pivoting, if rows are implicitly swapped then the row indices in (5) should
be replaced with p(index):

|apr,k|
spr

= max
i≤k≤n

|api,k|
spi

.
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5.9 Example: Gaussian elimination with scaled partial pivoting

Here we do scaled partial pivoting (explicitly swapping rows) on the earlier example. The
matrix and scales are  1 2 4

1 0 1
−2 2 4

 ,
s1s2
s3

 =

4
1
4

 .
First column: The first column, with elements divided by the scales, is 1/4

1
−1/2

 .
The largest entry is in the second row, so we swap the first/second rows (note that dividing
by the scales is just done to find the pivot; the elements are not updated here): 1 2 4

1 0 1
−2 2 4

 R1↔R2====⇒

 1 0 1
1 2 4
−2 2 4

 , s =

1
4
4

 , p = {2, 1, 3},

Note that the scale array also has entries 1 and 2 swapped. Reducing, we obtain 1 0 1
1 2 4
−2 2 4

 R2→R2−R1
R3→R3−(−2)R1
=========⇒

 1 0 1
1 2 3
−2 2 6

 , s =

1
4
4

 , p = {2, 1, 3}

Second column: No pivoting is done here. After reducing, the result is 1 0 1
1 2 3
−2 1 3

 , p = {2, 1, 3}.

5.10 Complete pivoting

The most robust (and expensive) pivoting strategy is to search through the columns as well
as rows to find the largest element. That is, we find a row r and column s (in the un-reduced
part of the matrix) such that

|ars| = max
k≤i,j≤n

|aij|.

This element is swapped with the pivot element using a row swap P1 (rows r and k) and a
column swap Q1 (columns s and k):

A→ P1AQ1.

We therefore obtain, in matrix form, the reduction

Mn−1Pn−1 · · ·M1P1AQ1Q2 · · ·Qn−1 = U.
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It can be shown (as before) that this leads to the factorization

PAQ = LU

where Q = Q1Q2 · · ·Qn−1 is the matrix obtained by applying the column swaps used in
reduction to I. A linear system Ax = b is solved by writing it in the form

LUQTx = Pb.

First, solve Ly = Pb, then Uz = y for z = QTx, and finally compute x = Qz.

However, because complete pivoting requires (n − k)2 comparisons per column (see Sec-
tion 6), it requires a significant amount of work (unlike partial pivoting). Because it is
almost never needed, complete pivoting is rarely done in practice. The details are noted in
the section on operation counts.

5.11 Stability of Gaussian elimination

When is Gaussian elimination unstable (i.e. rounding errors can propagate and grow large,
exponentially with n)? The following2 turns out to be true:

• With no pivoting: unstable (easy to find disastrous examples, even for small n)

• With partial pivoting: unstable (does much better than with no pivoting)

• With scaled partial pivoting: unstable, but ‘practically’ stable (disasters are rare)

• Complete pivoting: stable

Thus in practice, scaled partial pivoting is the best compromise between stability and ef-
ficiency when solving a ‘random’ linear system (i.e. one without any particular structure
except that A−1 exists). The cost is minimal, and it is almost guaranteed to be stable.
Complete pivoting is used only when absolutely necessary.

It is worth noting that some matrices have special structure that guarantees no pivoting
is needed. Gaussian elimination without pivoting may be a good method to use for such
systems.

2See Golub & Van Loan, Matrix Computations for a discussion.
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6 Operation counts

6.1 Big-O Notation

A function f(x) (or sequence) is ‘Big-O’ of g(x) as x→ a, written

f = O(g(x)) as x→ a

or more succinctly as
f = O(g(x))

if there is a constant C > 0 such that

|f(x)| ≤ C|g(x)| as x→ a (6)

The values of a are always either a = 0 or a = ±∞. The limit is usually implied by context
and is left unstated.

