These lecture notes include some material from Professors Bertossi, Kolaitis, Guagliardo, Vardi, Libkin, Barland, McMahan

Multisets and Aggregation

Lecture Handout 7

Dr Evgenia Ternovska Associate Professor

Simon Fraser University

Spring 2018

Duplicates

R π_A		$\pi_A(R)$	SELECT A FROM R
A	В	A	A
a1	b1	 a1	al
a2	b2	a2	a2
a1	b2		a1

- We considered relational algebra on sets
- SQL uses bags: sets with duplicates

Multisets (a.k.a. bags)

Sets where the same element can occur multiple times

The number of occurrences of an element is called its multiplicity

Notation

 $a \in_k B$: a occurs k times in bag B $a \in B$: a occurs in B with multiplicity ≥ 1 $a \notin B$: a does not occur in B (that is, $a \in_0 B$)

Relational algebra on bags

Relations are **bags of tuples**

Projection

Keeps duplicates

$$\pi_A \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ 2 & 3 \\ 1 & 1 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} \mathbf{A} \\ 2 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \mathbf{A} \\ 2 \\ 1 \\ 2 \end{pmatrix}$$

Relational algebra on bags

Cartesian product

Concatenates tuples as many times as they occur

Α	В		С		Α	В	С
1	1	\times	2	=	1	1	2
			2		1	1	2

Relational algebra on bags

Selection

Takes all occurrences of tuples satisfying the condition:

If
$$\bar{a} \in_k R$$
, then $\begin{cases} \bar{a} \in_k \sigma_{\theta}(R) & \text{if } \bar{a} \models \theta \\ \bar{a} \notin \sigma_{\theta}(R) & \text{otherwise} \end{cases}$

Example

$$\sigma_{A>1} \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ 2 & 3 \\ 1 & 2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ 2 & 3 \\ & & \\ & & \\ 2 & 3 \end{pmatrix}$$

Relational algebra on bags

Duplicate elimination ε

New operation that removes duplicates:

If $\bar{a} \in R$, then $\bar{a} \in R(R)$

Example

$$\varepsilon \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ 2 & 3 \\ 1 & 2 \\ 2 & 3 \end{pmatrix} = \begin{array}{c} \mathbf{A} & \mathbf{B} \\ 2 & 3 \\ 1 & 2 \\ 1 & 2 \end{array}$$

Relational algebra on bags

Union

Adds multiplicities:

If
$$\bar{a} \in_k R$$
 and $\bar{a} \in_n S$, then $\bar{a} \in_{k+n} R \cup S$

Example

Α	В		Α	В	_	Α	В
1	2		1	2		1	2
1	2	\cup	1	3	=	1	2
1	3		1	4		1	3
						1	2
						1	3
						1	4

Relational algebra on bags

Intersection

Takes the **minimum** multiplicity:

If $\bar{a} \in_k R$ and $\bar{a} \in_n S$, then $\bar{a} \in_{\min\{k,n\}} R \cap S$

Example

Α	В		Α	В		Α	В	
1	2	\cap	1	2	_	1	2	
1	2	1 1	1	3	_	1	3	
1	3		1	4				

Relational algebra on bags

Difference

Subtracts multiplicities up to zero:

If
$$\bar{a} \in_k A$$
 and $\bar{a} \in_n B$, then
$$\begin{cases} \bar{a} \in_{k-n} A - B & \text{if } k > n \\ \bar{a} \notin A - B & \text{otherwise} \end{cases}$$

Example

Α	В	_	Α	В		Α	В
1	2	_	1	2	=	1	2
1	2		1	3			
1	3		1	3			
			1	4			

RA on sets vs. RA on bags

Equivalences of RA on sets do not necessarily hold on bags

ExampleOn bags $\sigma_{\theta_1 \lor \theta_2}(R) \neq \sigma_{\theta_1}(R) \cup \sigma_{\theta_2}(R)$ $R \mid \mathbf{A} = \frac{\sigma_{A>1 \lor A<3}(R) \mid \mathbf{A}}{2}$ 22222

$$\varepsilon (\sigma_{\theta_1 \lor \theta_2}(R)) = \varepsilon (\sigma_{\theta_1}(R) \cup \sigma_{\theta_2}(R))$$
 holds

