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Relational Calculus

In addition to relational algebra, Codd introduced relational
calculus.

Relational calculus is a declarative database query language based
on first-order logic.

Relational calculus comes in two different flavours:

I Tuple relational calculus

I Domain relational calculus.

We will focus on domain relational calculus.

There is an easy translation between these two formalisms.

Codd’s main technical result is that relational algebra and
relational calculus have essentially the same expressive power.



Propositional Logic (aka Boolean Logic) Reminder

Propositional variables: p, q, r, . . .
They take values 1 (True) and 0 (False).

Propositional connectives: ∧, ∨, →, ¬

Propositional formulas: expressions built from propositional
variables and propositional connectives

Syntax: ϕ := p, q, r, . . . | (ψ ∧ ν) | (ψ ∨ ν) | ¬ψ | (ψ → ν)

Semantics: Truth-table semantics

Application: Propositional formulas express Boolean functions
(p ∨ q) ∧ (¬p ∨ ¬q) XOR-Gate
(p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r) Majority Gate

First-order logic

Question: What is First-Order Logic?

Answer: Informally,

“ First-Order Logic = Propositional Logic + (∃ and ∀)”,

where ∃ and ∀ range over possible values occurring in relations.



First-Order Logic: Syntax Reminder

term t := x (variable)

| c (constant)

| f(t1, . . . , tn) (function application)

formula ϕ := P (t1, . . . , tn)

| t1 op t2 with op ∈ {=, 6=, >,<,>,6}
| ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ϕ1 → ϕ2

| ∃x ϕ | ∀x ϕ if x ∈ free(ϕ)

free(ϕ) = { variables that are not in the scope of any quantifier }

Notation: sometimes we write (x1, . . . , xn) as x̄.

Relational Calculus (First-Order Logic for Databases)
First-order variables: x, y, z, . . . , x1, . . . , xk, . . . .
They range over values that may occur in tables.
Relation symbols:
R,S, . . . of specified arities (names of relations)
Atomic (Basic) Formulas:

I R(x1, . . . , xk), where R is a k-ary relation symbol
(alternatively, (x1, . . . , xk) ∈ R; the variables need not be
distinct)

I (x op y), where op is one of =, 6=, <,>,≤,≥
I (x op c), where c is a constant and op is one of

=, 6=, <,>,≤,≥.

Relational Calculus Formulas:
Every atomic formula is a relational calculus formula.
If ϕ1 and ϕ2 are relational calculus formulas, then so are:
(ϕ1 ∧ ϕ2), (ϕ1 ∨ ϕ2), (¬ϕ), (ϕ1 → ϕ2) (propositional connectives)
(∃xϕ) (existential quantification)
(∀xϕ) (universal quantification).



Free and bound variables

Examples: Assume E is a binary relation symbol

(∃x)E(x, x)
(∀x)(∀y)(∃z)(E(x, z) ∧ E(z, y))
(∃z1)(∃z2)(E(x, z1) ∧ E(z1, z2) ∧ E(z2, y))
(∃y)(∃z)(E(x, y) ∧ E(x, z) ∧ (y 6= z))

Free and bound variables:

In the first two formulas above, no variable is free.

In the third formula above, the free variables are x and y.

In the fourth formula above, the only free variable is x.

Intuitively, a variable is free in a formula if the variable must be
assigned a value in order to tell if the formula is true or false.

Relational calculus as a Database Query Language (1)

A relational calculus query is an expression of the form

{(x1, . . . , xn) | ϕ(x1, . . . , xn)},

where the set of variables in (x1, . . . , xn) is free in ϕ, denoted
free(ϕ)

Informally, when applied to a relational database D, a relational
calculus query returns the k-ary relation that consists of all
k-tuples (a1, . . . , ak) that make the formula “true” on D.

Example

The relational calculus expression {(x, y) : ∃z(E(x, z) ∧ E(z, y))}
returns the set P of all pairs of nodes (a, b) that are connected via
a path of length 2.



Relational calculus as a Database Query Language (2)

Queries without free variables are called Boolean queries

Examples

I Q = {() | ∀x R(x, x)}
I Q = {() | ∀x ∃y R(x, y)}

Informally, their output is either true (denoted by {()}, a set
containing the empty tuple) or false (denoted by ∅, the empty set
of tuples)

We will define the formal semantics of relational queries shortly.