To be precise: The meaning of (6) is the following:

If a =∞: there are values x0 and C such that the bound holds for all x > x0.

If a = 0: There are values x0 and C such that the bound holds for |x| < x0.

The notation expresses that f grows at most as fast as g (up to a constant factor) as
x→ a. (Alternately, if g → 0 then f decays at least as fast as g).

The same definitions apply for sequence an, where the only meaningful limit is n→∞.

For example (in the limit x→∞),

x3 + x2 + x = O(x3), ex + x10 = O(ex).

Big-O provides an easy way to state the size of a term without being to specific. One can
choose when to stop being exact if there are many terms, e.g. it is also true that

x3 + x2 + x = x3 +O(x2).

Since g is only an upper bound, a function that is O(g) is also O(anything larger than g).
For example,

x→∞ : xm = O(xn) for 0 < m < n

x→ 0 : xm = O(xn) for 0 < n < m

Other examples:

• A degree n polynomial Pn(x) is O(xn) as x→∞.
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• A degree n polynomial with lowest degree term akx
k is O(xk) as x→ 0.

• Similarly, a polynomial in 1/x is big-O of its smallest degree term as x→∞, e.g.

1

x
− 2

x3
+

3

x5
= O(1/x) as x→∞.

• Every polynomial is O(ex) as x→∞.

A Big-O term in an equation eats all smaller terms (convenient when we don’t care about
terms of that size). If f1 = O(g) and f2 = O(h) and 0 < g ≤ h then

f1 + f2 = O(h).

Similarly, O(f1f2) = O(gh). Take, for instance, calculating a product of power series near
x = 0 like

sinx cosx = (x−O(x3))(1− x2/2 +O(x4)).

The O(x3) term will absorb x3 and above terms, so we only need to calculate the terms that
are x2 and below:

sinx cosx = x+O(x3).

Note that xO(x4) = O(x5) and the product of O(x3) and O(x4) terms is O(x7). The obvious
downside is that we lose some information (what is the x3 term above?), so it is important
to only use O(· · · ) when the details of those terms are not important.

6.2 Asymptotic-to notation

To be more precise, it is useful to have notation that includes the leading constant in the
bound as well. We say that f(x) is asymptotic to g(x) in a limit x→ a, written

f ∼ g as x→ a

if

lim
x→a

f(x)

g(x)
= 1.

Informally, f ∼ g means that

f(x) = g(x) + smaller terms.

Thus the expression tells us how fast f grows/decays. For example,

an = 2n3 + n2 + · · · = O(n3)

could be more precisely written as an ∼ 2n3 or an = 2n3 +O(n2).

Notation: Sometimes, the optimal constant in the bound is included in the O(· · · ), e.g.
an = 2n3 + n2 + · · · = O(2n3). Of course, it is true that an = O(Cn3) for any positive
constant C, so this is just a convention.
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6.3 Operation counting

Our interest here is in seeing how the work required by an algorithm scales with the problem
size n (e.g. the dimension of the linear system). One crude measure of efficiency is to count
up the number of arithmetic operations (floating point operations, or ‘flops’) done by an
algorithm.

For simplicity, we will count multiplication/division as one operation, and ignore ev-
erything else unless otherwise noted. For counting flops, additions should be counted too,
but it is often tedious. Sometimes additions/mults. are counted separately because they
have different costs (addition is faster).

A word of caution: It is important to emphasize that this number is only a rough
estimate of how the amount of work scales up; it may not tell us which of two algo-
rithms is faster, particularly for small values of n. We are ignoring all sorts of essential
considerations, including:

• Comparisons (to be discussed soon)

• Writing to memory

• Reading memory/arrays

• Loading chunks of data into the cache

all of which matter. Every type of operation has a different cost (e.g. division is more
expensive than multiplication; comparisons are cheaper than arithmetic operations), so
the efficiency of the algorithm depends in a complicated way on the number of each type
of operation. Moroever, many low-level optimizations depend on context like memory
layout, the way the loops are ordered, etc. so the speed of operations may depend on
the code context as well.