Basic SQL queries revisited

$$\begin{split} Q &:= \texttt{SELECT} \; \left[\; \texttt{DISTINCT} \; \right] \; \alpha \; \texttt{FROM} \; \tau \; \texttt{WHERE} \; \theta \\ & \mid Q_1 \; \texttt{UNION} \; \left[\; \texttt{ALL} \; \right] \; Q_2 \\ & \mid Q_1 \; \texttt{INTERSECT} \; \left[\; \texttt{ALL} \; \right] \; Q_2 \\ & \mid Q_1 \; \texttt{EXCEPT} \; \left[\; \texttt{ALL} \; \right] \; Q_2 \end{split}$$

SQL and RA on bags

SQL	RA on bags
SELECT α SELECT DISTINCT α	$\pi_lpha(\cdot) \ arepsilonig(\pi_lpha(\cdot)ig)$
$egin{array}{llllllllllllllllllllllllllllllllllll$	$egin{array}{ll} Q_1\cup Q_2\ Q_1\cap Q_2\ Q_1-Q_2 \end{array}$
$egin{array}{llllllllllllllllllllllllllllllllllll$	$arepsilon(Q_1\cup Q_2)\ arepsilon(Q_1\cap Q_2)\ arepsilon(Q_1)-arepsilon(Q_2))$

Duplicates and aggregation (1)

Customer								
ID	Age							
1	John	Edinburgh	31					
2	Mary	London	37					
3	Jane	London	22					
4	Jeff	Cardiff	22					

Average age of customers: $avg(\pi_{Age}(Customer))$

• If we remove duplicates we get $\frac{31+37+22}{3} = 30$ (wrong)

SQL keeps duplicates by default: SELECT AVG (age) FROM Customer ;

Duplicates and aggregation (2)

Account								
Number	Branch	CustID	Balance					
111	London	1	1330.00					
222	London	2	1756.00					
333	Edinburgh	1	450.00					

Number of branches: $|\varepsilon(\pi_{Branch}(Account))|$

If we keep duplicates we get 3 (wrong)

In SQL:	SELECT	COUNT (DISTINCT	branch)
III JQL.	FROM	Account ;	

Aggregate functions in SQL

COUNT number of elements in a column
AVG average value of elements in a column
SUM adds up all elements in a column
MIN minimum value of elements in a column
MAX maximum value of elements in a column

- Using DISTINCT with MIN and MAX makes no difference
- COUNT (*) counts all rows in a table
- ► COUNT (DISTINCT *) is illegal

To count all distinct rows of a table ${\boldsymbol{T}}$ use

```
SELECT COUNT (DISTINCT T.*)
FROM T;
```

Aggregation and empty tables

Suppose table T has a column (of numbers) called A

```
SELECT MIN(A), MAX(A), AVG(A), SUM(A), COUNT(A), COUNT(*)
FROM T
WHERE 1=2;
```

min		max		sum		avg		count		count
	-+-		• + -		-+-		-+-		+-	
								0		0

Grouping

Account								
Num	Branch	CID	Balance					
111	London	1	1330.00					
222	London	2	1756.00					
333	Edinburgh	1	450.00					

How much money does **each** customer have in total **across all of his/her accounts**?

Idea

- 1. Partition Account into groups (one per customer) of rows
- 2. Sum balances in each group separately
- 3. Take the union of the results for each group

			Acc	count				
	-	Num	Branch	CI	D	Balance		
	-	111	London	1		1330.00		
		222	London	2		1756.00		
		333	Edinburgh	n 1		450.00		
Num	Branch	CID	Balance	N	lum	Branch	CID	Balance
111	London	1	1330.00	2	22	London	2	1756.00
333	Edinburgh	1	450.00					
				-				
		CID	SUM				CID	SUM
		1	1780.00				2	1756.00
			CID	SU	M			
			1	1780.	00			

1756.00

2

Grouping in SQL

Account				
Number	Branch	CustID	Balance	
111	London	1	1330.00	
222	London	2	1756.00	
333	Edinburgh	1	450.00	

How much money does **each** customer have in total **across all of his/her accounts**?

SELECT	A.custid, SUM (A.balance)
FROM	Account A
GROUP BY	A.custid ;

	CustID	SUM
Answer:	1	1780.00
	2	1756.00

Account					
	Number	Branch	CustID	Baland	ce
_	111	London	1	1330.0	00
	222	London	2	1756.0	
_	333	Edinburgh	1	450.0	00
CustID	Balance	_	-	CustID	Balance
1	1330.00	_	-	2	1756.00
1	450.00	_	-		
CustID	SUM	_		CustID	SUM
1	1780.00	_	-	2	1756.00
		CustID	SUM		
		1	1780.00		
		2	1756.00		

Grouping in SQL: Another example

Account			
Number	Branch	CustID	Balance
111	London	1	1330.00
222	London	2	1756.00
333	Edinburgh	1	450.00

How much money is there in **total in each branch**?