Examples

Customer : ID, Name, Age

Account : Number, Branch, CustID

Q1: Name of customers younger than 33 or older than 50{
(y) | ∃x, z Customer(x, y, z) ∧ (z < 33 ∨ z > 50)

}
Q2: Name and age of customers having an account in London{

(y, z) | ∃x Customer(x, y, z) ∧ ∃w Account(w, ‘London’, x)
}

Q3: ID of customers who have an account in every branch{
(x) | ∃y, z (Customer(x, y, z))

∧ ∀u,w, v (Account(u,w, v)→ ∃u′ Account(u′, w, x))
}



Natural Join in Relational Calculus

Example: Let R(A,B,C) and S(B,C,D) be two ternary relation
schemas.
Recall that, in relational algebra, the natural join R ./ S is given by

πR.A,R.B,R.C,S.D(σR.B=S.B∧R.C=S.C(R× S)).

Give a relational calculus expression for R ./ S:

{(x1, x2, x3, x4) | R(x1, x2, x3) ∧ S(x2, x3, x4)}

Note: The natural join is expressible by a quantifier-free formula of
relational calculus. But we can also express it as

{(x1, x2, x3, x6) | ∃x4, x5(x4 = x2∧x5 = x3∧R(x1, x2, x3)∧S(x4, x5, x6))}

Quotient (Division) in Relational Calculus

Recall that the quotient (or division) R÷ S of two relations R and
S is the relation of arity r − s consisting of all tuples
(a1, . . . , ar−s) such that for every tuple (b1, . . . , bs) in S, we have
that (a1, . . . , ar−s, b1, . . . , bs) is in R.

Assume that R has arity 5 and S has arity 3. Express R÷ S in
relational calculus.

{(x1, x2) | ∀x3∀x4∀x5(S(x3, x4, x5)→ R(x1, x2, x3, x4, x5))}

Much simpler than the relational algebra expression for R÷ S!



Semantics of First-order Logic

First-order structure I (often called Interpretation)

I non-empty domain of objects (universe) ∆

I function ·I that gives meaning (semantics) to
constant/function/relation symbols (syntactic notions)

cI ∈ ∆

fI : ∆n → ∆

RI ⊆ ∆n

A database instance D is a relational structure (no functions)
(functions can be used in queries)

D = (∆, PD1 , P
D
2 , . . . , P

D
n ) database instance over schema

〈P1, P2, . . . , Pn〉

Example: D = (∆,EmployeeD) is a database instance over
schema 〈Employee〉

Semantics of First-order Logic

Standard Name Assumption (SNA) for Databases:

Every constant is interpreted as itself: cI = c
That is, ∆ just contains names of potential objects in the database.

Semantics defines whether a formula is true or false given a
description of the world. In our case, the world will be a database.
More precisely, semantics is itself a relation “|=” between formulae
and worlds, denoted: D |= ϕ.

“D satisfies ϕ
“D models ϕ”

“ϕ holds true in D”.

However, even if we are given a database, we can’t tell whether
Student(x,Math) holds or not, since we don’t know what x is.



Semantics of First-order Logic: Assignment

Variable Assignment

I An assignment ν is a function ν : V ar → ∆, where V ar is
the set of variables in the formula and ∆ is the domain of the
database D.

Single point revision

Let ν be an assignment, x be a variable, and d be an element in
the domain ∆. Then ν[x 7→ d] is an assignment defined as follows:

ν[x 7→ d](z) =

{
d if z = x,

ν(z) otherwise.

Semantics of First-Order Logic

Semantics is a ternary relation between a formula ϕ, a database D,
and an assignment ν : V ar → ∆, where ∆ is the domain of the
database D.
We write this as “D, ν |= ϕ”. Other notations for the same idea
are “D |=ν ϕ” and “D |= ϕ[ν]”.

Semantics of atomic formulae
Let ν be an assignment, let 〈P1, P2, . . . , Pn〉 be a database schema
(syntactic notion), where each Pi has arity ki, and let
D = (∆, PD1 , P

D
2 , . . . , P

D
n ) be a database instance. Then

I D, ν |= (t1 = t2) iff ν(t1) = ν(t2).

I D, ν |= Pi(t1, t2, . . . , tk) iff (ν(t1), ν(t2), . . . , ν(tk)) ∈ PBi , for
any i in {1, . . . , n}.



Semantics of Composite Formulae

I D, ν |= ¬ϕ iff D, ν 6|= ϕ.

I D, ν |= ϕ ∧ ψ iff D, ν |= ϕ and D, ν |= ψ.

I D, ν |= ϕ ∨ ψ iff D, ν |= ϕ or D, ν |= ψ.

I D, ν |= ϕ→ ψ iff D, ν 6|= ϕ or D, ν |= ψ.

I D, ν |= ϕ↔ ψ iff both D, ν |= ϕ and D, ν |= ψ, or both
D, ν 6|= ϕ and D, ν 6|= ψ.

