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Memory Model
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mov	1,	x						;Store	
mov	y,	%ebx			;Load	

mov	1,	y						;Store	
mov	x,	%eax			;Load	

Initially, x	=	y	=	0.

Processor 0 Processor 1

Q. Is it possible that Processor 0’s %ebx and Processor 
1’s %eax both contain the value 0 after the processors 
have both executed their code?

A. It depends on the memory model :  how memory 
operations behave in the parallel computer system.



Sequential Consistency
“[T]he result of any execution is the same as if the 
operations of all the processors were executed in 
some sequential order, and the operations of each 
individual processor appear in this sequence in the 
order specified by its program.”

— Leslie Lamport [1979]

∙  The sequence of instructions as defined by a thread's program 
are interleaved with the corresponding sequences defined by 
the other threads’ programs to produce a global linear order of 
all instructions.

∙  A load instruction receives the value stored to that address by 
the most recent store instruction that precedes the load, 
according to the linear order.



Sequential Consistency Example
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Sequential consistency implies that no 
execution ends with %eax	=	%ebx	=	0. 

mov	1,	x  ;Store 
mov	b,	%ebx  ;Load 

mov	1,	y  ;Store 
mov	a,	%eax  ;Load 

Processor 0 Processor 1

Interleavings	
1	 1	 1	 3	 3	 3	

2	 3	 3	 1	 1	 4	

3	 2	 4	 2	 4	 1	
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Memory Models Today
∙  No modern-day processor implements sequential 

consistency. 
∙  All implement some form of relaxed consistency.
∙  Hardware actively reorders instructions.
∙  Compilers may reorder instructions, too.

Q. Why?
A. Because most of performance is derived from a 

single thread’s unsynchronized execution of 
code.



Example 1:
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mov	1,	x						;Store	
mov	y,	%ebx			;Load	

mov	1,	y						;Store	
mov	x,	%eax			;Load	

Processor 0 Processor 1

Final	state:	%eax	=	0	and	%ebx	=	0	allowed?	

Yes	for	most	exis=ng	architectures	(AFAIK).	



Hardware Reordering

∙  The processor can issue stores faster than the network 
can handle them ⇒ store buffer. 

∙  Since a load may stall the processor until it is satisfied, 
loads take priority, bypassing the store buffer. 

∙  If a load address matches an address in the store 
buffer, the store buffer returns the result. 

∙  Thus, a load can bypass a store to a different address. 

Memory 
System 

Load Bypass 

Processor 

Network 
Store Buffer 

P 



About Memory Model
•  Why you should care:  

Reasoning about the correctness of your (or someone 
else's) concurrent code.

•  There are a few different major flavors of hardware 
memory model:
§  x86-TSO: implemented by major x86 processors.
§  POWER relaxed memory model: implemented by Power and 

ARM processors prior to ARMv8-A.
§  ARMv8-A: implemented by ARM processors, improving upon 

POWER

•  Today: x86-TSO
8	



Relevant x86 Instructions 
•  loads and stores: 

ex: mov 2, x      // store 2 into memory x
•  fences: 

ex: SFENCE, LFENCE, MFENCE
•  locked instructions: 

ex: lock; inc x 
ex: xchg 
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 executing a LOCK’d instruction.

1. Rp[a]=u: p can read u from memory at address a if p is 
not blocked, there are no writes to a in p’s store buffer, 
and the memory does contain u at a.

2. Rp[a]=u: p can read u from its store buffer for address a 
if p is not blocked and has u as the newest write to a in 
its buffer.

3. Wp[a]=u: p can write u to its store buffer for address a at 
any time.

4. tp: if p is not blocked, it can silently dequeue the oldest 
write from its store buffer and place the value in mem-
ory at the given address, without coordinating with any 
hardware thread.

5. Fp: if p’s store buffer is empty, it can execute an MFENCE 
(note that if a hardware thread encounters an MFENCE 
instruction when its store buffer is not empty, it can 
take one or more tp steps to empty the buffer and 
 proceed, and similarly in 7 below).

