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ARTIFICIAL INTELLIGENCE Constraint Satisfaction problems (CSPs)

Constraint satisfaction problems (or CSPs) belong to a class of 
problems for which the goal itself is the most important part, not the 
path used to reach it.

EXAMPLES

 Map coloring!

 Sudokus

 Crossword puzzles

 Job scheduling

 Cryptarithmetic puzzles

 N-Queens problems

 Hardware configuration

 Assignment problems

 Transportation scheduling

 Fault diagnosis

 More…
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ARTIFICIAL INTELLIGENCE Constraint Satisfaction problems (CSPs)

The state of a CSP is defined by ݊ variables ࢄ with values from domain ࡰ:

 Discrete variables:
• Domains can be finite: a finite of size ݀ set of values or things (means ݀ complete 

assignments). Examples are: Boolean values, specific meaningful numbers, set of 
colors, etc.

• or infinite: integers or strings. Examples are: strings for a crossword puzzle, duration of 
jobs in seconds, etc.

 Continuous variables:
• Domains are infinite. Examples are: start/end times for Hubble Telescope observations 

as they obey to astronomical time laws

102

5



ARTIFICIAL INTELLIGENCE Constraint Satisfaction problems (CSPs)

 The goal test is a set of constraints that specifies allowable combinations 
of values for subsets of variables:
• Constraints can be explicit (explicitly enumerated) 
• or implicit (a formula describes it)
• Constraints can be: unary, binary, global, alldiff

 Constraints are generally represented with a graph, called hypergraph, that 
shows the relationship between the variables

 Soft constraints represent preferences about some values of the variables. 
They usually come with a cost value that expresses the strength of the 
preference
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ARTIFICIAL INTELLIGENCE

 VARIABLES
WA, NT, Q, NSW, V, SA, T

 DOMAINS
{                }

 CONSTRAINTS
Adjacent regions must 
have different colors:

Implicit: WA ് SA,	
WA ് NT, NT ് SA,	
NT ് Q, Q ് SA, Q ് NSW, 
NSW ് SA, NSW ് V, V ്
SA

Explicit: ሺܹܣ,ܰܶሻ ∈
					,					
					,					

etc.

EXAMPLE: COLORING AUSTRALIA
104Constraint Satisfaction problems (CSPs)

WESTERN
AUSTRALIA

NORTHERN
TERRITORY

SOUTH
AUSTRALIA

QUEENSLAND

NEW SOUTH 
WALES

VICTORIA

TASMANIA

 Solutions are assignments that 
satisfying all constraints:

WA NT Q

NSW V SA

T
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ARTIFICIAL INTELLIGENCE
EXAMPLES: SUDOKU

105Constraint Satisfaction problems (CSPs)

 VARIABLES
Open squares

 DOMAINS
{1, 2, 3, … 9}

 CONSTRAINTS

9-way alldiff for each column
9-way alldiff for each row
9-way alldiff for each region

 RULES

Fill all empty squares so that the numbers 1 to 
9 appear once in each row, column and 3x3 
box.
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ARTIFICIAL INTELLIGENCE
STANDARD SEARCH FORMULATION

201Solving CSPs

The idea is to use standard search algorithms (DFS and BFS) to find a solution 
that satisfies all the constraints.

 STATES

The variables assigned with values so far

 INITIAL STATE

All variable assignments are empty

 SUCCESSOR FUNCTION

Assign a value to an unassigned variable

 GOAL TEST

The current assignment is complete and satisfies all constraints

It’s a naïve approach, but it’s a start.
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ARTIFICIAL INTELLIGENCE
CHRONOLOGICAL BACKTRACKING SEARCH

202Solving CSPs

Chronological backtracking search is an uninformed searching algorithm 
based on the Depth-first searching algorithm with some improvements 
related to CSPs.

 IMPROVEMENT 1

Each step considers only one assignment at the time

 IMPROVEMENT 2

Check constraints as the search continues. Consider only new assignments 
which do not conflict previous assignments (incremental goal test)
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ARTIFICIAL INTELLIGENCE
COLORING EXAMPLE

203Backtracking search
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ARTIFICIAL INTELLIGENCE
PSEUDO-CODE

204Backtracking search

function Backtracking-search(csp) returns SOLUTION, or FAILURE
return Recursive-backtracking({}, csp) 

function Recursive-backtracking(assignment, csp) returns SOLUTION, or FAILURE
if assignment is complete then 
return assignment

variable = Select-unassigned-variable(variables[csp], assignment, csp)
for each value in Order-Domain-Value(variable, assignment, csp) do

if value is consistent with assignment given Constraints[csp] then
add {variable = value} to assignment
result = Recursive-backtracking(assignment, csp)

if result ് failure then 
return result

remove {variable = value} from assignment

return FAILURE

1
2
3
4
5
6
7
8   
9
10    
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13    
14
15
16   
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ARTIFICIAL INTELLIGENCE
IMPROVING BY BAILING OUT EARLIER 

205Backtracking search

We can improve backtracking even more with some additional improvements:

 IMPROVEMENT 1
Taking divination class: filter out inevitable failures as early as possible

 IMPROVEMENT 2
Do not choose poorly: choose carefully which variable for assignment

 IMPROVEMENT 3
You should never, never doubt something that no one is sure of: choose judicially 
what value to use

 IMPROVEMENT 4
Where we're going we don't need... roads: choose judicially where to backtrack to

 IMPROVEMENT 5
See the whole board: use the topology of the problem, or its structure, to assign 
variables

Professor Sybill Trelawney: Professor of divination
Indiana Jones: Templar knight
Charlie and the chocolate factory: Roald Dahl
Back to the future: Dr. Emmet Brown
West wing: President Bartlet
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ARTIFICIAL INTELLIGENCE
FORWARD CHECKING