I D, ν |= ∃x. ϕ iff there exists an a ∈ ∆ such that
D, ν[x 7→ a] |= ϕ.

I D, ν |= ∀x. ϕ iff for all a ∈ ∆ such that D, ν[x 7→ a] |= ϕ.

The last two cases are the only ones different from propositional
logic. They are explained using modifications ν[x 7→ a] to the
assignment ν.

Examples

Let D be a database whose domain is
{Abe, Joe, Zoe, Jill, Charles} ∪ {Math,CS}, let ν be an
assignment which maps x 7→ Zoe, and let the relation EmployeeD

be

EmployeeName Department Manager

Abe Math Charles

Joe CS Jill

Zoe Math Charles

For each of the following formulae, determine whether or not
D, ν |= Θ.



Examples

ν maps x 7→ Zoe, instance EmployeeD:

EmployeeName Department Manager

Abe Math Charles

Joe CS Jill

Zoe Math Charles

I Θ = ¬Employee (Zoe, Math, Jill) (“It’s not the case that:
Zoe is in the Math department and managed by Jill.”)

I Θ = ∃y.Employee(y, Math, Jill)
(“Somebody is in the math department and managed by Jill”)

I Θ = (Employee (x, Math, Jill) ∧ Employee (z, Math, Jill))
(“x and z both work in the math department and are both
managed by Jill”).

Semantics: Answers to queries

I Fix an underlying domain ∆ under SNA

I Fix an underlying structure, an interpretation of relation and
function symbols

Recall that “interpretations” are just databases

Recall: an assignment ν maps variables to objects in ∆

The answer to a query Q = {x̄ | ϕ} on a database D is

Q(D) =
{
ν(x̄) | ν : free(ϕ)→ ∆ such that D, ν |= ϕ

}
where D, ν |= ϕ means ϕ is true in D with variable assignment ν

The answer to a Boolean query is either {()} (true) or ∅ (false)



Relational Algebra vs. Relational Calculus

Fundamental theorem of database theory

Codds Theorem (informal statement):

Relational Algebra and Relational Calculus have essentially the
same expressive power, i.e., they can express the same queries.

Note:

I This statement is not entirely accurate.

I In what follows, we will give a rigorous formulation of Codds
Theorem and sketch its proof.

(⇒) From algebra to calculus

(⇒) Theorem 1:

For every relational expression E, there is an equivalent relational
calculus expression {(x1, . . . , xk) | ϕ(x1, . . . , xk)}.

Proof (sketch): Translation, by induction on the construction of
relational algebra expressions.

The translation is given in the next few slides.



(⇒) From algebra to calculus

Translate each RA expression E into a first-order formula ϕ

Assumption: the attributes of a relation are ordered
(R over A,B,C means the 1st column is A, the 2nd is B, the 3rd is C)

Environment ν (a function)

maps each attribute A in the schema to a variable xA

(⇒) From algebra to calculus

Base relation

R over A1, . . . , An is translated to R
(
ν(A1), . . . , ν(An)

)
Example

If R is a base relation over A,B

ν = { A 7→ xA, B 7→ xB, . . . }

then R is translated to R(xA, xB)



(⇒) From algebra to calculus

Renaming ρA→B(E)

1. Translate E to ϕ

2. If there is no mapping for B in ν, add {B 7→ xB}
3. Replace every occurrence of ν(A) in ϕ by ν(B)

Example

If R is a base relation over A,B
then ρA→B

(
ρB→C(R)

)
is translated to R(xB, xC)

(⇒) From algebra to calculus

Projection
πL(E) is translated to ∃X ϕ

where

I ϕ is the translation of E

I X = free(ϕ)− ν(L)
(attributes that are not projected become quantified)

Example

If R is a base relation over A,B
then πA(R) is translated into ∃xB R(xA, xB)



(⇒) From algebra to calculus

Selection
σθ(E) is translated to ϕ ∧ ν(θ)

where

I ϕ is the translation of E

I ν(θ) is obtained from θ by replacing each attribute A by ν(A)

Example

If R is a base relation over A,B
then σA=B(R) is translated into R(xA, xB) ∧ xA = xB

(⇒) From algebra to calculus
Cartesian Product, Union, Difference

Product E1 × E2 is translated to ϕ1 ∧ ϕ2

Union E1 ∪ E2 is translated to ϕ1 ∨ ϕ2

Difference E1 − E2 is translated to ϕ1 ∧ ¬ϕ2

where

I ϕ1 is the translation of E1

I ϕ2 is the translation of E2

In fact, our translation gives us what is called a safe relational
calculus (explained below).

Corollary: Relational Calculus is relationally complete.