6. Lp: if the lock is not held, it can begin a LOCK’d 
instruction.

7. Up: if p holds the lock, and its store buffer is empty, it 
can end a LOCK’d instruction.

Technically, the formal versions of these rules27 define a 
labeled transition system (with the events as labels) for the 
storage subsystem, and we define the behavior of the whole 
system as a parallel composition of that and transition sys-
tems for each thread, synchronizing on the non-t labels as 
in CCS.25

Additionally, we tentatively impose a progress condi-
tion, that each memory write is eventually propagated from 
the relevant store buffer to the shared memory. This is not 
stated in the documentation and is hard to test. We are 
assured that it holds at least for AMD processors.

For write-back cacheable memory, and the fragment 
of the instruction set that we consider, we treat LFENCE 
and SFENCE semantically as no-ops. This follows the Intel 
and AMD documentation, both of which imply that these 
fences do not order store/load pairs which are the only 
reorderings allowed in x86-TSO. Note, though, that else-
where it is stated that the Intel SFENCE flushes the store 
buffer.5, vol.3A, §11.10

3.2. Litmus tests
For our introductory SB example from Section 1, x86-TSO 
permits the given behavior for the same reasons as set forth 
there. For each of the examples in Section 2 (IRIW, n6, and 
n5/n4b), x86-TSO permits the given final state if and only 
if it is observable in our testing of actual processors, i.e., 
for IRIW it is forbidden (in contrast to IWP and AMD3.14), 
for n6 it is allowed (in contrast to IWP), and for n5/n4b it 
is  forbidden (in contrast to the Intel SDM rev. 29–34). For 
all the other relevant tests from the current Intel and AMD 
manuals the stated behavior agrees with x86-TSO. We now 
go through Examples 8–1 to 8–10 from rev. 34 of the Intel 
SDM, and the three other tests from AMD3.15, and explain 
the x86-TSO behavior in each case.

For completeness we repeat the Intel SDM short 

thread.
The behavior of the storage subsystem is described in 

more detail below, but the main points are:
 ! The store buffers are FIFO and a reading thread must 

read its most recent buffered write, if there is one, to that 
address; otherwise reads are satisfied from shared memory.

 ! An MFENCE instruction flushes the store buffer of that 
thread.

 ! To execute a LOCK’d instruction, a thread must first ob-
tain the global lock. At the end of the instruction, it flushes 
its store buffer and relinquishes the lock. While the lock is 
held by one thread, no other thread can read.

 ! A buffered write from a thread can propagate to the 
shared memory at any time except when some other thread 
holds the lock.

More precisely, the possible interactions between the 
threads and the storage subsystem are described by the 
 following events:

 ! Wp [a]=u, for a write of value u to address a by thread p
 ! Rp [a]=u, for a read of u from a by thread p
 ! Fp, for an MFENCE memory barrier by thread p
 ! Lp, at the start of a LOCK’d instruction by thread p
 ! Up, at the end of a LOCK’d instruction by thread p
 ! tp, for an internal action of the storage subsystem, prop-

agating a write from p’s store buffer to the shared memory

For example, suppose a particular hardware thread p has 
come to the instruction INC [56] (which adds 1 to the value 
at address 56), and p’s store buffer contains a single write to 
56, of value 0. In one execution we might see read and write 
events, Rp[56]=0 and Wp[56]=1, followed by two tp events as 
the two writes propagate to shared memory. Another execu-
tion might start with the write of 0 propagating to shared 
memory, where it could be overwritten by another thread. 
Executions of LOCK;INC [56] would be similar but  bracketed 
by Lp and Up events.

The behavior of the storage subsystem is specified by 
the following rules, where we define a hardware thread to 
be blocked if the storage subsystem lock is taken by another 
hardware thread, i.e., while another hardware thread is 

Lock

W
rite buffer

W
rite buffer

Shared memory

H/W thread H/W thread

Figure 1. x89-TSO block diagram.

•  Instruc=ons	are	"commiJed"	in	order.	
•  Loads	are	served	from	the	store	buffer	is	the	address	match;	

otherwise	served	from	memory.		
•  A	load	is	commi%ed	if	it's	value	is	fixed.	



The Abstraction Machine Model for 
X86-TSO

JULY 2010  |   VOL.  53  |   NO.  7   |   COMMUNICATIONS OF THE ACM     93

 

 executing a LOCK’d instruction.

1. Rp[a]=u: p can read u from memory at address a if p is 
not blocked, there are no writes to a in p’s store buffer, 
and the memory does contain u at a.

