CSE 539S, Spring 2018
Concepts in Multicore Computing

Lec 17:Hardware Memory Model

I-Ting Angelina Lee
Mar 27, 2018



Memory Model

Initially, x = y = @.

Processor 0

mov 1, X
mov y, %ebx

;Store
;Load

J

Processor 1

mov 1, y ;Store
mov X, %eax ;Load

Q. Is it possible that Processor 0’s 9%ebx and Processor
1’s Y%eax both contain the value 0 after the processors

have both executed their code?

A. It depends on the memory model. how memory
operations behave in the parallel computer system.



Sequential Consistency

“[T]he result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, and the operations of each
iIndividual processor appear in this sequence in the
order specified by its program.”

— Leslie Lamport [1979]

» The sequence of instructions as defined by a thread's program
are interleaved with the corresponding sequences defined by
the other threads’ programs to produce a global linear order of
all instructions.

» Aload instruction receives the value stored to that address by
the most recent store instruction that precedes the load,
according to the linear order.



Sequential Consistency Example

Processor 0 Processor 1

@ mov 1, x :Store © mov 1, vy :Store
9,

mov b, %ebx ;Load O mov a, %eax ;Load

%eax
%ebx

R R AN W R
R RN D W R
R RSN P W
R RN D> P W
R OO N |, MW

1
2
3
4
1
(%]

Sequential consistency implies that no
execution ends with %eax = %ebx = 0.



Memory Models Today

« No modern-day processor implements sequential
consistency.

« All implement some form of relaxed consistency.

« Hardware actively reorders instructions.

« Compilers may reorder instructions, too.

Q. Why?

A. Because most of performance is derived from a
single thread’s unsynchronized execution of

code.



Example 1:

Processor 0

mov 1, X
mov y, %ebx

;Store
;Load

J

Processor 1

mov 1, y
mov X, %eax

;Store
;Load

J

Final state: %eax = 0 and %ebx = 0 allowed?

Yes for most existing architectures (AFAIK).



Hardware Reordering

Load Bypass

P

ore

er

—> Store Buﬁ1 '

1

Network

Processor

o The processor can issue stores faster than the network
can handle them = store buffer.

e Since a load may stall the processor until it is satisfied,
loads take priority, bypassing the store buffer.

o If a load address matches an address in the store
buffer, the store buffer returns the result.

e Thus, a load can bypass a store to a different address.



About Memory Model

* Why you should care:

Reasoning about the correctness of your (or someone
else's) concurrent code.

* There are a few different major flavors of hardware
memory model:
» x86-TSO: implemented by major x86 processors.

= POWER relaxed memory model: implemented by Power and
ARM processors prior to ARMv8-A.

= ARMv8-A: implemented by ARM processors, improving upon
POWER

« Today: x86-TSO



Relevant x86 Instructions

* |loads and stores:
ex: mov 2, x // store 2 into memory X

 fences:
ex: SFENCE, LFENCE, MFENCE

* |locked instructions:
eX: lock; Inc X
ex: xchg



The Abstraction Machine Model for
X86-TSO

H/W thread ceo H/W thread

A A

J3HNg 314
J34INq 91N

. | Lock Shared memory

________________________________________________________________________________

* |nstructions are "committed" in order.

 Loads are served from the store buffer is the address match;
otherwise served from memory.

e Aloadis committed if it's value is fixed.



The Abstraction Machine Model for
X86-TSO

H/W thread ceo H/W thread

J3HNg 314
J34INq 91N

. | Lock Shared memory

________________________________________________________________________________

e The store is committed if it's written to the store buffer.
e The store buffers are FIFO.

e An MFENCE flushes the store buffer of that thread.



The Abstraction Machine Model for
X86-TSO

H/W thread ceo H/W thread

A A

J3HNg 314
J34INq 91N

. | Lock Shared memory

________________________________________________________________________________

To execute a LOCK'd instruction, a thread must first obtain the global

lock. At the end of the instruction, it flushes its store buffer and
relinquishes the lock.

While the lock is held by one thread, all other threads are blocked.



The Abstraction Machine Model for
X86-TSO

H/W thread ceo H/W thread

A A

134JNQ 311N
13Hinq a1l

. | Lock Shared memory

________________________________________________________________________________

When a thread is blocked, it cannot read (even from its SB), and a
buffered write cannot propagate to the shared memory.

* Implication: updates via locked instructions have a global total
order imposed



The Abstraction Machine Model for
X86-TSO

H/W thread oo H/W thread

A A

13Hinq a1l
J34INq 91N

. | Lock Shared memory

________________________________________________________________________________

The shared memory is access-atomic (no interleaving bits) and

multiple-copy atomic (once a store hits memory, it's visible to all
threads).



X86-TSO from a Thread's
Perspective

A =

Loads are not reordered with loads.
Stores are not reordered with stores.
Stores are not reordered with prior loads.

A load may be reordered with a prior store to a different
location but not with a prior store to the same location.

Loads and stores are not reordered with lock
instructions.

Stores to the same location is coherent.
Stores are transitively visible.
Lock instructions respect a global total order.



Example 1:

Initially, x=y =0

Processor 0

mov 1, X
mov b, %ebx

;Store
s Load

J

Processor 1

mov 1, y
mov a, x%eax

;Store
s Load

Final state: %eax = 0 and %ebx = 0 allowed?

Yes. On x86-TSO, loads can be reordered with stores.



Example 2:

Initially, x =0
Processor 0

mov 1, X ;Store
mov X, %eax ;Load

Final state: %eax = 1 required.

Loads are not reordered with older stores to the same location.

Allow loading from store buffer.



Example 3:

Initially, x=y =0
Processor 0

mov 1, X ;StoreJ

Processor 1 Processor 2

mov X, %eax ;Load mov y, %ebx ;Load
mov 1, vy ;Store mov X, »ecx ;Load

Final state: %eax = 1 and %ebx =1 and %ecx = 0 allowed?



