
These lecture notes include some material from Professors
Guagliardo, Bertossi, Kolaitis, Libkin, Vardi, Barland, McMahan

Database Constraints
Lecture Handout

Dr Evgenia Ternovska
Associate Professor

Simon Fraser University

Spring 2018

Integrity constraints

A constraint is a relationship among data elements that the
DBMS is required to enforce.

Kinds of Constraints

I Keys, functional dependencies (FDs).

I Foreign-keys, inclusion dependencies (INDs) or referential
dependencies.

I Value-based constraints. Constrain values of a particular
attribute.

I Tuple-based constraints. Specify relationship among
components.

I Assertions: any SQL boolean expression.

Instances that satisfy the constraints are called legal

Many kinds of constraints can be expressed in Relational Algebra.

Relational Algebra as a Constraint Language

There are two ways in which we can use expressions of relational
algebra to express constraints.

I If R is an expression of relational algebra, then R = ∅ is a
constraint that says “The value of R must be empty,” or,
equivalently, “There are no tuples in the result of R.”

I If R and S are expressions of relational algebra, then R ⊆ S is
a constraint that says “Every tuple in the result of R must
also be in the result of S.” Of course the result of S may
contain additional tuples not produced by R.

These ways of expressing constraints are equivalent in what they
can express, but sometimes one or the other is clearer or more
succinct.

The two ways of expressing constraints are equivalent:

R ⊆ S ≡ (R− S = ∅)

R = ∅ ≡ R ⊆ ∅

Technically, ∅ is not an expression of relational algebra, but since
there are expressions that evaluate to ∅, e.g. R−R, we may as
well use it.

Equal-to-emptyset style of expressing constraints is most common
in SQL, but sometimes it is easier to think in terms of set inclusion.

Constraints involving permitted values in a context

A common type of constraints

Often, quite straightforward, e.g.,
“integers only” or “strings of length 20”.

A domain constraint for an attribute:

Example

Specify that the only legal values for the attribute BRANCH are
Vancouver and Calgary.

σbranch6=′Vancouver′∧branch6=′Calgary′(Account) = ∅

Key constraints

A set of attributes forms a key for a relation if we do not allow two
tuples in a relation instance to have the same values in all the
attributes of the key.

Account(AccNum,CustID,Balance)

Account

AccNum CustID Balance

123321 cust3 1330.00
243576 cust1 -120.00

Account

AccNum CustID Balance

123321 cust3 1330.00
243576 cust1 -120.00
243576 cust1 654.00

There should never be two accounts that have both the same
AccNum and the same CustId.

Foreign-key constraints

Foreign-key constraints assert that a value appearing in an
attribute or attributes of one relation must also appear as a value
in attribute or attributes that are a key of another relation.

Example

Every value for attribute custid in Account must appear
among the values of the key custid in Customer

πCustID(Account) ⊆ πCustID(Customer)

Special cases of common types of dependencies: FDs, IDNs

Key constraints and foreign key constraints are special cases of
more general constraints, respectively:

I Functional dependencies (FDs)

I Inclusion dependencies (INDs) (or Referential Integrity
Constraints)

We will study FDs and INDs in more detail.

Functional dependencies (FDs)

Constraints of the form X → Y , where X,Y are sets of attributes

Semantics
A relation R satisfies X → Y if for every two tuples t1, t2 ∈ R

πX(t1) = πX(t2) =⇒ πY (t1) = πY (t2)

Intuition: The values for the X attributes
determine the values for the Y attributes

Trivial FDs: X → Y where Y ⊆ X

Examples of FDs

Employee Department Manager

John Finance Smith
Mary HR Taylor
Susan HR Taylor
John Sales Smith

Which of the following FDs would the above relation satisfy?

I Department → Manager Yes

I Manager → Department No

I Employee → Department No

I Employee, Manager → Department No

Keys

Recall that a set of attributes forms a key for a relation if we do
not allow two tuples in a relation instance to have the same values
in all the attributes of the key.

Semantics
A set of attributes X is a key for relation R if for every t1, t2 ∈ R

πX(t1) = πX(t2) =⇒ t1 = t2

Special case of FD X → Y
where Y is the whole set of attributes of a relation

Key constraints in relational algebra

Account(AccNum,CustID,Balance,Branch) :

no two tuples agree on the AccNum component.

Account

AccNum CustID Balance Branch

123321 cust3 1330.00 London
243576 cust1 -120.00 Paris

Express, algebraically, one of several implications of the key
constraint: if two tuples agree on AccNum, then they must also
agree on the Balance.

(Note that in fact these “two” tuples, which agree on the key,
must be the same tuple, and therefore agree on all attributes)

Key constraints in relational algebra

Account(AccNum,CustID,Balance,Branch) :

no two tuples agree on the AccNum component.

Express, algebraically, one of several implications of the key
constraint: if two tuples agree on AccNum then they must also
agree on the Balance.

Idea: if we construct all pairs of Account tuples (t1, t2), we must
not find a pair that agree in the AccNum component and disagree
in the Balance component.

σA1.AccNum=A2.AccNum∧A1.Balance 6=A2.Balance(A1×A2) = ∅

where A1 is shorthand for the renaming of the whole relation:

ρA1(AccNum,CustID,Balance,Branch)(Account)

Inclusion dependencies (INDs)

Constraints of the form R[X] ⊆ S[Y]
where R,S are relations and X,Y are sequences of attributes

Semantics
R and S satisfy R[X] ⊆ S[Y] if

for every t1 ∈ R there exists t2 ∈ S such that πX(t1) = πY (t2)

Important: the projection must respect the attributes order

INDs are referential constraints: link the contents of one table
with the contents of another table

Foreign key: special case of IND R[X] ⊆ S[Y] where Y is key for S

Examples of INDs

Employees

Name Dep

John Finance
Mary HR
John HR
Linda Finance
Susan Sales

Departments

Name Mgr

Finance John
HR Mary
Sales Linda

Which of the following INDs would the above relation satisfy?