From Relational Calculus to Relational Algebra

Fact: It is not true that for every relational calculus expression ϕ,
there is an equivalent relational algebra expression E.

Examples:

I
{

(x) | ¬R(x)
}

I
{

(x, y) | R(x) ∨ S(y)
}

I
{

(x, y) | x = y
}

I {(x, y) | ∃z(CHAIR(x, z) ∧ y 6= z)}, where CHAIR(dpt,name)

I {(x) | ∀y∀z( ENROLLS(x, y, z))},
where ENROLLS(s-name,course,term)

From Relational Calculus to Relational Algebra

A query is safe if it gives a finite answer on all databases

The queries above are not safe.

Bad news:
Whether a relational calculus query is safe is undecidable

Question:
How can we go from relational calculus to relational algebra?

Answer:
“Relativize” the semantics of relational calculus expressions by
fixing a domain over which the variables range.



Active domain

Adom(R) = { all constants occuring in R }

Example

Adom

 R A B

a1 b1
a1 b2

 =
{
a1, b1, b2

}

The active domain of a database D is

Adom(D) =
⋃
R∈D

Adom(R)

Active domain and safety

For a safe query Q, we have that Adom
(
Q(D)

)
⊆ Adom(D)

Active domain semantics
Evaluate queries within Adom(D) =⇒ safe relational calculus

Q(D) = { ν(x̄) | ν : free(ϕ)→ Adom(D) s.t. D, ν |= ϕ
}
,

where D, ν |= ϕ means ϕ is true in D with variable assignment ν

For each ν : free(ϕ)→ Adom(D) (there are finitely many such ν)
Q(D) outputs ν(x̄) whenever D, ν |= ϕ



(⇐) From calculus to algebra

(⇐) Theorem 2:

For every safe relational calculus expression

{(x1, . . . , xk) | ϕ(x1, . . . , xk)},

there is an equivalent relational algebra expression E.

Proof (sketch): Translation, by induction on the construction of
relational calculus expressions.

The translation is given in the next few slides.

(⇐) From calculus to algebra

Translate each FOL formula ϕ into an RA expression E

Assumptions (without loss of generality)

I No universal quantifiers, implications, double negations

I No distinct pair of quantifiers binds the same variable

I No variable occurs both free and bound

I No variable is repeated within a predicate

I No constants in predicates

I No atoms of the form x op x or c1 op c2

Environment ν (a function)

maps each variable x to an attribute Ax



(⇐) From calculus to algebra

Let R be over attributes A1, . . . , An

Predicate symbols

R(x1, . . . , xn) is translated to ρA1→ν(x1),...,An→ν(xn)(R)

Example

For R over attributes A,B,C,
R(x, y, z) is translated into ρA→Ax, B→Ay , C→Az(R)

(⇐) From calculus to algebra

Existential quantification

∃x ϕ is translated to πν(X−{x})(E)

where

I E is the translation of ϕ

I X = free(ϕ)

Example

For ϕ with free variables x, y, z and translation E,
∃y ϕ is translated to πAx,Az(E)



(⇐) From calculus to algebra

Comparisons

x op y is translated to σν(x) op ν(y)
(
Adomν(x)×Adomν(y)

)
x op c is translated to σν(x) op c

(
Adomν(x)

)

Example

x = y is translated to σAx=Ay

(
AdomAx ×AdomAy

)
x > 1 is translated to σAx>1

(
AdomAx

)

(⇐) From calculus to algebra

Negation

¬ϕ is translated into
( ×
x∈free(ϕ)

Adomν(x)

)
− E

where E is the translation of ϕ

Example

For ϕ with free variables x, y and translation E
¬ϕ is translated to AdomAx ×AdomAy −E



(⇐) From calculus to algebra

Disjunction: ϕ1 ∨ ϕ2 is translated to

E1×
( ×
x∈X2−X1

Adomν(x)

)
∪ E2×

( ×
x∈X1−X2

Adomν(x)

)
where, for i ∈ {1, 2},

I Ei is the translation of ϕi
I Xi = free(ϕi)

Conjunction: same as disjunction, but use ∩ instead of ∪

Example

Customer : CustID, Name

Account : Number, CustID

Translate ∃x4 (Customer(x1, x2) ∧ Account(x3, x4) ∧ x1 = x4)

Environment ν = { x1 7→ A, x2 7→ B, x3 7→ C, x4 7→ D }

πA,B,C

((
E1×AdomC ×AdomD

)
∩(

AdomA×AdomB ×E2

)
∩(

σA=D(AdomA×AdomD)×AdomB ×AdomC

))
where

I E1 = ρCustID→A,Name→B(Customer)

I E2 = ρNumber→C,CustID→D(Account)