2. Rp[a]=u: p can read u from its store buffer for address a 
if p is not blocked and has u as the newest write to a in 
its buffer.

3. Wp[a]=u: p can write u to its store buffer for address a at 
any time.

4. tp: if p is not blocked, it can silently dequeue the oldest 
write from its store buffer and place the value in mem-
ory at the given address, without coordinating with any 
hardware thread.

5. Fp: if p’s store buffer is empty, it can execute an MFENCE 
(note that if a hardware thread encounters an MFENCE 
instruction when its store buffer is not empty, it can 
take one or more tp steps to empty the buffer and 
 proceed, and similarly in 7 below).

6. Lp: if the lock is not held, it can begin a LOCK’d 
instruction.

7. Up: if p holds the lock, and its store buffer is empty, it 
can end a LOCK’d instruction.

Technically, the formal versions of these rules27 define a 
labeled transition system (with the events as labels) for the 
storage subsystem, and we define the behavior of the whole 
system as a parallel composition of that and transition sys-
tems for each thread, synchronizing on the non-t labels as 
in CCS.25

Additionally, we tentatively impose a progress condi-
tion, that each memory write is eventually propagated from 
the relevant store buffer to the shared memory. This is not 
stated in the documentation and is hard to test. We are 
assured that it holds at least for AMD processors.

For write-back cacheable memory, and the fragment 
of the instruction set that we consider, we treat LFENCE 
and SFENCE semantically as no-ops. This follows the Intel 
and AMD documentation, both of which imply that these 
fences do not order store/load pairs which are the only 
reorderings allowed in x86-TSO. Note, though, that else-
where it is stated that the Intel SFENCE flushes the store 
buffer.5, vol.3A, §11.10

3.2. Litmus tests
For our introductory SB example from Section 1, x86-TSO 
permits the given behavior for the same reasons as set forth 
there. For each of the examples in Section 2 (IRIW, n6, and 
n5/n4b), x86-TSO permits the given final state if and only 
if it is observable in our testing of actual processors, i.e., 
for IRIW it is forbidden (in contrast to IWP and AMD3.14), 
for n6 it is allowed (in contrast to IWP), and for n5/n4b it 
is  forbidden (in contrast to the Intel SDM rev. 29–34). For 
all the other relevant tests from the current Intel and AMD 
manuals the stated behavior agrees with x86-TSO. We now 
go through Examples 8–1 to 8–10 from rev. 34 of the Intel 
SDM, and the three other tests from AMD3.15, and explain 
the x86-TSO behavior in each case.

For completeness we repeat the Intel SDM short 

thread.
The behavior of the storage subsystem is described in 

more detail below, but the main points are:
 ! The store buffers are FIFO and a reading thread must 

read its most recent buffered write, if there is one, to that 
address; otherwise reads are satisfied from shared memory.

 ! An MFENCE instruction flushes the store buffer of that 
thread.

 ! To execute a LOCK’d instruction, a thread must first ob-
tain the global lock. At the end of the instruction, it flushes 
its store buffer and relinquishes the lock. While the lock is 
held by one thread, no other thread can read.

 ! A buffered write from a thread can propagate to the 
shared memory at any time except when some other thread 
holds the lock.

More precisely, the possible interactions between the 
threads and the storage subsystem are described by the 
 following events:

 ! Wp [a]=u, for a write of value u to address a by thread p
 ! Rp [a]=u, for a read of u from a by thread p
 ! Fp, for an MFENCE memory barrier by thread p
 ! Lp, at the start of a LOCK’d instruction by thread p
 ! Up, at the end of a LOCK’d instruction by thread p
 ! tp, for an internal action of the storage subsystem, prop-

agating a write from p’s store buffer to the shared memory

For example, suppose a particular hardware thread p has 
come to the instruction INC [56] (which adds 1 to the value 
at address 56), and p’s store buffer contains a single write to 
56, of value 0. In one execution we might see read and write 
events, Rp[56]=0 and Wp[56]=1, followed by two tp events as 
the two writes propagate to shared memory. Another execu-
tion might start with the write of 0 propagating to shared 
memory, where it could be overwritten by another thread. 
Executions of LOCK;INC [56] would be similar but  bracketed 
by Lp and Up events.

