
UNINFORMED SEARCH
Fabrizio Santini | COMP 131

VERSION 1.3

1

T
O

D
A

Y
 O

N
 A

I

 Unplanning vs. planning agents

 Solve problems by searching

 Depth-first search

 Breath-first search

 Uniform-cost search

 Questions?

2

Unplanning vs. planning agents

S
E

C
T

IO
N

 0
1

3

ARTIFICIAL INTELLIGENCE

Unplanning agents do not consider the future consequences of their
actions, but see the world as a single percept:

 May have a model of the current state of the world

 Choose actions based solely on the current percept

Planning agents do consider the future consequences of their actions, and
see the world as it would be:

 Must have a model of how the world evolves in response to actions

 Must formulate a goal

 Choose actions based on hypothetical consequences of those actions

UNPLANNING AGENTS
101Unplanning vs planning agents

4

Solve problems by searching

S
E

C
T

IO
N

 0
2

5

ARTIFICIAL INTELLIGENCE 201

from AlphaGo (2017).

6

ContentsARTIFICIAL INTELLIGENCE 202ARTIFICIAL INTELLIGENCE

Not so lethal Harry Potter’s Triwizard maze.

7

ARTIFICIAL INTELLIGENCE
SEARCHING THE GRAPH

203Solving problems by searching

 STATES: A, B, C, D, E, F, G, H, P, Q, R, S

 INITIAL STATE: State S

 SUCCESSOR FUNCTION: Go to the next node with cost
specified

 GOAL TEST: Did we reach G?

How do we find a rational solution?

RIVER

HILL

DRAGON

8

ARTIFICIAL INTELLIGENCE

A searching problem is defined by five components:

 The initial state that the agent starts in

 A description of the possible actions available

 Successor function or transition model: the effect of each action

 The goal test determines the end of the search

 A path cost function that assigns a numeric cost to the paths

PROBLEM FORMULATION
204Solving problems by searching

9

ARTIFICIAL INTELLIGENCE

 A state space graph is a mathematical representation of a portion (or all)
the states of search problem:
• Nodes are world configurations

• Edges represent actions taken

 A search tree is an instantiation of the state space graph with the start
state as a root

STATE SPACE GRAPHS
205Solving problems by searchingA2

10

Slide 10

A2 Revisit this slide: The definitions of state space, state space graph, and search tree are confusing.
Author, 6/15/2017

ARTIFICIAL INTELLIGENCE
SEARCHING TREES

Solving problems by searching

SOLUTION 1 SOLUTION 2

206

11

ARTIFICIAL INTELLIGENCE

Key concepts:
• Frontier: a set of partial plans under consideration
• Expansion: expand potential plans
• Exploration strategy: explore as few nodes as possible

 In a search tree the main question is: which frontier nodes to explore?

GENERAL TREE SEARCH ALGORITHM

Solving problems by searching

function Tree-search(PROBLEM) return SOLUTION, or FAILURE
initialize the frontier using the initial state of PROBLEM
loop do
if the frontier is empty then

return FAILURE
choose a leaf node according to a strategy
remove it from the frontier
if the node contains a goal state then

return the corresponding SOLUTION
expand the chosen node
add the resulting children to the frontier

end

1
2
3
4
5
6
7
8
9
10
11
12

207

12

ARTIFICIAL INTELLIGENCE

Every time we evaluate a search
algorithm with want to ask these
questions:
 Node expansion: How does the strategy

select the next nodes?

 Completeness: Does it guarantee to find a
solution if one exists?

 Optimality: Does it guarantee to find the
least cost path?

 Time complexity: How long does it take to
run?

 Space complexity: How much space does
it take to run?

ALGORITHM PROPERTIES

Solving problems by searching

Time and space complexity

1 ൅ ܾ ൅ ܾଶ ൅ ⋯൅ ܾ௠ ൌ ܱ ܾ௠

m
ܾ௠ nodes

0

1

searched space

search space

frontier

208

ܾ: branching factor
݉: maximum depth
௜: solutionsݏ

13

Depth-first search

S
E

C
T

IO
N

 0
3

14

ARTIFICIAL INTELLIGENCE

 Node expansion: Expand the
deepest node first

 Implementation: Use a Last-Input-
First-Output (LIFO) stack

ALGORITHM STRATEGY
301Depth-first search (DFS)

15

ARTIFICIAL INTELLIGENCE

 Completeness: Only if ݉ is finite

 Optimality: No as it finds the left-
most solution regardless of the cost

 Time complexity:

 Space complexity:

ALGORITHM PROPERTIES

Depth-first search (DFS)

ܱ ܾ௠

302

Uhm… nothing really

ܱ ܾ௠

GOOD

BAD If the tree depth can infinitely expand, we might
never reach the goal

where ݉ is the maximum depth of the search space

16

Breadth-first search

S
E

C
T

IO
N

 0
4

17

ARTIFICIAL INTELLIGENCE
ALGORITHM STRATEGY

Breath-first search (BFS)

 Node expansion: Expand the
shallowest node first

 Implementation: Use a First-Input-
First-Output (FIFO) queue

401

18

ARTIFICIAL INTELLIGENCE

 Completeness: Only if ܾ is finite

 Optimality: Yes, if the costs are
equal

 Time complexity:

 Space complexity:

ALGORITHM PROPERTIES

Breath-first search (BFS)

ܱ ܾ௚

402

In certain conditions, BFS is complete and
optimal

ܱ ܾ௚

GOOD

BAD BFS might take too much memory and time
to find a solution. Also the solution might not
be optimal

where ݃ is the depth to which a goal was found

19

ARTIFICIAL INTELLIGENCE

Depth Nodes Time Memory

2 64 80 microseconds 12.5 kilobytes

4 4,096 5.1 milliseconds 800 kilobytes

6 262,144 327 milliseconds 50 megabytes

8 16,777,216 20 seconds 3.1 gigabytes

10 1,073,741,824 22 minutes 200 gigabytes

14 4,398,046,511,104 63 days 800 terabytes

16 281,474,976,710,656 11 years 50 petabytes

SEARCH ISSUES

Breath-first search (BFS)

Time and memory requirements for BFS. The numbers shown assume branching factor ܾ ൌ 8;
800K nodes/second; 200 bytes

403

20

Uniform-cost search (Dijkstra search)

S
E

C
T

IO
N

 0
5

21

ARTIFICIAL INTELLIGENCE
ALGORITHM STRATEGY

Uniform-cost search (UCS)

function Uniform-cost-search(PROBLEM) return SOLUTION, or FAILURE
initialize the frontier using the initial state of PROBLEM
loop do
if the frontier is empty then
return FAILURE

pop node from frontier with min
௖
݃ሺܿሻ

if the node contains a goal state then
return the corresponding SOLUTION

expand the chosen node
for each child
if child is not in the frontier or visited then
insert child in frontier

else if child is in frontier with higher cost then
replace child in frontier with child

end

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

501

This strategy introduces the idea of graph search (as opposed to tree
search): there is no need to visit again states that have been visited before.

While exploring the frontier, states being expanded are marked as visited.

22

ARTIFICIAL INTELLIGENCE
ALGORITHM STRATEGY

Uniform-cost search (UCS)

VISITED

PRUNED

FRONTIER

GOAL

NOT VISITED

GOAL NOT VISITED

502

 Node expansion: Expand the
cheapest node first

 Implementation: Use a Priority
queue, where the priority is the
cumulative (path) cost of the node

A1

23

Slide 23

A1 Author, 5/20/2017

ARTIFICIAL INTELLIGENCE

A priority queue is an abstract data type similar to a queue. Each element is
associated with a priority.

Any element with the highest (or lowest) priority is served before any other
element with a lower (or higher) priority.

PRIORITY QUEUE

Uniform-cost search (UCS)

Operation Binary Binomial Fibonacci

find‐min ܱሺ1ሻ ܱሺlog ݊ሻ ܱሺ1ሻ

delete‐min ܱሺlog ݊ሻ ܱሺlog ݊ሻ ܱሺlog ݊ሻ

insert ܱሺlog ݊ሻ ܱሺ1ሻ ܱሺ1ሻ

decrease‐key ܱሺlog ݊ሻ ܱሺlog ݊ሻ ܱሺ1ሻ

merge ܱሺ݊ሻ ܱሺlog ݊ሻ ܱሺ1ሻ

503

24

ARTIFICIAL INTELLIGENCE

 Completeness: Yes, only if ε is
positive

 Optimality: Yes

 Time complexity:

 Space complexity:

ALGORITHM PROPERTIES

Uniform-cost search (UCS)

UCS is complete and optimalGOOD

BAD UCS explores in every direction without any
information about the goal location

If the solution costs ܥ∗and the arcs cost at least ߝ,

then the worst-case depth is ஼
∗

ఌ

ܱ ܾ
ଵା ஼∗

ఌ

ܱ ܾ
ଵା ஼∗

ఌ

504

25

QUESTIONS ?

26