I Employees[Dep] ⊆ Departments[Name] Yes

I Employees[Name] ⊆ Departments[Mgr] No

I Departments[Mgr] ⊆ Employees[Name] Yes

I Departments[Mgr,Name] ⊆ Employees[Name,Dep] No

Implication of constraints

A set Σ of constraints implies (or entails) a constraint φ if

every instance that satisfies Σ also satisfies φ

Notation: Σ |= φ

Implication problem

Given Σ and φ, does Σ imply φ ?

Important because

I We never get the list of all constraints that hold in a database

I The given constraints may look fine, but imply some bad ones

I The given constraints may look bad, but imply only good ones

Axiomatization of constraints

Set of rules (axioms) to derive constraints

Sound every derived constraint is implied

Complete every implied constraint can be derived

Sound and complete axiomatization gives a procedure ` such that

Σ |= φ if and only if Σ ` φ

Notation

Attributes are denoted by A, B, C, ...

If A and B are attributes, AB denotes the set {A,B}

Sets of attributes are denoted by X, Y , Z, ...

If X and Y are sets of attributes, XY denotes their union X ∪ Y

If X is a set of attributes and A is an attribute,
XA denotes X ∪ {A}

Armstrong’s axioms

Sound and complete axiomatization for FDs

Essential axioms

Reflexivity: If Y ⊆ X, then X → Y

Augmentation: If X → Y , then XZ → Y Z for any Z

Transitivity: If X → Y and Y → Z, then X → Z

Other axioms

Union: If X → Y and X → Z, then X → Y Z

Decomposition: If X → Y Z, then X → Y and X → Z

Closure of a set of FDs

Let F be a set of FDs
The closure F+ of F is the set of all FDs implied by the FDs in F

Can be computed using Armstrong’s axioms

Example

Given F = {A→ B,B → C}

F+ = F ∪ {A→ C,AC → BC,AB → AC,AB → BC}
∪ {all trivial FDs on A,B,C}

Attribute closure

The closure CF (X) of a set X of attributes w.r.t. a set F of FDs
is the set of attributes we can derive from X using the FDs in F
(i.e., all the attributes A such that F ` X → A)

Properties

I X ⊆ CF (X)

I If X ⊆ Y , then CF (X) ⊆ CF (Y)

I CF

(
CF (X)

)
= CF (X)

Solution to the implication problem:

F |= Y → Z if and only if Z ⊆ CF (Y)

Closure algorithm

Input: a set F of FDs, and a set X of attributes

Output: CF (X), the closure of X w.r.t. F

1. unused := F

2. closure := X

3. while ((Y → Z) ∈ unused and Y ⊆ closure)

closure := closure ∪ Z
unused := unused− {Y → Z}

4. return closure

Example

Closure of A w.r.t. {AB → C,A→ B,CD → A} (blackboard)

Keys, candidate keys, and prime attributes

Let R be a relation with set of attributes U and FDs F

X ⊆ U is a key for R if F |= X → U

Equivalently, X is a key if CF (X) = U (why?)

Candidate keys

Keys X such that, for each Y ⊂ X, Y is not a key
Intuitively, keys with a minimal set of attributes

Prime attribute: an attribute of a candidate key

Attribute closure and candidate keys

Given a set F of FDs on attributes U ,
how do we compute all candidate keys?

1. ck := ∅
2. G := DAG of the powerset 2U of U

I Nodes are elements of 2U (sets of attributes)
I There is an edge from X to Y if Y ⊂ X

3. Repeat until G is empty:

Find a node X without children
if CF (X) = U :

ck := ck ∪ {X}
Delete X and all its ancestors from G

else:
Delete X from G

Implication of INDs

Given a set of INDs, what other INDs can we infer from it?

Axiomatization

Reflexivity: R[X] ⊆ R[X]

Transitivity: If R[X] ⊆ S[Y] and S[Y] ⊆ T [Z], then R[X] ⊆ T [Z]

Projection: If R[X,Y] ⊆ S[W,Z] with |X| = |W |,
then R[X] ⊆ S[W]

Permutation: If R[A1, . . . , An] ⊆ S[B1, . . . , Bn],
then R[Ai1 , . . . , Ain] ⊆ S[Bi1 , . . . , B1n],
where i1, . . . , in is a permutation of 1, . . . , n

Sound and complete derivation procedure for INDs

FDs and INDs together

Given a set F of FDs and an FD f , we can decide whether F |= f

Given a set G of INDs and an IND g, we can decide whether G |= g

What about F ∪G |= f or F ∪G |= g ?

This problem is undecidable: no algorithm can solve it

What if we consider only keys and foreign keys?

The implication problem is still undecidable

Unary inclusion dependencies (UINDs)

INDs of the form R[A] ⊆ S[B] where A,B are attributes

The implication problem for FDs and UINDs is decidable in PTIME

Further reading

Ullman, Widom. A First Course in Database Systems.

Chapter 3 Sections 3.1, 3.2

Abiteboul, Vianu, Hull. Foundations of Databases. Addison-Wesley, 1995

Chapter 8 Functional Dependencies

Chapter 9 Inclusion Dependencies

I Algorithm for checking implication of INDs

I Proof that implication of INDs is PSPACE-complete

I Undecidability proof for implication of FDs+INDs

I Axiomatization for FDs+UINDs