The behavior of the storage subsystem is specified by 
the following rules, where we define a hardware thread to 
be blocked if the storage subsystem lock is taken by another 
hardware thread, i.e., while another hardware thread is 

Lock

W
rite buffer

W
rite buffer

Shared memory

H/W thread H/W thread

Figure 1. x89-TSO block diagram.

•  The	store	is	commi%ed	if	it's	wriJen	to	the	store	buffer.	
•  The	store	buffers	are	FIFO.	
•  An	MFENCE	flushes	the	store	buffer	of	that	thread.	
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 executing a LOCK’d instruction.

1. Rp[a]=u: p can read u from memory at address a if p is 
not blocked, there are no writes to a in p’s store buffer, 
and the memory does contain u at a.

2. Rp[a]=u: p can read u from its store buffer for address a 
if p is not blocked and has u as the newest write to a in 
its buffer.

3. Wp[a]=u: p can write u to its store buffer for address a at 
any time.

4. tp: if p is not blocked, it can silently dequeue the oldest 
write from its store buffer and place the value in mem-
ory at the given address, without coordinating with any 
hardware thread.

5. Fp: if p’s store buffer is empty, it can execute an MFENCE 
(note that if a hardware thread encounters an MFENCE 
instruction when its store buffer is not empty, it can 
take one or more tp steps to empty the buffer and 
 proceed, and similarly in 7 below).

6. Lp: if the lock is not held, it can begin a LOCK’d 
instruction.

7. Up: if p holds the lock, and its store buffer is empty, it 
can end a LOCK’d instruction.

Technically, the formal versions of these rules27 define a 
labeled transition system (with the events as labels) for the 
storage subsystem, and we define the behavior of the whole 
system as a parallel composition of that and transition sys-
tems for each thread, synchronizing on the non-t labels as 
in CCS.25

Additionally, we tentatively impose a progress condi-
tion, that each memory write is eventually propagated from 
the relevant store buffer to the shared memory. This is not 
stated in the documentation and is hard to test. We are 
assured that it holds at least for AMD processors.

For write-back cacheable memory, and the fragment 
of the instruction set that we consider, we treat LFENCE 
and SFENCE semantically as no-ops. This follows the Intel 
and AMD documentation, both of which imply that these 
fences do not order store/load pairs which are the only 
reorderings allowed in x86-TSO. Note, though, that else-
where it is stated that the Intel SFENCE flushes the store 
buffer.5, vol.3A, §11.10

3.2. Litmus tests
For our introductory SB example from Section 1, x86-TSO 
permits the given behavior for the same reasons as set forth 
there. For each of the examples in Section 2 (IRIW, n6, and 
n5/n4b), x86-TSO permits the given final state if and only 
if it is observable in our testing of actual processors, i.e., 
for IRIW it is forbidden (in contrast to IWP and AMD3.14), 
for n6 it is allowed (in contrast to IWP), and for n5/n4b it 
is  forbidden (in contrast to the Intel SDM rev. 29–34). For 
all the other relevant tests from the current Intel and AMD 
manuals the stated behavior agrees with x86-TSO. We now 
go through Examples 8–1 to 8–10 from rev. 34 of the Intel 
SDM, and the three other tests from AMD3.15, and explain 
the x86-TSO behavior in each case.

For completeness we repeat the Intel SDM short 

thread.
The behavior of the storage subsystem is described in 

more detail below, but the main points are:
 ! The store buffers are FIFO and a reading thread must 

read its most recent buffered write, if there is one, to that 
address; otherwise reads are satisfied from shared memory.

 ! An MFENCE instruction flushes the store buffer of that 
thread.

 ! To execute a LOCK’d instruction, a thread must first ob-
tain the global lock. At the end of the instruction, it flushes 
its store buffer and relinquishes the lock. While the lock is 
held by one thread, no other thread can read.

 ! A buffered write from a thread can propagate to the 
shared memory at any time except when some other thread 
holds the lock.