SELECT	A.branch,	<pre>SUM(A.balance)</pre>
FROM	Account A	
GROUP BY	A.branch ;	2

	Branch	SUM
Answer:	London	3086.00
	Edinburgh	450.00

	Account				
	Number	Branch	CustID	Balance	
	111	London	1	1330.00	
	222	London	2	1756.00	
	333	Edinburgh	1	450.00	
Branch	Balance	_	_	Branch	Balance
London	1330.00	_		Edinburgh	450.00
London	1756.00	_	_		
Branch	SUM	-	-	Branch	SUM
London	3086.00	_	-	Edinburgh	450.00
		_			
	-	Branch	SUM	 	
	-	London	3086.00)	
		Edinburgh	450.00)	

Filtering based on aggregation

	Account				
Number	Branch	CustID	Balance		
111	London	1	1330.00		
222	London	2	1756.00		
333	Edinburgh	1	450.00		

Branches with a total balance (across accounts) of at least 500?

SELECT	A.branch, SUM (A.balance)
FROM	Account A
GROUP BY	A.branch
HAVING	<pre>SUM(A.balance) >= 500 ;</pre>

Answer:	Branch	SUM
	London	3086.00

Order of evaluation

- 1. Take rows from the (joined) tables listed in **FROM**
- 2. Discard rows not satisfying the **WHERE** condition
- 3. Partition rows according to attributes in **GROUP** BY
- 4. Compute aggregates
- 5. Discard rows not satisfying the **HAVING** condition
- 6. Output the values of expressions listed in **SELECT**

Aggregation and arithmetic (1)

	Acco			
Number	Branch	CustID	Balance	Spend
111	London	1	1330.00	250.00
222	London	2	1756.00	356.00
333	Edinburgh	1	450.00	0.00

Money available in total to each customer across his/her accounts

SELECT	A.custid,	SUM(A.balance	_	A.spend)
FROM	Account A			
GROUP BY	A.custid			

	CustID	SUM
Answer:	1	1530.00
	2	1400.00

		Accou	int					_
	Number	Branch	Cust	stID Balance Sper		Spend	_	
	111	London	1		1330	0.00	250.00	-
	222	London	2		1756		356.00	
	333	Edinburgh	1		450	0.00	0.00	_
CustID	Balance	Spend		Cus	tID	Ba	lance	Spend
1	1330.00	250.00		2	2	17	'56.00	356.00
1	450.00	0.00	-					
CustID	Balance	e – Spend		Cus	tID	В	alance	– Spend
1		1080.00		2	2			1400.00
1		450.00	-					
CustID		SUM		Cus	tID			SUM
1		1530.00		2	2			1400.00
		CustI	D	SUN	/			
		1	1	530.0	0			
		2	1°	400.0	0			

Aggregation and arithmetic (2)

Number	Branch	CustID	Balance	Spend
111	London	1	1330.00	250.00
222	London	2	1756.00	356.00
333	Edinburgh	1	450.00	0.00

Money available in total to each customer across his/her accounts

SELECT A.custid, SUM(A.balance) - SUM(A.spend)
FROM Account A
GROUP BY A.custid

	CustID	?column?
Answer:	1	1530.00
	2	1400.00

		Accou	int				
	Number	Branch	Custl	ID Balance		Spend	ł
	111	London	1	133	0.00	250.00)
	222	London	2		6.00	356.00	
	333	Edinburgh	1	45	0.00	0.00)
CustID	Balance	Spend		CustID	Ва	lance	Spend
1	1330.00	250.00		2	17	56.00	356.00
1	450.00	0.00	_				
CustID	SUM	SUM		CustID	S	SUM	SUM
1	1780.00	250.00		2	175	56.00	356.00
CustID		?column?		CustID			?column?
1		1530.00		2			1400.00
		CustID	?co	lumn?			
		1 2		530.00 400.00			

GROUP BY in RA on bags

Notation: $\gamma_L(\cdot)$, where L is a **list** of elements, each of which is either

- Attribute
- Aggregation operator, with a name of the result appended after →, e.g. MIN(year) → minYear

Computing:

- Partition the tuples into *groups* according to all grouping attributes simultaneously.
- For each group, produce one tuple consisting of:
 - The grouping attributes' values for that group,
 - The aggregations, over all tuples of that group, for the aggregated attributes on list L.