Filtering

 Forward checking keeps track of the domains for the unassigned variables 
and remove possible bad options right away
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ARTIFICIAL INTELLIGENCE
ARC CONSISTENCY

Filtering

Arc consistency is one form of constraint propagation that tries to 
prune illegal assignment before they happen
 While evaluating ܰ, an arc ܰ → ܰ from a neighbor ܰ is consistent if and 

only if every ݔ ∈ ܺ there is some ݕ ∈ ܻ which could be assigned without 
violating a constraint:

Arc consistency on  ܰ is also triggered
if the domain of  ܰ (ܺ	that is) changes.
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ARTIFICIAL INTELLIGENCE
ARC CONSISTENCY: THE ALGORITHM

Filtering

function AC-3(csp) returns SOLUTION

push all arcs in queue
while queue is not empty do
pop arc( ܺ , ܺ) from queue

if Remove-Inconsistent-Values( ܺ , ܺ) then
for each ܺ	in Neighbors( ܺ) do
add(ܺ, ܺ) to queue

function Remove-Inconsistent-Values( ܺ , ܺ)
removed = false
for each x in Domain( ܺ) do

if no value y in Domain( ܺ) 
allow (x, y) to satisfy the constraint ܺ 	↔ ܺ then

delete x from Domain( ܺ)
removed = true

return removed
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ARTIFICIAL INTELLIGENCE
ARC CONSISTENCY CANNOT RUN ALONE

Filtering

 Arc consistency has to run inside a backtracking search because:
• There might still be one or more solutions left
• There might be no solution left 

1 SOLUTION ? SOLUTIONS ? SOLUTIONS
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ARTIFICIAL INTELLIGENCE
PICKING A VARIABLE

Ordering

Minimum Remaining Values (MRV): 
choose the variable with the fewest legal 
values in its domain

In order to prune even more illegal assignments, we also have to consider how 
we choose the variables:

Degree Heuristic: choose the variable 
with the highest number of constraints

Why do we choose the minimum rather than the maximum?
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ARTIFICIAL INTELLIGENCE
VALUE ORDERING: PICKING THE VALUE

501Ordering

Least Constraining Value (LCV): Once the variable is selected, choose the 
value that rules out the fewest choices for the neighbors

Why do we choose the minimum rather than the maximum?
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ARTIFICIAL INTELLIGENCE
LOOKING BACKWARD

601Intelligent backtracking

 The minimal form of backtracking is known as chronological backtracking

 Backjumping: A smarter approach is to jump back to the most recent 
conflict using the idea of conflict sets

VARIABLE ORDER
Q, NSW, V, T, SA, WA, NT

CONFLICT SET
1: Q = 

CONFLICT SET
2: NSW = 
1: Q = 

CONFLICT SET
3: V = 
2: NSW = 
1: Q = 

CONFLICT SET
3: V = 
2: NSW = 
1: Q = 
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ARTIFICIAL INTELLIGENCE
CONFLICT-DIRECTED BACKJUMPING

602Intelligent backtracking

In conflict-directed backjumping the conflict sets migrate from one 
variable to another:

CONFLICT SET
1: WA = CONFLICT SET

2: NT = 
1: NSW = 

CONFLICT SET
4: Q =
3: NT = 
2: NSW = 
1: WA = 

CONFLICT SET

CONFLICT SET

1. WA =
2. NSW =
3. T =
4. NT =
5. Q = 

SA = ?

CONFLICT SET
2: NT = 
1: NSW = 

CONFLICT SET
3: NT = 
2: NSW = 
1: WA = 

CONFLICT SET
1: WA = 

Q

NT

NSW

CONFLICT SET
4: Q =
3: NT = 
2: NSW = 
1: WA = 

SA

CONFLICT SET

1: WA = 
2: NSW =
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ARTIFICIAL INTELLIGENCE
DIVIDE AND CONQUER

701Problem structure

Independent sub-problems can make life much 
easier:
 The worst-case complexity of a solution search is 

normally ܱ ݀ . For a problem with ݊ ൌ 60 and ݀ ൌ 2 (a 
binary domain), and assuming 1M node/s evaluation, the 
search takes 36,558 years

 In the case the problem can be broken into smaller 
problems with ܿ variables, worst-case complexity is 
ܱ




݀ . For the same problem above, with ܿ ൌ 20, the 

search would only be 3s

 Independent sub-problems are identifiable as 
connected components of the constraint graph
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ARTIFICIAL INTELLIGENCE
TREE-STRUCTURED CSPS

702Problem structure

If the constraint graph has no loops, the CSP can be solved in ܱ ݊݀ଶ .

1. Remove backward: Apply arc consistency from the deepest leaf to its 
parent. After this phase, all arcs are consistent.

2. Assign forward: Assign a value to the variable consistent with its parent.
Forward assignment will never backtrack.
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ARTIFICIAL INTELLIGENCE
NEARLY TREE-STRUCTURED CSPS

703Problem structure

Sometimes is possible to find one or more variables that, if instantiated, 
transform the constraint graph into a tree. This process is called cutset 
conditioning.

With a cutset of size ܿ, complexity of nearly tree-structured CSPs is ܱሺ݀ሺ݊ െ
ܿሻ݀ଶሻ

The process requires to instantiate the variables of the cutset and prune its 
neighbors’ domain.

30



ARTIFICIAL INTELLIGENCE
NEARLY TREE-STRUCTURED CSPS: EXAMPLE

704Problem structure

INSTANTIATE THE CUTSET

PRUNE THE REMAINING DOMAINS

SOLVE THE RESIDUAL CSPS
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QUESTIONS ?
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