More precisely, the possible interactions between the 
threads and the storage subsystem are described by the 
 following events:

 ! Wp [a]=u, for a write of value u to address a by thread p
 ! Rp [a]=u, for a read of u from a by thread p
 ! Fp, for an MFENCE memory barrier by thread p
 ! Lp, at the start of a LOCK’d instruction by thread p
 ! Up, at the end of a LOCK’d instruction by thread p
 ! tp, for an internal action of the storage subsystem, prop-

agating a write from p’s store buffer to the shared memory

For example, suppose a particular hardware thread p has 
come to the instruction INC [56] (which adds 1 to the value 
at address 56), and p’s store buffer contains a single write to 
56, of value 0. In one execution we might see read and write 
events, Rp[56]=0 and Wp[56]=1, followed by two tp events as 
the two writes propagate to shared memory. Another execu-
tion might start with the write of 0 propagating to shared 
memory, where it could be overwritten by another thread. 
Executions of LOCK;INC [56] would be similar but  bracketed 
by Lp and Up events.

The behavior of the storage subsystem is specified by 
the following rules, where we define a hardware thread to 
be blocked if the storage subsystem lock is taken by another 
hardware thread, i.e., while another hardware thread is 

Lock

W
rite buffer

W
rite buffer

Shared memory

H/W thread H/W thread

Figure 1. x89-TSO block diagram.

•  To	execute	a	LOCK’d	instruc=on,	a	thread	must	first	obtain	the	global	
lock.		At	the	end	of	the	instruc=on,	it	flushes	its	store	buffer	and	
relinquishes	the	lock.		

•  While	the	lock	is	held	by	one	thread,	all	other	threads	are	blocked.	
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 executing a LOCK’d instruction.

1. Rp[a]=u: p can read u from memory at address a if p is 
not blocked, there are no writes to a in p’s store buffer, 
and the memory does contain u at a.

2. Rp[a]=u: p can read u from its store buffer for address a 
if p is not blocked and has u as the newest write to a in 
its buffer.

3. Wp[a]=u: p can write u to its store buffer for address a at 
any time.

4. tp: if p is not blocked, it can silently dequeue the oldest 
write from its store buffer and place the value in mem-
ory at the given address, without coordinating with any 
hardware thread.

5. Fp: if p’s store buffer is empty, it can execute an MFENCE 
(note that if a hardware thread encounters an MFENCE 
instruction when its store buffer is not empty, it can 
take one or more tp steps to empty the buffer and 
 proceed, and similarly in 7 below).

6. Lp: if the lock is not held, it can begin a LOCK’d 
instruction.

7. Up: if p holds the lock, and its store buffer is empty, it 
can end a LOCK’d instruction.

Technically, the formal versions of these rules27 define a 
labeled transition system (with the events as labels) for the 
storage subsystem, and we define the behavior of the whole 
system as a parallel composition of that and transition sys-
tems for each thread, synchronizing on the non-t labels as 
in CCS.25

Additionally, we tentatively impose a progress condi-
tion, that each memory write is eventually propagated from 
the relevant store buffer to the shared memory. This is not 
stated in the documentation and is hard to test. We are 
assured that it holds at least for AMD processors.

For write-back cacheable memory, and the fragment 
of the instruction set that we consider, we treat LFENCE 
and SFENCE semantically as no-ops. This follows the Intel 
and AMD documentation, both of which imply that these 
fences do not order store/load pairs which are the only 
reorderings allowed in x86-TSO. Note, though, that else-
where it is stated that the Intel SFENCE flushes the store 
buffer.5, vol.3A, §11.10

3.2. Litmus tests
For our introductory SB example from Section 1, x86-TSO 
permits the given behavior for the same reasons as set forth 
there. For each of the examples in Section 2 (IRIW, n6, and 
n5/n4b), x86-TSO permits the given final state if and only 
if it is observable in our testing of actual processors, i.e., 
for IRIW it is forbidden (in contrast to IWP and AMD3.14), 
for n6 it is allowed (in contrast to IWP), and for n5/n4b it 
is  forbidden (in contrast to the Intel SDM rev. 29–34). For 
all the other relevant tests from the current Intel and AMD 
manuals the stated behavior agrees with x86-TSO. We now 
go through Examples 8–1 to 8–10 from rev. 34 of the Intel 
SDM, and the three other tests from AMD3.15, and explain 
the x86-TSO behavior in each case.

For completeness we repeat the Intel SDM short 

thread.
The behavior of the storage subsystem is described in 

more detail below, but the main points are:
 ! The store buffers are FIFO and a reading thread must 

read its most recent buffered write, if there is one, to that 
address; otherwise reads are satisfied from shared memory.

 ! An MFENCE instruction flushes the store buffer of that 
thread.