The one trick to counting operations is this: We are mostly interested in an estimate

leading term +O(smaller terms)

e.g. 1
3
n3 +O(n2). The form permits us to skip over some operations that are negligible, like

single multiplications done at the start to initialize some variable.

Otherwise, it is just a matter of going through the algorithm and counting them up. Opera-
tions in a for loop should be summed, of course. Below, we count the operations for Gaussian
elimination (without pivoting).
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6.3.1 Gaussian elimination

For the LU factorization step: given k and i, in the innermost (j) loop the updates

aij = aij −makj

take 1 mult. each. In the i loop, we do one mult. to obtain m. Thus the number of
multiplications required is

n−1∑
k=1

n∑
i=k+1

(
1 +

n∑
j=k+1

1

)
=

n−1∑
k=1

(n− k)(n− k + 1) =
n−1∑
k=1

k(k + 1) =
1

3
n3 − 1

3
n =

1

3
n3.

It is easy to check (see HW) that both the back and forward substitution steps take O(n2)
mults. Since the n3 term is much larger, most of the work is done in computing the LU
factorization; solving Ax = b requires

1

3
n3 +O(n2)

multiplications in total. (Note: if counting additions too, the result is 2
3
n3 +O(n2)).

On calculating the inverse: Gauss-Jordan elimination (which reduces A to the iden-
tity instead of stopping at U) requires n3/2 + O(n2) multiplications. Calculating the
inverse of A by this method takes n3 mults; while the constant can be improved a bit by
more clever means, finding A−1 and then computing A−1b is still much more inefficient
than the n3/3 mults. required for Gaussian elimination.

6.3.2 With pivoting:

Pivoting adds some work:

• Partial pivoting:
∑n−1

k=1(n− k) ∼ n2/2 comparisons, no extra arithmetic. Some O(n2)
overhead involved in having to compute p(i) for the index (or swapping rows).

• Scaled partial pivoting: as above plus n2/2 divisions (from dividing by the scales).

• Complete pivoting:
∑n−1

k=1(n− k)2 ∼ n3/3 comparisons.

Only complete pivoting adds a substantial amount of work compared to the n3/3 multipli-
cations of the LU factorization process. However, scaled partial pivoting does have at least
a small cost (comparable to the Ux = y and Ly = b solves).
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6.3.3 Special cases

When matrices with special structure, it can be exploited to improve the n3/3 amount of
work required. For example, a tridiagonal matrix T has one diagonal above/below the
main one, with the rest zeros:

T =


b1 c1 0 . . . 0

a1 b2 c2
. . .

...

0
. . . . . . . . . 0

...
. . . an−2 bn−1 cn−1

0 . . . 0 an−1 bn


This is an example of a sparse matrix, which is a matrix that has mostly zero entries.3

To solve the system Tx = b, we can use Gaussian elimination. Note that only one entry
(ak) needs to be zeroed for the k-th column, and only two entries in that row have to be ad-
justed when reducing that row. This means that reducing the k-th column takes a constant
amount of work.

The same is true of the forward/backward solves, and we end up with O(n) operations -
much faster than O(n3)! Finding a numerical solution of, say, a system of 10 million equa-
tions would not be so bad if the system were tridiagonal. On the other hand, a full system
(with arbitrary elements) would take an astronomical amount of time.

Note: It is best to write a function dedicated to solving tridiagonal systems instead
of using a general-purpose Gaussian elimination code. Such a function can take better
advatange of the structure - for instance, we can store the entries in a 3×n array instead
of an n× n matrix, and avoid having to set up the inner for loops.

3Efficient solution of sparse linear systems is crucial in many applications (e.g. partial differential equa-
tions, machine learning). Much of the modern research in numerical linear algebra is devoted to dealing with
such systems.
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