 ! To execute a LOCK’d instruction, a thread must first ob-
tain the global lock. At the end of the instruction, it flushes 
its store buffer and relinquishes the lock. While the lock is 
held by one thread, no other thread can read.

 ! A buffered write from a thread can propagate to the 
shared memory at any time except when some other thread 
holds the lock.

More precisely, the possible interactions between the 
threads and the storage subsystem are described by the 
 following events:

 ! Wp [a]=u, for a write of value u to address a by thread p
 ! Rp [a]=u, for a read of u from a by thread p
 ! Fp, for an MFENCE memory barrier by thread p
 ! Lp, at the start of a LOCK’d instruction by thread p
 ! Up, at the end of a LOCK’d instruction by thread p
 ! tp, for an internal action of the storage subsystem, prop-

agating a write from p’s store buffer to the shared memory

For example, suppose a particular hardware thread p has 
come to the instruction INC [56] (which adds 1 to the value 
at address 56), and p’s store buffer contains a single write to 
56, of value 0. In one execution we might see read and write 
events, Rp[56]=0 and Wp[56]=1, followed by two tp events as 
the two writes propagate to shared memory. Another execu-
tion might start with the write of 0 propagating to shared 
memory, where it could be overwritten by another thread. 
Executions of LOCK;INC [56] would be similar but  bracketed 
by Lp and Up events.

The behavior of the storage subsystem is specified by 
the following rules, where we define a hardware thread to 
be blocked if the storage subsystem lock is taken by another 
hardware thread, i.e., while another hardware thread is 

Lock

W
rite buffer

W
rite buffer

Shared memory

H/W thread H/W thread

Figure 1. x89-TSO block diagram.

•  When	a	thread	is	blocked,	it	cannot	read	(even	from	its	SB),	and	a	
buffered	write	cannot	propagate	to	the	shared	memory.	

•  Implica=on:	updates	via	locked	instruc=ons	have	a	global	total	
order	imposed	
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 executing a LOCK’d instruction.

1. Rp[a]=u: p can read u from memory at address a if p is 
not blocked, there are no writes to a in p’s store buffer, 
and the memory does contain u at a.

2. Rp[a]=u: p can read u from its store buffer for address a 
if p is not blocked and has u as the newest write to a in 
its buffer.

3. Wp[a]=u: p can write u to its store buffer for address a at 
any time.

4. tp: if p is not blocked, it can silently dequeue the oldest 
write from its store buffer and place the value in mem-
ory at the given address, without coordinating with any 
hardware thread.

5. Fp: if p’s store buffer is empty, it can execute an MFENCE 
(note that if a hardware thread encounters an MFENCE 
instruction when its store buffer is not empty, it can 
take one or more tp steps to empty the buffer and 
 proceed, and similarly in 7 below).

6. Lp: if the lock is not held, it can begin a LOCK’d 
instruction.

7. Up: if p holds the lock, and its store buffer is empty, it 
can end a LOCK’d instruction.

Technically, the formal versions of these rules27 define a 
labeled transition system (with the events as labels) for the 
storage subsystem, and we define the behavior of the whole 
system as a parallel composition of that and transition sys-
tems for each thread, synchronizing on the non-t labels as 
in CCS.25

Additionally, we tentatively impose a progress condi-
tion, that each memory write is eventually propagated from 
the relevant store buffer to the shared memory. This is not 
stated in the documentation and is hard to test. We are 
assured that it holds at least for AMD processors.

For write-back cacheable memory, and the fragment 
of the instruction set that we consider, we treat LFENCE 
and SFENCE semantically as no-ops. This follows the Intel 
and AMD documentation, both of which imply that these 
fences do not order store/load pairs which are the only 
reorderings allowed in x86-TSO. Note, though, that else-
where it is stated that the Intel SFENCE flushes the store 
buffer.5, vol.3A, §11.10

3.2. Litmus tests
For our introductory SB example from Section 1, x86-TSO 
permits the given behavior for the same reasons as set forth 
there. For each of the examples in Section 2 (IRIW, n6, and 
n5/n4b), x86-TSO permits the given final state if and only 
if it is observable in our testing of actual processors, i.e., 
for IRIW it is forbidden (in contrast to IWP and AMD3.14), 
for n6 it is allowed (in contrast to IWP), and for n5/n4b it 
is  forbidden (in contrast to the Intel SDM rev. 29–34). For 
all the other relevant tests from the current Intel and AMD 
manuals the stated behavior agrees with x86-TSO. We now 
go through Examples 8–1 to 8–10 from rev. 34 of the Intel 
SDM, and the three other tests from AMD3.15, and explain 
the x86-TSO behavior in each case.

For completeness we repeat the Intel SDM short 

thread.
The behavior of the storage subsystem is described in 

more detail below, but the main points are:
 ! The store buffers are FIFO and a reading thread must 

read its most recent buffered write, if there is one, to that 
address; otherwise reads are satisfied from shared memory.

 ! An MFENCE instruction flushes the store buffer of that 
thread.

 ! To execute a LOCK’d instruction, a thread must first ob-
tain the global lock. At the end of the instruction, it flushes 
its store buffer and relinquishes the lock. While the lock is 
held by one thread, no other thread can read.

 ! A buffered write from a thread can propagate to the 
shared memory at any time except when some other thread 
holds the lock.

More precisely, the possible interactions between the 
threads and the storage subsystem are described by the 
 following events:

 ! Wp [a]=u, for a write of value u to address a by thread p
 ! Rp [a]=u, for a read of u from a by thread p
 ! Fp, for an MFENCE memory barrier by thread p
 ! Lp, at the start of a LOCK’d instruction by thread p
 ! Up, at the end of a LOCK’d instruction by thread p
 ! tp, for an internal action of the storage subsystem, prop-

agating a write from p’s store buffer to the shared memory

For example, suppose a particular hardware thread p has 
come to the instruction INC [56] (which adds 1 to the value 
at address 56), and p’s store buffer contains a single write to 
56, of value 0. In one execution we might see read and write 
events, Rp[56]=0 and Wp[56]=1, followed by two tp events as 
the two writes propagate to shared memory. Another execu-
tion might start with the write of 0 propagating to shared 
memory, where it could be overwritten by another thread. 
Executions of LOCK;INC [56] would be similar but  bracketed 
by Lp and Up events.

The behavior of the storage subsystem is specified by 
the following rules, where we define a hardware thread to 
be blocked if the storage subsystem lock is taken by another 
hardware thread, i.e., while another hardware thread is 

Lock

W
rite buffer

W
rite buffer

Shared memory

H/W thread H/W thread

Figure 1. x89-TSO block diagram.

•  The	shared	memory	is	access-atomic	(no	interleaving	bits)	and	
mul1ple-copy	atomic	(once	a	store	hits	memory,	it's	visible	to	all	
threads).	



X86-TSO from a Thread's 
Perspective

1.   Loads	are	not	 reordered	with	loads.	
2.   Stores	are	not	 reordered	with	stores.	
3.   Stores	are	not	 reordered	with	prior	loads.	
4.  A	load	may	 be	reordered	with	a	prior	store	to	a	different	

loca=on	but	not	 with	a	prior	store	to	the	same	loca=on.	
5.   Loads	and	stores	are	not	 reordered	with	lock	

instruc=ons.	
6.   Stores	to	the	same	loca=on	is	coherent.	
7.   Stores	are	transi=vely	visible.	
8.   Lock	instruc=ons	respect	a	global	total	order.		



Example 1:

mov	1,	x						;Store	
mov	b,	%ebx			;Load	

mov	1,	y						;Store	
mov	a,	%eax			;Load	

Processor 0 Processor 1

Final	state:	%eax	=	0	and	%ebx	=	0	allowed?	

Yes.		On	x86-TSO,	loads	can	be	reordered	with	stores.	

Ini=ally,	x	=	y	=	0	



mov	1,	x						;Store	
mov	x,	%eax			;Load	

Processor 0

Final	state:	%eax	=	1	required.	

Example 2:

Loads	are	not	reordered	with	older	stores	to	the	same	loca=on.	

Allow	loading	from	store	buffer.	

Ini=ally,	x	=	0	



Example 3:

mov	1,	x				;Store	
Processor 0

mov	x,	%eax		;Load	
mov	1,	y					;Store	

Processor 1
mov	y,	%ebx			;Load	
mov	x,	%ecx			;Load	

Processor 2

Final	state:	%eax	=	1	and	%ebx	=	1	and	%ecx	=	0	allowed?	

Ini=ally,	x	=	y	=	0	


